1
|
Zhou N, Zhang S, Wang C, Zheng B, Zhang A, Zhou W. Generation of human induced pluripotent stem cell lines derived from a patient carrying an intragenic deletion in the NFIA gene. Hum Cell 2025; 38:95. [PMID: 40266456 DOI: 10.1007/s13577-025-01222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Brain malformations with or without urinary tract defects (BRMUTD) are caused by heterozygous variants in the NFIA gene. BRMUTD is a neurodevelopmental disorder characterized by hypoplasia or absence of the corpus callosum, hydrocephalus or ventriculomegaly, and developmental delay, which may or may not be accompanied by urinary tract defects. Here, we report the successful generation of induced pluripotent stem cells (hiPSCs) from a 3-year-old male BRMUTD patient using Sendai virus-based non-integrating reprogramming technology. This patient-derived cell line harbors an intragenic deletion within the NFIA gene (NC_000001.10: g.61650967_61842967del [GRCh37]), which is associated with a significant reduction in NFIA expression. This cell line maintains a normal karyotype, expresses pluripotency markers, and can differentiate into three germ layers. The established hiPSCs line will provide an in vitro model for studying pathological mechanisms and potential therapies of NFIA-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Ning Zhou
- School of Medicine, Southeast University, Nanjing, 210009, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Shengnan Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Aihua Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
2
|
Lazea C, Vulturar R, Chiș A, Encica S, Horvat M, Belizna C, Damian LO. Macrocephaly and Finger Changes: A Narrative Review. Int J Mol Sci 2024; 25:5567. [PMID: 38791606 PMCID: PMC11122644 DOI: 10.3390/ijms25105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Macrocephaly, characterized by an abnormally large head circumference, often co-occurs with distinctive finger changes, presenting a diagnostic challenge for clinicians. This review aims to provide a current synthetic overview of the main acquired and genetic etiologies associated with macrocephaly and finger changes. The genetic cause encompasses several categories of diseases, including bone marrow expansion disorders, skeletal dysplasias, ciliopathies, inherited metabolic diseases, RASopathies, and overgrowth syndromes. Furthermore, autoimmune and autoinflammatory diseases are also explored for their potential involvement in macrocephaly and finger changes. The intricate genetic mechanisms involved in the formation of cranial bones and extremities are multifaceted. An excess in growth may stem from disruptions in the intricate interplays among the genetic, epigenetic, and hormonal factors that regulate human growth. Understanding the underlying cellular and molecular mechanisms is important for elucidating the developmental pathways and biological processes that contribute to the observed clinical phenotypes. The review provides a practical approach to delineate causes of macrocephaly and finger changes, facilitate differential diagnosis and guide for the appropriate etiological framework. Early recognition contributes to timely intervention and improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Cecilia Lazea
- 1st Department of Pediatrics, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400370 Cluj-Napoca, Romania;
- 1st Pediatrics Clinic, Emergency Pediatric Clinical Hospital, 400370 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 400015 Cluj-Napoca, Romania
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St., 400497 Cluj-Napoca, Romania;
| | - Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 400015 Cluj-Napoca, Romania
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St., 400497 Cluj-Napoca, Romania;
| | - Svetlana Encica
- Department of Pathology, “Niculae Stancioiu” Heart Institute Cluj-Napoca, 19-21 Calea Moților St., 400001 Cluj-Napoca, Romania;
| | - Melinda Horvat
- Department of Infectious Diseases and Epidemiology, The Clinical Hospital of Infectious Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400348 Cluj-Napoca, Romania;
| | - Cristina Belizna
- UMR CNRS 6015, INSERM U1083, University of Angers, 49100 Angers, France;
- Internal Medicine Department Clinique de l’Anjou, Vascular and Coagulation Department, University Hospital Angers, 49100 Angers, France
| | - Laura-Otilia Damian
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St., 400497 Cluj-Napoca, Romania;
- Department of Rheumatology, Center for Rare Musculoskeletal Autoimmune and Autoinflammatory Diseases, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
- CMI Reumatologie Dr. Damian, 400002 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Riedhammer KM, Nguyen TMT, Koşukcu C, Calzada-Wack J, Li Y, Assia Batzir N, Saygılı S, Wimmers V, Kim GJ, Chrysanthou M, Bakey Z, Sofrin-Drucker E, Kraiger M, Sanz-Moreno A, Amarie OV, Rathkolb B, Klein-Rodewald T, Garrett L, Hölter SM, Seisenberger C, Haug S, Schlosser P, Marschall S, Wurst W, Fuchs H, Gailus-Durner V, Wuttke M, Hrabe de Angelis M, Ćomić J, Akgün Doğan Ö, Özlük Y, Taşdemir M, Ağbaş A, Canpolat N, Orenstein N, Çalışkan S, Weber RG, Bergmann C, Jeanpierre C, Saunier S, Lim TY, Hildebrandt F, Alhaddad B, Basel-Salmon L, Borovitz Y, Wu K, Antony D, Matschkal J, Schaaf CW, Renders L, Schmaderer C, Rogg M, Schell C, Meitinger T, Heemann U, Köttgen A, Arnold SJ, Ozaltin F, Schmidts M, Hoefele J. Implication of transcription factor FOXD2 dysfunction in syndromic congenital anomalies of the kidney and urinary tract (CAKUT). Kidney Int 2024; 105:844-864. [PMID: 38154558 PMCID: PMC10957342 DOI: 10.1016/j.kint.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.
Collapse
Affiliation(s)
- Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Thanh-Minh T Nguyen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Can Koşukcu
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, Türkiye
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nurit Assia Batzir
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Seha Saygılı
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Vera Wimmers
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gwang-Jin Kim
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany
| | - Marialena Chrysanthou
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zeineb Bakey
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Efrat Sofrin-Drucker
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, Germany
| | - Claudia Seisenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Haug
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, Germany
| | - Jasmina Ćomić
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Özlem Akgün Doğan
- Department of Pediatrics, Division of Pediatric Genetics, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Türkiye
| | - Yasemin Özlük
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Mehmet Taşdemir
- Department of Pediatric Nephrology, Istinye University Faculty of Medicine, Istanbul, Türkiye
| | - Ayşe Ağbaş
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Nur Canpolat
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Naama Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Salim Çalışkan
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany; Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Cecile Jeanpierre
- Laboratoire des Maladies Rénales Héréditaires, Institut Imagine, Université Paris Cité, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Laboratoire des Maladies Rénales Héréditaires, Institut Imagine, Université Paris Cité, INSERM UMR 1163, Paris, France
| | - Tze Y Lim
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bader Alhaddad
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Lina Basel-Salmon
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Raphael Recanati Genetics Institute, Rabin Medical Center, Petah Tikva, Israel; Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Yael Borovitz
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Nephrology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Kaman Wu
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dinu Antony
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Julia Matschkal
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Christian W Schaaf
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Lutz Renders
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Manuel Rogg
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany; CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Fatih Ozaltin
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, Türkiye; Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, Ankara, Türkiye; Nephrogenetics Laboratory, Hacettepe University Faculty of Medicine, Sihhiye, Ankara, Türkiye; Center for Genomics and Rare Diseases, Hacettepe University, Sihhiye, Ankara, Türkiye.
| | - Miriam Schmidts
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany.
| |
Collapse
|
4
|
Hale AT, Boudreau H, Devulapalli R, Duy PQ, Atchley TJ, Dewan MC, Goolam M, Fieggen G, Spader HL, Smith AA, Blount JP, Johnston JM, Rocque BG, Rozzelle CJ, Chong Z, Strahle JM, Schiff SJ, Kahle KT. The genetic basis of hydrocephalus: genes, pathways, mechanisms, and global impact. Fluids Barriers CNS 2024; 21:24. [PMID: 38439105 PMCID: PMC10913327 DOI: 10.1186/s12987-024-00513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Hydrocephalus (HC) is a heterogenous disease characterized by alterations in cerebrospinal fluid (CSF) dynamics that may cause increased intracranial pressure. HC is a component of a wide array of genetic syndromes as well as a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.) that can present across the age spectrum, highlighting the phenotypic heterogeneity of the disease. Surgical treatments include ventricular shunting and endoscopic third ventriculostomy with or without choroid plexus cauterization, both of which are prone to failure, and no effective pharmacologic treatments for HC have been developed. Thus, there is an urgent need to understand the genetic architecture and molecular pathogenesis of HC. Without this knowledge, the development of preventive, diagnostic, and therapeutic measures is impeded. However, the genetics of HC is extraordinarily complex, based on studies of varying size, scope, and rigor. This review serves to provide a comprehensive overview of genes, pathways, mechanisms, and global impact of genetics contributing to all etiologies of HC in humans.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK.
| | - Hunter Boudreau
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Rishi Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Michael C Dewan
- Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mubeen Goolam
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Graham Fieggen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Pediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Heather L Spader
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anastasia A Smith
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jeffrey P Blount
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - James M Johnston
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Brandon G Rocque
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Curtis J Rozzelle
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Zechen Chong
- Heflin Center for Genomics, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jennifer M Strahle
- Division of Pediatric Neurosurgery, St. Louis Children's Hospital, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Dini G, Verrotti A, Gorello P, Soliani L, Cordelli DM, Antona V, Mencarelli A, Colavito D, Prontera P. NFIA haploinsufficiency: case series and literature review. Front Pediatr 2023; 11:1292654. [PMID: 37915986 PMCID: PMC10616848 DOI: 10.3389/fped.2023.1292654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Background NFIA-related disorder (OMIM #613735) is an autosomal dominant neurodevelopmental disorder characterized by a variable degree of cognitive impairment and non-specific dysmorphic features. To date, fewer than thirty patients affected by this disorder have been described. Methods Our study included three children with NFIA haploinsufficiency recruited from three medical genetics centers. Clinical presentations were recorded on a standardized case report form. Results All patients presented a variable degree of intellectual disability. None of the individuals in our cohort had urinary tract malformations. Three novel mutations, c.344G>A, c.261T>G, and c.887_888del are reported here. Conclusion NFIA haploinsufficiency can be suspected through careful observation of specific dysmorphisms, including macrocephaly and craniofacial abnormalities. Instrumental tests such as MRI and renal ultrasound provide further diagnostic clues, while genetic testing can confirm the diagnosis.
Collapse
Affiliation(s)
- Gianluca Dini
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | | | - Paolo Gorello
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luca Soliani
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC di Neuropsichiatria Dell'Età Pediatrica, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, Bologna, Italy
| | - Duccio Maria Cordelli
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC di Neuropsichiatria Dell'Età Pediatrica, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, Bologna, Italy
| | - Vincenzo Antona
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D'Alessandro,” University of Palermo, Palermo, Italy
| | - Amedea Mencarelli
- Medical Genetics Unit, S. Maria della Misericordia Hospital, Perugia, Italy
| | | | - Paolo Prontera
- Medical Genetics Unit, S. Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
6
|
Riedhammer KM, Nguyen TMT, Koşukcu C, Calzada-Wack J, Li Y, Saygılı S, Wimmers V, Kim GJ, Chrysanthou M, Bakey Z, Kraiger M, Sanz-Moreno A, Amarie OV, Rathkolb B, Klein-Rodewald T, Garrett L, Hölter SM, Seisenberger C, Haug S, Marschall S, Wurst W, Fuchs H, Gailus-Durner V, Wuttke M, de Angelis MH, Ćomić J, Doğan ÖA, Özlük Y, Taşdemir M, Ağbaş A, Canpolat N, Ćalışkan S, Weber R, Bergmann C, Jeanpierre C, Saunier S, Lim TY, Hildebrandt F, Alhaddad B, Wu K, Antony D, Matschkal J, Schaaf C, Renders L, Schmaderer C, Meitinger T, Heemann U, Köttgen A, Arnold S, Ozaltin F, Schmidts M, Hoefele J. Implication of FOXD2 dysfunction in syndromic congenital anomalies of the kidney and urinary tract (CAKUT). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.21.23287206. [PMID: 36993625 PMCID: PMC10055578 DOI: 10.1101/2023.03.21.23287206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Background Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below 30 years of age. Many monogenic forms have been discovered mainly due to comprehensive genetic testing like exome sequencing (ES). However, disease-causing variants in known disease-associated genes still only explain a proportion of cases. Aim of this study was to unravel the underlying molecular mechanism of syndromic CAKUT in two multiplex families with presumed autosomal recessive inheritance. Methods and Results ES in the index individuals revealed two different rare homozygous variants in FOXD2, a transcription factor not previously implicated in CAKUT in humans: a frameshift in family 1 and a missense variant in family 2 with family segregation patterns consistent with autosomal-recessive inheritance. CRISPR/Cas9-derived Foxd2 knock-out (KO) mice presented with bilateral dilated renal pelvis accompanied by renal papilla atrophy while extrarenal features included mandibular, ophthalmologic, and behavioral anomalies, recapitulating the phenotype of humans with FOXD2 dysfunction. To study the pathomechanism of FOXD2-dysfunction-mediated developmental renal defects, in a complementary approach, we generated CRISPR/Cas9-mediated KO of Foxd2 in ureteric-bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important in renal/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a cell identity shift towards a stromal cell identity. Histology of Foxd2 KO mouse kidneys confirmed increased fibrosis. Further, GWAS data (genome-wide association studies) suggests that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Conclusions In summary, our data implicate that FOXD2 dysfunction is a very rare cause of autosomal recessive syndromic CAKUT and suggest disturbances of the PAX2-WNT4 cell signaling axis contribute to this phenotype.
Collapse
Affiliation(s)
- Korbinian M. Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Thanh-Minh T. Nguyen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
| | - Can Koşukcu
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, 06100, Türkiye
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Seha Saygılı
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Vera Wimmers
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, 79106, Germany
| | - Gwang-Jin Kim
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
| | - Marialena Chrysanthou
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
| | - Zeineb Bakey
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, 79106, Germany
| | - Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
- German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Sabine M. Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, 85354, Germany
| | - Claudia Seisenberger
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Stefan Haug
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, 85354, Germany
- Deutsches Institut fur Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, 85354, Germany
| | - Jasmina Ćomić
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Özlem Akgün Doğan
- Department of Pediatric Genetics, Acibadem Mehmet Ali Aydinlar University, Faculty of Medicine, Istanbul, Türkiye
| | - Yasemin Özlük
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Mehmet Taşdemir
- Department of Pediatric Nephrology, Istinye University School of Medicine, Liv Hospital, Istanbul, Türkiye
| | - Ayşe Ağbaş
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Nur Canpolat
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Salim Ćalışkan
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Ruthild Weber
- Department of Human Genetics, Hannover Medical School, Hannover, 30625, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Cecile Jeanpierre
- Inserm U1163, Laboratoire des Maladies Renales Hereditaires Institut Imagine, Université de Paris, Paris, France
| | - Sophie Saunier
- Inserm U1163, Laboratoire des Maladies Renales Hereditaires Institut Imagine, Université de Paris, Paris, France
| | - Tze Y. Lim
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bader Alhaddad
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Kaman Wu
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
| | - Dinu Antony
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
| | - Julia Matschkal
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Christian Schaaf
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Lutz Renders
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
- CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Sebastian Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
- CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Fatih Ozaltin
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, 06100, Türkiye
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, 06100, Sihhiye, Ankara, Türkiye
| | - Miriam Schmidts
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, 79106, Germany
- CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| |
Collapse
|
7
|
Marinella G, Conti E, Buchignani B, Sgherri G, Pasquariello R, Giordano F, Cristofani P, Battini R, Battaglia A. Further characterization of NFIB-associated phenotypes: Report of two new individuals. Am J Med Genet A 2023; 191:540-545. [PMID: 36321570 PMCID: PMC10091694 DOI: 10.1002/ajmg.a.63018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/13/2022] [Accepted: 10/07/2022] [Indexed: 01/11/2023]
Abstract
Nuclear Factor I B (NFIB) haploinsufficiency has recently been identified as a cause of intellectual disability (ID) and macrocephaly. Here we report on two new individuals carrying a microdeletion in the chromosomal region 9p23-p22.3 containing NFIB. The first is a 7-year 9-month old boy with developmental delays, ID, definite facial anomalies, and brain and spinal cord magnetic resonance imaging findings including periventricular nodular heterotopia, hypoplasia of the corpus callosum, arachnoid cyst in the left middle cranial fossa, syringomyelia in the thoracic spinal cord and distal tract of the conus medullaris, and a stretched appearance of the filum terminale. The second is a 32-year-old lady (the proband' mother) with dysmorphic features, and a history of learning disability, hypothyroidism, poor growth, left inguinal hernia, and panic attacks. Her brain magnetic resonance imaging findings include a dysmorphic corpus callosum, and a small cyst in the left choroidal fissure that marks the hippocampal head. Array-based comparative genomic hybridization identified, in both, a 232 Kb interstitial deletion at 9p23p22.3 including several exons of NFIB and no other known genes. Our two individuals add to the knowledge of this rare disorder through the addition of new brain and spinal cord MRI findings and dysmorphic features. We propose that NFIB haploinsufficiency causes a clinically recognizable malformation-ID syndrome.
Collapse
Affiliation(s)
- Gemma Marinella
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Eugenia Conti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Bianca Buchignani
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Pisa, Italy
| | - Giada Sgherri
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Rosa Pasquariello
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Flavio Giordano
- Department of Neurosurgery, Children's Hospital A. Meyer-University of Florence, Firenze, Florence, Italy
| | - Paola Cristofani
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Pisa, Italy
| | - Agatino Battaglia
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| |
Collapse
|
8
|
Phenotypic Spectrum of NFIA Haploinsufficiency: Two Additional Cases and Review of the Literature. Genes (Basel) 2022; 13:genes13122249. [PMID: 36553517 PMCID: PMC9777632 DOI: 10.3390/genes13122249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
The NFIA (nuclear factor I/A) gene encodes for a transcription factor belonging to the nuclear factor I family and has key roles in various embryonic differentiation pathways. In humans, NFIA is the major contributor to the phenotypic traits of "Chromosome 1p32p31 deletion syndrome". We report on two new cases with deletions involving NFIA without any other pathogenic protein-coding gene alterations. A cohort of 24 patients with NFIA haploinsufficiency as the sole anomaly was selected by reviewing the literature and public databases in order to analyze all clinical features reported and their relative frequencies. This process was useful because it provided an overall picture of the phenotypic outcome of NFIA haploinsufficiency and helped to define a cluster of phenotypic traits that can facilitate clinicians in identifying affected patients. NFIA haploinsufficiency can be suspected by a careful observation of the dysmorphisms (macrocephaly, craniofacial, and first-finger anomalies), and this potential diagnosis is strengthened by the presence of intellectual and developmental disabilities or other neurodevelopmental disorders. Further clues of NFIA haploinsufficiency can be provided by instrumental tests such as MRI and kidney urinary tract ultrasound and confirmed by genetic testing.
Collapse
|
9
|
Colijn MA, Hrynchak M, Hrazdil CT, Willaeys V, White RF, Stowe RM. A 1p31.3 deletion encompassing the nuclear factor 1A gene presenting as possible temporal lobe epilepsy in association with schizoaffective disorder. Neurocase 2022; 28:382-387. [PMID: 36209511 DOI: 10.1080/13554794.2022.2132869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Chromosome 1p32-p31 deletion syndrome, which is characterized by a variety of neurodevelopmental abnormalities, is thought to occur as a result of nuclear factor 1A (NFIA) haploinsufficiency. We present a case of a right-handed 40-year-old female with a 1p31.3 deletion, who exhibited numerous common features of this syndrome, in addition to treatment resistant schizoaffective disorder and possible temporal lobe epilepsy, making her presentation unique. While neither psychosis nor temporal lobe epilepsy has been described in this syndrome previously, these conditions likely occurred in our patient as a result of NFIA haploinsufficiency.
Collapse
Affiliation(s)
- Mark A Colijn
- Department of Psychiatry, The University of Calgary, Calgary, AB, Canada
| | - Monica Hrynchak
- Molecular Cytogenetic Laboratory, Royal Columbian Hospital, The University of British Columbia, New Westminster, BC, Canada
| | - Chantelle T Hrazdil
- Division of Neurology, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Veerle Willaeys
- BC Psychosis Program, British Columbia Mental Health & Substance Use Services, Vancouver, BC, Canada
| | - Randall F White
- BC Psychosis Program, British Columbia Mental Health & Substance Use Services, Vancouver, BC, Canada.,Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| | - Robert M Stowe
- BC Neuropsychiatry Program, Departments of Psychiatry and Neurology (Medicine), and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Tønne E, Due-Tønnessen BJ, Vigeland MD, Amundsen SS, Ribarska T, Åsten PM, Sheng Y, Helseth E, Gilfillan GD, Mero IL, Heimdal KR. Whole-exome sequencing in syndromic craniosynostosis increases diagnostic yield and identifies candidate genes in osteogenic signaling pathways. Am J Med Genet A 2022; 188:1464-1475. [PMID: 35080095 DOI: 10.1002/ajmg.a.62663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 12/26/2021] [Indexed: 11/07/2022]
Abstract
Craniosynostosis (CS) is a common congenital anomaly defined by premature fusion of one or more cranial sutures. Syndromic CS involves additional organ anomalies or neurocognitive deficits and accounts for 25%-30% of the cases. In a recent population-based study by our group, 84% of the syndromic CS cases had a genetically verified diagnosis after targeted analyses. A number of different genetic causes were detected, confirming that syndromic CS is highly heterogeneous. In this study, we performed whole-exome sequencing of 10 children and parents from the same cohort where previous genetic results were negative. We detected pathogenic, or likely pathogenic, variants in four additional genes (NFIA, EXTL3, POLR2A, and FOXP2) associated with rare conditions. In two of these (POLR2A and FOXP2), CS has not previously been reported. We further detected a rare predicted damaging variant in SH3BP4, which has not previously been related to human disease. All findings were clustered in genes involved in the pathways of osteogenesis and suture patency. We conclude that whole-exome sequencing expands the list of genes associated with syndromic CS, and provides new candidate genes in osteogenic signaling pathways.
Collapse
Affiliation(s)
- Elin Tønne
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway
| | - Bernt Johan Due-Tønnessen
- Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Magnus Dehli Vigeland
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Teodora Ribarska
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Eirik Helseth
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Gregor Duncan Gilfillan
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ketil Riddervold Heimdal
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Ogura Y, Uehara T, Ujibe K, Yoshihashi H, Yamada M, Suzuki H, Takenouchi T, Kosaki K, Hirata H. The p.Thr395Met missense variant of NFIA found in a patient with intellectual disability is a defective variant. Am J Med Genet A 2022; 188:1184-1192. [PMID: 35018717 DOI: 10.1002/ajmg.a.62638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022]
Abstract
Nuclear factor one A (NFIA) is a transcription factor that regulates the development of the central nervous system. Haploinsufficiency of the NFIA gene causes NFIA-related disorder, which includes brain abnormalities and intellectual disability, with or without urinary tract defects. Intragenic deletions, nonsense variants, frameshift variants, and missense variants in one allele of the NFIA gene have been reported to cause various neurological and urogenital symptoms. Here we report a 10-year-old male patient with developmental delay, coarctation of the aorta, and distinctive facial features. Exome analysis identified a rare de novo heterozygous missense variant p.Thr395Met in NFIA. We employed zebrafish as a model organism in our NFIA analysis and found that nfia-/- zebrafish initially showed a loss of commissural axons in the brain, and eventually underwent growth retardation resulting in premature death. Impairment of the commissural neurons in nfia-/- zebrafish embryos could be restored by the expression of wild-type human NFIA protein, but not of mutant human protein harboring the p.Thr395Met substitution, indicating that this variant affects the function of NFIA protein. Taken together, we suggest that the p.Thr395Met allele in the NFIA gene is relevant to the pathogenesis of NFIA-related disorder.
Collapse
Affiliation(s)
- Yurie Ogura
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.,Department of Clinical Genetics, Aichi Developmental Disability Center Central Hospital, Aichi, Japan
| | - Kota Ujibe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Hiroshi Yoshihashi
- Department of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| |
Collapse
|
12
|
Uehara T, Sanuki R, Ogura Y, Yokoyama A, Yoshida T, Futagawa H, Yoshihashi H, Yamada M, Suzuki H, Takenouchi T, Matsubara K, Hirata H, Kosaki K, Takano‐Shimizu T. Recurrent NFIA K125E substitution represents a loss-of-function allele: Sensitive in vitro and in vivo assays for nontruncating alleles. Am J Med Genet A 2021; 185:2084-2093. [PMID: 33973697 PMCID: PMC8251549 DOI: 10.1002/ajmg.a.62226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/09/2023]
Abstract
Nuclear factor I A (NFIA) is a transcription factor that belongs to the NFI family. Truncating variants or intragenic deletion of the NFIA gene are known to cause the human neurodevelopmental disorder known as NFIA‐related disorder, but no patient heterozygous for a missense mutation has been reported. Here, we document two unrelated patients with typical phenotypic features of the NFIA‐related disorder who shared a missense variant p.Lys125Glu (K125E) in the NFIA gene. Patient 1 was a 6‐year‐old female with global developmental delay, corpus callosum anomaly, macrocephaly, and dysmorphic facial features. Patient 2 was a 14‐month‐old male with corpus callosum anomaly and macrocephaly. By using Drosophila and zebrafish models, we functionally evaluated the effect of the K125E substitution. Ectopic expression of wild‐type human NFIA in Drosophila caused developmental defects such as eye malformation and premature death, while that of human NFIA K125E variant allele did not. nfia‐deficient zebrafish embryos showed defects of midline‐crossing axons in the midbrain/hindbrain boundary. This impairment of commissural neurons was rescued by expression of wild‐type human NFIA, but not by that of mutant variant harboring K125E substitution. In accordance with these in vivo functional analyses, we showed that the K125E mutation impaired the transcriptional regulation of HES1 promoter in cultured cells. Taken together, we concluded that the K125E variant in the NFIA gene is a loss‐of‐function mutation.
Collapse
Affiliation(s)
- Tomoko Uehara
- Center for Medical GeneticsKeio University School of MedicineTokyoJapan
| | - Rikako Sanuki
- Advanced Insect Research Promotion CenterKyoto Institute of TechnologyKyotoJapan
| | - Yurie Ogura
- Department of Chemistry and Biological ScienceCollege of Science and Engineering, Aoyama Gakuin UniversitySagamiharaKanagawaJapan
| | - Atsushi Yokoyama
- Department of PediatricsKyoto University Graduate School of MedicineTokyoJapan
| | - Takeshi Yoshida
- Department of PediatricsKyoto University Graduate School of MedicineTokyoJapan
| | - Hiroshi Futagawa
- Department of GeneticsTokyo Metropolitan Children's Medical CenterTokyoJapan
| | - Hiroshi Yoshihashi
- Department of GeneticsTokyo Metropolitan Children's Medical CenterTokyoJapan
| | - Mamiko Yamada
- Center for Medical GeneticsKeio University School of MedicineTokyoJapan
| | - Hisato Suzuki
- Center for Medical GeneticsKeio University School of MedicineTokyoJapan
| | | | - Kohei Matsubara
- Advanced Insect Research Promotion CenterKyoto Institute of TechnologyKyotoJapan
| | - Hiromi Hirata
- Department of Chemistry and Biological ScienceCollege of Science and Engineering, Aoyama Gakuin UniversitySagamiharaKanagawaJapan
| | - Kenjiro Kosaki
- Center for Medical GeneticsKeio University School of MedicineTokyoJapan
| | | |
Collapse
|
13
|
Yoon JG, Hahn HM, Choi S, Kim SJ, Aum S, Yu JW, Park EK, Shim KW, Lee MG, Kim YO. Molecular Diagnosis of Craniosynostosis Using Targeted Next-Generation Sequencing. Neurosurgery 2020; 87:294-302. [PMID: 31754721 DOI: 10.1093/neuros/nyz470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Genetic factors play an important role in the pathogenesis of craniosynostosis (CRS). However, the molecular diagnosis of CRS in clinical practice is limited because of its heterogeneous etiology. OBJECTIVE To investigate the genomic landscape of CRS in a Korean cohort and also to establish a practical diagnostic workflow by applying targeted panel sequencing. METHODS We designed a customized panel covering 34 CRS-related genes using in-solution hybrid capture method. We enrolled 110 unrelated Korean patients with CRS, including 40 syndromic and 70 nonsyndromic cases. A diagnostic pipeline was established by combining in-depth clinical reviews and multiple bioinformatics tools for analyzing single-nucleotide variants (SNV)s and copy number variants (CNV)s. RESULTS The diagnostic yield of the targeted panel was 30.0% (33/110). Twenty-five patients (22.7%) had causal genetic variations resulting from SNVs or indels in 9 target genes (TWIST1, FGFR3, TCF12, ERF, FGFR2, ALPL, EFNB1, FBN1, and SKI, in order of frequency). CNV analysis identified 8 (7.3%) additional patients with chromosomal abnormalities involving 1p32.3p31.3, 7p21.1, 10q26, 15q21.3, 16p11.2, and 17p13.3 regions; these cases mostly presented with syndromic clinical features. CONCLUSION The present study shows the wide genomic landscape of CRS, revealing various genetic factors for CRS pathogenesis. In addition, the results demonstrate that an efficient diagnostic workup using target panel sequencing provides great clinical utility in the molecular diagnosis of CRS.
Collapse
Affiliation(s)
- Jihoon G Yoon
- Department of Pharmacology, Research Center for Human Genetics, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Hyung Min Hahn
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Sungkyoung Choi
- Department of Pharmacology, Research Center for Human Genetics, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Soo Jung Kim
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Sowon Aum
- Department of Pharmacology, Research Center for Human Genetics, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Jung Woo Yu
- Department of Pharmacology, Research Center for Human Genetics, College of Medicine, Yonsei University, Seoul, Republic of Korea.,Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Eun Kyung Park
- Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Kyu Won Shim
- Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Research Center for Human Genetics, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Yong Oock Kim
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, College of Medicine, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Zhang Y, Lin CM, Zheng XL, Abuduxikuer K. A novel NFIA gene nonsense mutation in a Chinese patient with macrocephaly, corpus callosum hypoplasia, developmental delay, and dysmorphic features. Mol Genet Genomic Med 2020; 8:e1492. [PMID: 32926563 PMCID: PMC7667355 DOI: 10.1002/mgg3.1492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND NFIA gene (OMIM*600727) has been shown to be associated with a syndrome of central nervous system malformations (corpus callosum and ventriculomegaly) with or without urinary tract defects(BRMUTD) (OMIM#613735) with a low incidence. METHODS AND RESULTS: We presented the clinical data of a 3-month-old Chinese infant with clinical features such as thin corpus callosum, ventriculomegaly, development delay, and dysmorphic features (macrocephaly, hypertelorism, slightly pointed chin, broad forehead, and large ears). Genomic DNA was extracted for Trio Whole Exome Sequencing. Preliminary genetic tests revealed one de novo heterozygous nonsense mutation c.220 C>T (p.Arg74Ter) of the NFIA gene (NM_005595). CONCLUSION Genetic DNA sequencing is a crucial method for diagnosing BRMUTD. This approach enriches the genotype and spectrum of BRMUTD syndrome and the outcome of the patient.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neurology, Xiamen Children's Hospital, Fujian, China
| | - Cai Mei Lin
- Department of Neurology, Xiamen Children's Hospital, Fujian, China
| | - Xiao Lan Zheng
- Department of Neurology, Xiamen Children's Hospital, Fujian, China
| | | |
Collapse
|
15
|
Murcia Pienkowski V, Kucharczyk M, Rydzanicz M, Poszewiecka B, Pachota K, Młynek M, Stawiński P, Pollak A, Kosińska J, Wojciechowska K, Lejman M, Cieślikowska A, Wicher D, Stembalska A, Matuszewska K, Materna-Kiryluk A, Gambin A, Chrzanowska K, Krajewska-Walasek M, Płoski R. Breakpoint Mapping of Symptomatic Balanced Translocations Links the EPHA6, KLF13 and UBR3 Genes to Novel Disease Phenotype. J Clin Med 2020; 9:jcm9051245. [PMID: 32344861 PMCID: PMC7287862 DOI: 10.3390/jcm9051245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
De novo balanced chromosomal aberrations (BCAs), such as reciprocal translocations and inversions, are genomic aberrations that, in approximately 25% of cases, affect the human phenotype. Delineation of the exact structure of BCAs may provide a precise diagnosis and/or point to new disease loci. We report on six patients with de novo balanced chromosomal translocations (BCTs) and one patient with a de novo inversion, in whom we mapped breakpoints to a resolution of 1 bp, using shallow whole-genome mate pair sequencing. In all seven cases, a disruption of at least one gene was found. In two patients, the phenotypic impact of the disrupted genes is well known (NFIA, ATP7A). In five patients, the aberration damaged genes: PARD3, EPHA6, KLF13, STK24, UBR3, MLLT10 and TLE3, whose influence on the human phenotype is poorly understood. In particular, our results suggest novel candidate genes for retinal degeneration with anophthalmia (EPHA6), developmental delay with speech impairment (KLF13), and developmental delay with brain dysembryoplastic neuroepithelial tumor (UBR3). In conclusion, identification of the exact structure of symptomatic BCTs using next generation sequencing is a viable method for both diagnosis and finding novel disease candidate genes in humans.
Collapse
Affiliation(s)
- Victor Murcia Pienkowski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
| | - Marzena Kucharczyk
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
| | - Barbara Poszewiecka
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland; (B.P.); (A.G.)
| | - Katarzyna Pachota
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Marlena Młynek
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Piotr Stawiński
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
| | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
| | - Katarzyna Wojciechowska
- Department of Pediatric Hematology Oncology and Transplantology, University Children’s Hospital, 20-093 Lublin, Poland;
| | - Monika Lejman
- Department of Pediatric Hematology Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Agata Cieślikowska
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Dorota Wicher
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | | | - Karolina Matuszewska
- Department of Medical Genetics, University of Medical Sciences, 60-806 Poznan, Poland; (K.M.); (A.M.-K.)
- Centers for Medical Genetics GENESIS, Grudzieniec, 60-406 Poznan, Poland
| | - Anna Materna-Kiryluk
- Department of Medical Genetics, University of Medical Sciences, 60-806 Poznan, Poland; (K.M.); (A.M.-K.)
- Centers for Medical Genetics GENESIS, Grudzieniec, 60-406 Poznan, Poland
| | - Anna Gambin
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland; (B.P.); (A.G.)
| | - Krystyna Chrzanowska
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Małgorzata Krajewska-Walasek
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
- Correspondence: ; Tel.: +48-22-572-06-95; Fax: +48-22-572-06-96
| |
Collapse
|
16
|
Zenker M, Bunt J, Schanze I, Schanze D, Piper M, Priolo M, Gerkes EH, Gronostajski RM, Richards LJ, Vogt J, Wessels MW, Hennekam RC. Variants in nuclear factor I genes influence growth and development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:611-626. [DOI: 10.1002/ajmg.c.31747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/26/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Martin Zenker
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Jens Bunt
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
| | - Ina Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Denny Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Michael Piper
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Manuela Priolo
- Operative Unit of Medical GeneticsGreat Metropolitan Hospital Bianchi‐Melacrino‐Morelli Reggio Calabria Italy
| | - Erica H. Gerkes
- Department of Genetics, University of GroningenUniversity Medical Center Groningen Groningen the Netherlands
| | - Richard M. Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life SciencesState University of New York Buffalo NY
| | - Linda J. Richards
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service and Birmingham Health PartnersWomen's and Children's Hospitals NHS Foundation Trust Birmingham UK
| | - Marja W. Wessels
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center Rotterdam Rotterdam The Netherlands
| | - Raoul C. Hennekam
- Department of PediatricsUniversity of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
17
|
Schanze I, Bunt J, Lim JWC, Schanze D, Dean RJ, Alders M, Blanchet P, Attié-Bitach T, Berland S, Boogert S, Boppudi S, Bridges CJ, Cho MT, Dobyns WB, Donnai D, Douglas J, Earl DL, Edwards TJ, Faivre L, Fregeau B, Genevieve D, Gérard M, Gatinois V, Holder-Espinasse M, Huth SF, Izumi K, Kerr B, Lacaze E, Lakeman P, Mahida S, Mirzaa GM, Morgan SM, Nowak C, Peeters H, Petit F, Pilz DT, Puechberty J, Reinstein E, Rivière JB, Santani AB, Schneider A, Sherr EH, Smith-Hicks C, Wieland I, Zackai E, Zhao X, Gronostajski RM, Zenker M, Richards LJ. NFIB Haploinsufficiency Is Associated with Intellectual Disability and Macrocephaly. Am J Hum Genet 2018; 103:752-768. [PMID: 30388402 PMCID: PMC6218805 DOI: 10.1016/j.ajhg.2018.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.
Collapse
Affiliation(s)
- Ina Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Jens Bunt
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Jonathan W C Lim
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Ryan J Dean
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Patricia Blanchet
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Tania Attié-Bitach
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, Paris 75015, France
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen 5021, Norway
| | - Steven Boogert
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Sangamitra Boppudi
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Caitlin J Bridges
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | | | - William B Dobyns
- Department of Pediatrics (Genetics), University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Dian Donnai
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Division of Evolution and Genomic Sciences School of Biological Sciences, and University of Manchester, Manchester M13 9WL, UK
| | - Jessica Douglas
- Boston Children's Hospital - The Feingold Center, Waltham, MA 02115, USA
| | - Dawn L Earl
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Timothy J Edwards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; The Faculty of Medicine Brisbane, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laurence Faivre
- UMR1231, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon 21079, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire Dijon, Dijon 21079, France
| | - Brieana Fregeau
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Genevieve
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Marion Gérard
- Service de Génétique, CHU de Caen - Hôpital Clémenceau, Caen Cedex 14000, France
| | - Vincent Gatinois
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Muriel Holder-Espinasse
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille 59000, France; Department of Clinical Genetics, Guy's Hospital, London SE1 9RT, UK
| | - Samuel F Huth
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kosuke Izumi
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bronwyn Kerr
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Division of Evolution and Genomic Sciences School of Biological Sciences, and University of Manchester, Manchester M13 9WL, UK
| | - Elodie Lacaze
- Department of genetics, Le Havre Hospital, 76600 Le Havre, France
| | - Phillis Lakeman
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Sonal Mahida
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ghayda M Mirzaa
- Department of Pediatrics (Genetics), University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sian M Morgan
- All Wales Genetics Laboratory, Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Catherine Nowak
- Boston Children's Hospital - The Feingold Center, Waltham, MA 02115, USA
| | - Hilde Peeters
- Center for Human Genetics, University Hospital Leuven, KU Leuven, Leuven 3000, Belgium
| | - Florence Petit
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille 59000, France
| | - Daniela T Pilz
- West of Scotland Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Jacques Puechberty
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Eyal Reinstein
- Medical Genetics Institute, Meir Medical Center, Kfar-Saba 4428164, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jean-Baptiste Rivière
- UMR1231, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon 21079, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire Dijon, Dijon 21079, France; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Avni B Santani
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anouck Schneider
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Ilse Wieland
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Elaine Zackai
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaonan Zhao
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany.
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The Faculty of Medicine Brisbane, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
18
|
Familial craniofacial abnormality and polymicrogyria associated with a microdeletion affecting the NFIA gene. Clin Dysmorphol 2018; 26:148-153. [PMID: 28452798 DOI: 10.1097/mcd.0000000000000182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Abstract
In 1993, Jabs et al. were the first to describe a genetic origin of craniosynostosis. Since this discovery, the genetic causes of the most common syndromes have been described. In 2015, a total of 57 human genes were reported for which there had been evidence that mutations were causally related to craniosynostosis. Facilitated by rapid technological developments, many others have been identified since then. Reviewing the literature, we characterize the most common craniosynostosis syndromes followed by a description of the novel causes that were identified between January 2015 and December 2017.
Collapse
Affiliation(s)
- Jacqueline A C Goos
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Revah-Politi A, Ganapathi M, Bier L, Cho MT, Goldstein DB, Hemati P, Iglesias A, Juusola J, Pappas J, Petrovski S, Wilson AL, Aggarwal VS, Anyane-Yeboa K. Loss-of-function variants in NFIA provide further support that NFIA is a critical gene in 1p32-p31 deletion syndrome: A four patient series. Am J Med Genet A 2017; 173:3158-3164. [PMID: 28941020 DOI: 10.1002/ajmg.a.38460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/27/2017] [Accepted: 08/04/2017] [Indexed: 11/07/2022]
Abstract
The association between 1p32-p31 contiguous gene deletions and a distinct phenotype that includes anomalies of the corpus callosum, ventriculomegaly, developmental delay, seizures, and dysmorphic features has been long recognized and described. Recently, the observation of overlapping phenotypes in patients with chromosome translocations that disrupt NFIA (Nuclear factor I/A), a gene within this deleted region, and NFIA intragenic deletions has led to the hypothesis that NFIA is a critical gene within this region. The wide application and increasing accessibility of whole exome sequencing (WES) has helped identify new cases to support this hypothesis. Here, we describe four patients with loss-of-function variants in the NFIA gene identified through WES. The clinical presentation of these patients significantly overlaps with the phenotype described in previously reported cases of 1p32-p31 deletion syndrome, NFIA gene disruptions and intragenic NFIA deletions. Our cohort includes a mother and daughter as well as an unrelated individual who share the same nonsense variant (c.205C>T, p.Arg69Ter; NM_001145512.1). We also report a patient with a frameshift NFIA variant (c.159_160dupCC, p.Gln54ProfsTer49). We have compared published cases of 1p32-p31 microdeletion syndrome, translocations resulting in NFIA gene disruption, intragenic deletions, and loss-of-function mutations (including our four patients) to reveal that abnormalities of the corpus callosum, ventriculomegaly/hydrocephalus, macrocephaly, Chiari I malformation, dysmorphic features, developmental delay, hypotonia, and urinary tract defects are common findings. The consistent overlap in clinical presentation provides further evidence of the critical role of NFIA haploinsufficiency in the development of the 1p32-p31 microdeletion syndrome phenotype.
Collapse
Affiliation(s)
- Anya Revah-Politi
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Mythily Ganapathi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Louise Bier
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | | | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Parisa Hemati
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Alejandro Iglesias
- Department of Pediatrics, Division of Clinical Genetics, Columbia University Medical Center (CUMC), New York, New York
| | | | - John Pappas
- Department of Pediatrics, New York University School of Medicine, New York, New York
| | - Slavé Petrovski
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York.,Department of Medicine, Austin Health and Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Ashley L Wilson
- Department of Pediatrics, Children's Hospital of New York-Presbyterian, New York, New York
| | - Vimla S Aggarwal
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Kwame Anyane-Yeboa
- Department of Pediatrics, Division of Clinical Genetics, Columbia University Medical Center (CUMC), New York, New York
| |
Collapse
|
21
|
Chen KS, Harris L, Lim JWC, Harvey TJ, Piper M, Gronostajski RM, Richards LJ, Bunt J. Differential neuronal and glial expression of nuclear factor I proteins in the cerebral cortex of adult mice. J Comp Neurol 2017; 525:2465-2483. [PMID: 28295292 DOI: 10.1002/cne.24206] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/31/2022]
Abstract
The nuclear factor I (NFI) family of transcription factors plays an important role in the development of the cerebral cortex in humans and mice. Disruption of nuclear factor IA (NFIA), nuclear factor IB (NFIB), or nuclear factor IX (NFIX) results in abnormal development of the corpus callosum, lateral ventricles, and hippocampus. However, the expression or function of these genes has not been examined in detail in the adult brain, and the cell type-specific expression of NFIA, NFIB, and NFIX is currently unknown. Here, we demonstrate that the expression of each NFI protein shows a distinct laminar pattern in the adult mouse neocortex and that their cell type-specific expression differs depending on the family member. NFIA expression was more frequently observed in astrocytes and oligodendroglia, whereas NFIB expression was predominantly localized to astrocytes and neurons. NFIX expression was most commonly observed in neurons. The NFI proteins were equally distributed within microglia, and the ependymal cells lining the ventricles of the brain expressed all three proteins. In the hippocampus, the NFI proteins were expressed during all stages of neural stem cell differentiation in the dentate gyrus, with higher expression intensity in neuroblast cells as compared to quiescent stem cells and mature granule neurons. These findings suggest that the NFI proteins may play distinct roles in cell lineage specification or maintenance, and establish the basis for further investigation of their function in the adult brain and their emerging role in disease.
Collapse
Affiliation(s)
- Kok-Siong Chen
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jonathan W C Lim
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael Piper
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Linda J Richards
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jens Bunt
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Rivera-Pedroza CI, Barraza-García J, Paumard-Hernández B, Nevado J, Orbea-Gallardo C, Sánchez Del Pozo J, Heath KE. Chromosome 1p31.1p31.3 Deletion in a Patient with Craniosynostosis, Central Nervous System and Renal Malformation: Case Report and Review of the Literature. Mol Syndromol 2016; 8:30-35. [PMID: 28232780 DOI: 10.1159/000452609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 01/15/2023] Open
Abstract
Interstitial deletions in the short arm of chromosome 1 are infrequent. We report a female with a 1p31.1p31.3 deletion and cloverleaf skull, who presented with renal and central nervous system malformations, cleft palate, severe ocular anomalies, and cutis laxa, in addition to the previously described clinical data present in other cases with deletions encompassing this region, such as developmental delay, seizures, round face with a prominent nose, micro/retrognathia, half-opened mouth, short neck, hand/foot malformations, hernia, congenital heart malformations, and abnormal external genitalia. The deletion spanned ∼18.6 Mb and included a total of 68 OMIM protein coding genes. We have reviewed 17 cases previously described in the literature and in DECIPHER involving the chromosomal region 1p31.1p31.3. Only 3 of these affect the whole region, 9 are partial deletions of this region, and 5 are much smaller deletions. Taking into account the MORBID ID and the haploinsufficiency score of the genes, we go on to propose which genes may explain particular clinical features observed in the patient. IL23R may be responsible for the craniosynostosis, FOXD2 for the renal anomalies, LHX8 for closure defects of the palate, and ST6GALNAC3 for skin anomalies. In summary, we have identified a chromosome 1p31.1p31.3 deletion in a patient with an atypical presentation of craniosynostosis amongst other more typical features observed in individuals with similar deletions.
Collapse
Affiliation(s)
- Carlos I Rivera-Pedroza
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain; Multidisciplinary Unit for Skeletal Dysplasias (UMDE), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Jimena Barraza-García
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain; Multidisciplinary Unit for Skeletal Dysplasias (UMDE), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain; Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Beatriz Paumard-Hernández
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Julian Nevado
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain; Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Hospital Universitario Doce de Octubre, Madrid, Spain
| | | | | | - Karen E Heath
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain; Multidisciplinary Unit for Skeletal Dysplasias (UMDE), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain; Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Hospital Universitario Doce de Octubre, Madrid, Spain
| |
Collapse
|
23
|
Salvi A, Giacopuzzi E, Bardellini E, Amadori F, Ferrari L, De Petro G, Borsani G, Majorana A. Mutation analysis by direct and whole exome sequencing in familial and sporadic tooth agenesis. Int J Mol Med 2016; 38:1338-1348. [PMID: 27665865 PMCID: PMC5065298 DOI: 10.3892/ijmm.2016.2742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Dental agenesis is one of the most common congenital craniofacial abnormalities. Dental agenesis can be classified, relative to the number of missing teeth (excluding third molars), as hypodontia (1 to 5 missing teeth), oligodontia (6 or more missing teeth), or anodontia (lack of all teeth). Tooth agenesis may occur either in association with genetic syndromes, based on the presence of other inherited abnormalities, or as a non-syndromic trait, with both familiar and sporadic cases reported. In this study, we enrolled 16 individuals affected by tooth agenesis, prevalently hypodontia, and we carried out direct Sanger sequencing of paired box 9 (PAX9) and Msh homeobox 1 (MSX1) genes in 9 subjects. Since no mutations were identified, we performed whole exome sequencing (WES) in the members of 5 families to identify causative gene mutations either novel or previously described. Three individuals carried a known homozygous disease mutation in the Wnt family member 10A (WNT10A) gene (rs121908120). Interestingly, two of these individuals were siblings and also carried a heterozygous functional variant in EDAR-associated death domain (EDARADD) (rs114632254), another disease causing gene, generating a combination of genetic variants never described until now. The analysis of exome sequencing data in the members of other 3 families highlighted new candidate genes potentially involved in tooth agenesis and considered suitable for future studies. Overall, our study confirmed the major role played by WNT10A in tooth agenesis and the genetic heterogeneity of this disease. Moreover, as more genes are shown to be involved in tooth agenesis, WES analysis may be an effective approach to search for genetic variants in familiar or sporadic tooth agenesis, at least in more severe clinical manifestations.
Collapse
Affiliation(s)
- Alessandro Salvi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy
| | - Edoardo Giacopuzzi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy
| | - Elena Bardellini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Dental Clinic, University of Brescia, I-25123 Brescia, Italy
| | - Francesca Amadori
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Dental Clinic, University of Brescia, I-25123 Brescia, Italy
| | - Lia Ferrari
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy
| | - Giuseppe Borsani
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy
| | - Alessandra Majorana
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Dental Clinic, University of Brescia, I-25123 Brescia, Italy
| |
Collapse
|
24
|
Labonne JDJ, Shen Y, Kong IK, Diamond MP, Layman LC, Kim HG. Comparative deletion mapping at 1p31.3-p32.2 implies NFIA responsible for intellectual disability coupled with macrocephaly and the presence of several other genes for syndromic intellectual disability. Mol Cytogenet 2016; 9:24. [PMID: 26997977 PMCID: PMC4797196 DOI: 10.1186/s13039-016-0234-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/09/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND While chromosome 1 is the largest chromosome in the human genome, less than two dozen cases of interstitial microdeletions in the short arm have been documented. More than half of the 1p microdeletion cases were reported in the pre-microarray era and as a result, the proximal and distal boundaries containing the exact number of genes involved in the microdeletions have not been clearly defined. RESULTS We revisited a previous case of a 10-year old female patient with a 1p32.1p32.3 microdeletion displaying syndromic intellectual disability. We performed microarray analysis as well as qPCR to define the proximal and distal deletion breakpoints and revised the karyotype from 1p32.1p32.3 to 1p31.3p32.2. The deleted chromosomal region contains at least 35 genes including NFIA. Comparative deletion mapping shows that this region can be dissected into five chromosomal segments containing at least six candidate genes (DAB1, HOOK1, NFIA, DOCK7, DNAJC6, and PDE4B) most likely responsible for syndromic intellectual disability, which was corroborated by their reduced transcript levels in RT-qPCR. Importantly, one patient with an intragenic microdeletion within NFIA and an additional patient with a balanced translocation disrupting NFIA display intellectual disability coupled with macrocephaly. CONCLUSION We propose NFIA is responsible for intellectual disability coupled with macrocephaly, and microdeletions at 1p31.3p32.2 constitute a contiguous gene syndrome with several genes contributing to syndromic intellectual disability.
Collapse
Affiliation(s)
- Jonathan D. J. Labonne
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| | - Yiping Shen
- />Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Il-Keun Kong
- />Department of Animal Science, Division of Applied Life Science (BK21plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongsangnam-do Korea
| | - Michael P. Diamond
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| | - Lawrence C. Layman
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Neuroscience Program, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Hyung-Goo Kim
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| |
Collapse
|
25
|
Coci EG, Koehler U, Liehr T, Stelzner A, Fink C, Langen H, Riedel J. CANPMR syndrome and chromosome 1p32-p31 deletion syndrome coexist in two related individuals affected by simultaneous haplo-insufficiency of CAMTA1 and NIFA genes. Mol Cytogenet 2016; 9:10. [PMID: 26848311 PMCID: PMC4741010 DOI: 10.1186/s13039-016-0219-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/26/2016] [Indexed: 01/30/2023] Open
Abstract
Background Non-progressive cerebellar ataxia with mental retardation (CANPMR, OMIM 614756) and chromosome 1p32-p31 deletion syndrome (OMIM 613735) are two very rare inherited disorders, which are caused by mono-allelic deficiency (haplo-insufficiency) of calmodulin-binding transcription activator 1 (CAMTA1) and, respectively, nuclear factor 1 A (NFIA) genes. The yet reported patients affected by mono-allelic CAMTA1 dysfunction presented with neonatal hypotonia, delayed and ataxic gait, cerebellar atrophy, psychological delay and speech impairment, while individuals carrying a disrupted NFIA allele suffered from agenesis/hypoplasia of the corpus callosum, ventriculomegaly, developmental delay and urinary tract abnormalities. Both disorders were not seen in one patient together before. Results In this study two related individuals affected by a complex clinical syndrome, characterized by cognitive, neurological and nephrological features were studied for the underlying genetic disorder(s) by molecular cytogenetics. The two individuals present dysmorphic facies, macrocephaly, generalized ataxia, mild tremor, strabismus, mild mental retardation and kidney hypoplasia. Moreover, neuro-radiological studies showed hypoplasia of corpus callosum. Genetic investigations revealed a paracentric inversion in the short arm of one chromosome 1 with breakpoints within CAMTA1 and NFIA coding sequences. Conclusions To the best of our knowledge, this is the first report of two patients harboring the simultaneous mono-allelic disruptions and consequent haplo-insufficiencies of two genes due to an inversion event. Disruption of CAMTA1 and NFIA genes led to neuro-psychological and nephrological dysfunctions, which comprised clinical features of CANPMR syndrome as well as chromosome 1p32-p31 deletion syndrome.
Collapse
Affiliation(s)
- Emanuele G Coci
- Center of Social Pediatrics and Pediatric Neurology, General Hospital of Celle, 29221 Celle, Germany
| | - Udo Koehler
- Medizinisch Genetisches Zentrum, 80335 Munich, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Friedrich Schiller University, Jena University Hospital, 07743 Jena, Germany
| | - Armin Stelzner
- Center of Social Pediatrics and Pediatric Neurology, General Hospital of Celle, 29221 Celle, Germany
| | - Christian Fink
- Department of Radiology, General Hospital of Celle, 29223 Celle, Germany
| | - Hendrik Langen
- Center of Social Pediatrics and Pediatric Neurology, General Hospital of Celle, 29221 Celle, Germany
| | - Joachim Riedel
- Center of Social Pediatrics and Pediatric Neurology, General Hospital of Celle, 29221 Celle, Germany
| |
Collapse
|