1
|
Saha S, Nair MR, Rai K, Shetty V, Anees T M M, Shetty AK, D'souza N. A Novel Sugar-Free Probiotic Oral Rinse Influences Oral Candida albicans in Children with Down Syndrome Post Complete Oral Rehabilitation: A Pilot Randomized Clinical Trial with 6-Month Follow-Up. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10511-8. [PMID: 40102321 DOI: 10.1007/s12602-025-10511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Down syndrome (DS), caused by trisomy 21, affects 1 in 600-1000 live births and is associated with distinctive physical features, cognitive impairment, and oral health challenges such as increased susceptibility to dental caries, periodontal disease, and elevated prevalence of oral Candida spp. Barriers to dental care necessitate comprehensive strategies to address the unique oral health needs of children with DS. The aim of the study was to evaluate the effectiveness of a sugar-free probiotic oral rinse versus 0.2% chlorhexidine digluconate in reducing oral Candida albicans (OCA) counts and improving oral health outcomes in children with DS. A double-blind randomized controlled trial (CTRI/2022/10/046847) enrolled 30 children with DS (aged 6-14 years). Baseline evaluations included OCA quantification and oral health assessments (OHI-S and PHP). Following individualized oral rehabilitation, participants were randomized to either a probiotic rinse (Group 1) or chlorhexidine rinse (Group 2) for 2 weeks. OCA and oral health parameters were assessed at baseline (T0), 2 weeks post-rehabilitation (T1), 2 weeks post-rinse (T2), and 6 months post-rinse (T3). Both groups showed significant improvements in OHI-S and PHP scores (p < 0.05). The probiotic group demonstrated significantly lower OCA counts than the chlorhexidine group at T2 and T3 (p = 0.001). Hence, the probiotic oral rinse can be considered a safe, effective method for reducing OCA and improving oral health outcomes in children with DS, advocating its inclusion in oral health management strategies for this population.
Collapse
Affiliation(s)
- Swagata Saha
- A B Shetty Memorial Institute of Dental Sciences, NITTE (Deemed to Be University), Mangaluru, India
| | - Manju Raman Nair
- A B Shetty Memorial Institute of Dental Sciences, NITTE (Deemed to Be University), Mangaluru, India.
| | - Kavita Rai
- A B Shetty Memorial Institute of Dental Sciences, NITTE (Deemed to Be University), Mangaluru, India
| | - Veena Shetty
- K S Hegde Medical Academy (KSHEMA), NITTE (Deemed to Be University), Mangaluru, India
| | - Mohammed Anees T M
- K S Hegde Medical Academy (KSHEMA), NITTE (Deemed to Be University), Mangaluru, India
| | - Avinash K Shetty
- Wake Forest School of Medicine and Brenner Children'S Hospital, Winston-Salem, USA
| | - Neevan D'souza
- K S Hegde Medical Academy (KSHEMA), NITTE (Deemed to Be University), Mangaluru, India
| |
Collapse
|
2
|
Zhang JP, Li ML, Ren DL, Yang QL, Mao J, Liu SP. High-throughput screening of probiotics in fermented foods and their potential application in alleviating alcohol-induced damage. Food Funct 2025; 16:2564-2576. [PMID: 40035662 DOI: 10.1039/d4fo05735j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This study is dedicated to screening strains with high ethanol degradation capabilities from various fermented products, aiming to mitigate the adverse health effects of alcohol consumption. The research began with the isolation of target strains from pickled vegetables, sauerkraut, enzymes, and spoiled yellow wine, and then established a high-throughput screening method based on the color reaction of WST-8 and NADH. By utilizing automated liquid handling and imaging technologies, rapid transfer and cultivation of single colonies, as well as efficient assessment of ethanol degradation activity, were achieved. The selected strains were rescreened, and their ethanol tolerance, and the ability to degrade ethanol and acetaldehyde were comprehensively evaluated. Ultimately, the potential protective effects of the target strains against alcoholic liver injury were assessed through animal experiments. The study successfully constructed a high-throughput screening platform, providing an effective technical strategy for the rapid identification and evaluation of strains capable of degrading ethanol.
Collapse
Affiliation(s)
- Jun-Pu Zhang
- School of Food Science and Technology, Jiangnan university, Wuxi, Jiangsu 214122, China.
- National Engineering Research Centre of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming-Liang Li
- School of Food Science and Technology, Jiangnan university, Wuxi, Jiangsu 214122, China.
- National Engineering Research Centre of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dong-Liang Ren
- School of Food Science and Technology, Jiangnan university, Wuxi, Jiangsu 214122, China.
- National Engineering Research Centre of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qi-Lin Yang
- School of Food Science and Technology, Jiangnan university, Wuxi, Jiangsu 214122, China.
- National Engineering Research Centre of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Mao
- School of Food Science and Technology, Jiangnan university, Wuxi, Jiangsu 214122, China.
- National Engineering Research Centre of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China
| | - Shuang-Ping Liu
- School of Food Science and Technology, Jiangnan university, Wuxi, Jiangsu 214122, China.
- National Engineering Research Centre of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
3
|
Walden KE, Hagele AM, Orr LS, Gross KN, Krieger JM, Jäger R, Kerksick CM. Probiotic BC30 Improves Amino Acid Absorption from Plant Protein Concentrate in Older Women. Probiotics Antimicrob Proteins 2024; 16:125-137. [PMID: 36515888 PMCID: PMC10850210 DOI: 10.1007/s12602-022-10028-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Weizmannia coagulans GBI-30, 6086 (BC30) has previously been shown to increase protein digestion in an in vitro model of the stomach and small intestine and amino acid appearance in healthy men and women after ingestion of milk protein concentrate. The impact of ingesting BC30 with other protein sources or in other demographics is largely unknown. The purpose of this study was to examine the impact of adding BC30 to a 20-g dose of a blend of rice and pea protein on postprandial changes in blood amino acids concentrations in healthy, older women. Healthy, older females (n = 30, 58.5 ± 5.2 years, 165.4 ± 6.8 cm, 65.6 ± 8.8 kg, 23.7 ± 3.2 kg/m2) completed two separate 14-day supplementation protocols separated by a 3-week washout period. Participants were instructed to ingest a 20-g protein dose of a blend of rice and pea protein concentrates (ProDiem Plant Protein Solutions, Kerry) with (PPCBC30) or without (PPC) the addition of 1 × 109 CFU BC30 (Kerry). Body composition and demographics were assessed upon arrival to the laboratory. Upon ingestion of their final assigned supplemental dose, blood samples were taken at 0 (baseline), 30-, 60-, 90-, 120-, 180-, and 240-min post-consumption and analyzed for amino acid concentrations. Alanine (p = 0.018), tryptophan (p = 0.003), cysteine (p = 0.041), essential amino acids (p = 0.050), and total amino acids (p = 0.039) all exhibited significantly (p ≤ 0.05) greater AUC with PPCBC30 when compared to PPC. In addition, tryptophan (p = 0.003), cysteine (p = 0.021), essential amino acids (p = 0.049), and total amino acids (p = 0.035) displayed significantly greater (p ≤ 0.05) concentration maximum (CMax) values in PPCBC30 when compared to PPC. Finally, time to reach CMax (TMax) was similar between conditions with 80% of all measured amino acids and amino acid combinations achieving CMax at a similar time (~ 60 min). Only phenylalanine TMax was found to be different (p = 0.01) between the two conditions with PPC displaying a greater proportion of TMax values after 30 min. Following qualitative (non-inferential) assessment, 88% of all measured outcomes achieved a higher AUC with PPCBC30 and 100% of all outcomes achieved a higher CMax with PPCBC30. In concert with previous findings in a younger mixed gender cohort with milk protein, the addition of BC30 to a daily 20-g dose of plant protein concentrate in healthy older women improved AUC and CMax values in several individual amino acids and amino acid combinations. Retrospectively registered on April 6, 2022, at ClinicalTrials.gov as NCT05313178.
Collapse
Affiliation(s)
- Kylie E Walden
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | - Anthony M Hagele
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | - Logan S Orr
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | - Kristen N Gross
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | - Joesi M Krieger
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | | | - Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA.
| |
Collapse
|
4
|
Delivery of Metabolically Neuroactive Probiotics to the Human Gut. Int J Mol Sci 2021; 22:ijms22179122. [PMID: 34502031 PMCID: PMC8431588 DOI: 10.3390/ijms22179122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
The human microbiome is a rich factory for metabolite production and emerging data has led to the concept that orally administered microbial strains can synthesize metabolites with neuroactive potential. Recent research from ex vivo and murine models suggests translational potential for microbes to regulate anxiety and depression through the gut-brain axis. However, so far, less emphasis has been placed on the selection of specific microbial strains known to produce the required key metabolites and the formulation in which microbial compositions are delivered to the gut. Here, we describe a double-capsule technology to deliver high numbers of metabolically active cells derived from the 24-strain probiotic product SH-DS01 to the gastrointestinal tract, including the small intestine, where immune responses and adsorption of metabolites into the bloodstream occur. Based on its genome sequence, Limosilactobacillus reuteri SD-LRE2-IT was predicted to have the genetic capacity to de novo produce a specific metabolite of interest to brain health, vitamin B12, which could be confirmed in vitro. Taken together, our data conceptualizes the importance of rationally defined microbial strain characterization based on genomics and metabolomics data, combined with carefully designed capsule technology for delivery of live cells and concomitant functionality in and beyond the gut ecosystem.
Collapse
|
5
|
Stecker RA, Moon JM, Russo TJ, Ratliff KM, Mumford PW, Jäger R, Purpura M, Kerksick CM. Bacillus coagulans GBI-30, 6086 improves amino acid absorption from milk protein. Nutr Metab (Lond) 2020; 17:93. [PMID: 33110439 PMCID: PMC7585191 DOI: 10.1186/s12986-020-00515-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background Probiotic Bacillus coagulans GBI-30, 6086 (BC30) has been shown to increase protein digestion in an in vitro model of the stomach and small intestine. Once active in the small intestine after germination, BC30 aids the digestion of carbohydrates and proteins. The extent to which BC30 administration may impact protein digestion and amino acid appearance in humans after protein ingestion is currently unknown. This study examined the impact of adding BC30 to a 25-g dose of milk protein concentrate on post-prandial changes in blood amino acids concentrations. Methods 14 males and 16 females (n = 30, 26.4 ± 6.5 years; 172.3 ± 10.8 cm; 78.2 ± 14.8 kg; 22.6 ± 7.2% fat) completed two supplementation protocols that each spanned two weeks separated by a washout period that lasted three weeks. Participants were instructed to track their dietary intake and ingest a daily 25-g dose of milk protein concentrate with (MPCBC30) or without (MPC) the addition of BC30. Body composition and demographics were assessed upon arrival to the laboratory. Upon ingestion of their final assigned supplemental dose, blood samples were taken at 0 (baseline), 30, 60, 90, 120, 180, and 240 min post-consumption and analyzed for amino acid concentrations. Results Arginine (p = 0.03) and Isoleucine (p = 0.05) revealed greater area-under-the curve (AUC) in MPCBC30 group compared to MPC. In addition, Arginine (p = 0.02), Serine (p = 0.01), Ornithine (p = 0.02), Methionine (p = 0.04), Glutamic Acid (p = 0.01), Phenylalanine (p = 0.05), Isoleucine (p = 0.04), Tyrosine (p = 0.02), Essential Amino Acids (p = 0.02), and Total Amino Acids (p < 0.01) all revealed significantly greater concentration maximum (CMax) in MPCBC30 compared to MPC. Finally, time to reach CMax (TMax) was significantly faster for Glutamine (p < 0.01), Citrulline (p < 0.01), Threonine (p = 0.04), Alanine (p = 0.02) in MPCBC30 when compared to MPC. Greater mean differences between groups for AUC and CMax in women when compared to the mean differences in men were found for several amino acids. Conclusion In concert with previous in vitro evidence of improved protein digestion and amino acid appearance, these results reveal that adding BC30 to protein sources such as milk protein concentrate can improve AUC, CMax, and faster TMax. Follow-up research should examine differences between gender and explore how aging can impact these outcomes. Retrospectively registered on June 11, 2020 at ClinicalTrials.gov as NCT04427020.
Collapse
Affiliation(s)
- Richard A Stecker
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| | - Jessica M Moon
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| | - Travis J Russo
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| | - Kayla M Ratliff
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| | - Petey W Mumford
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| | | | | | - Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| |
Collapse
|
6
|
Drago L, Meroni G, Chiaretti A, Laforgia N, Cucchiara S, Baldassarre ME. Effect of Limosilactobacillus reuteri LRE02- Lacticaseibacillus rhamnosus LR04 Combination on Antibiotic-Associated Diarrhea in a Pediatric Population: A National Survey. J Clin Med 2020; 9:jcm9103080. [PMID: 32987822 PMCID: PMC7650601 DOI: 10.3390/jcm9103080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
Probiotics are living microorganisms, which, upon oral ingestion, may prevent antibiotic-associated diarrhea (AAD) through the normalization of an unbalanced gastrointestinal flora. The objective of this study was to evaluate the benefits of a probiotic combination (Limosilactibacillus reuteri LRE02-DSM 23878 and Lacticaseibacillus rhamnosus LR04-DSM 16605) on the prevention of AAD in an outpatient pediatric setting. Questionnaires were delivered to pediatricians by each patient/parent during the visits after antibiotics and probiotics treatment to monitor physiological parameters. The primary outcome of both groups (probiotics and no probiotics treated) was the evaluation of the prevalence of AAD between the two groups. Evaluation of stool consistency using the Bristol Stool Scale (BSS) score was performed, as well as the evaluation of AAD duration, frequencies of daily evacuation, and the beginning of diarrhea and weight loss during AAD in both groups and related to antibiotic categories. Results indicated that probiotics, at the recommended dosage of 1.2 × 109 CFU (Colony Forming Unit) per day for 30 days, are associated with lower rates of AAD and a decreased number of days with diarrhea, independent of the type of antibiotic used. Moreover, the use of probiotics resulted in a normal stool consistency in a shorter time period, as evaluated by the BSS.
Collapse
Affiliation(s)
- Lorenzo Drago
- Laboratory of Clinical Microbiology and Microbial Metagenomic Unit, Department of Biomedical Sciences, University of Milan, 20133 Milan, Italy;
- Pediatric Research Center Romeo and Enrica Invernizzi, University of Milan, 20122 Milan, Italy
- Correspondence:
| | - Gabriele Meroni
- Laboratory of Clinical Microbiology and Microbial Metagenomic Unit, Department of Biomedical Sciences, University of Milan, 20133 Milan, Italy;
| | - Antonio Chiaretti
- Pediatric Emergency Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS–Rome, 00168 Rome, Italy;
| | - Nicola Laforgia
- Department of Biomedical Science and Human Oncology-Section of Neonatology and NICU, University “Aldo Moro” of Bari, 70124 Bari, Italy; (N.L.); (M.E.B.)
| | - Salvatore Cucchiara
- Pediatric Gastroenterology and Liver Unit, Department of Women’s and Children’s Health, Sapienza University of Rome, 00161 Rome, Italy;
| | - Maria Elisabetta Baldassarre
- Department of Biomedical Science and Human Oncology-Section of Neonatology and NICU, University “Aldo Moro” of Bari, 70124 Bari, Italy; (N.L.); (M.E.B.)
| |
Collapse
|
7
|
Graf K, Last A, Gratz R, Allert S, Linde S, Westermann M, Gröger M, Mosig AS, Gresnigt MS, Hube B. Keeping Candida commensal: how lactobacilli antagonize pathogenicity of Candida albicans in an in vitro gut model. Dis Model Mech 2019; 12:dmm.039719. [PMID: 31413153 PMCID: PMC6765188 DOI: 10.1242/dmm.039719] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022] Open
Abstract
The intestine is the primary reservoir of Candida albicans that can cause systemic infections in immunocompromised patients. In this reservoir, the fungus exists as a harmless commensal. However, antibiotic treatment can disturb the bacterial microbiota, facilitating fungal overgrowth and favoring pathogenicity. The current in vitro gut models that are used to study the pathogenesis of C. albicans investigate the state in which C. albicans behaves as a pathogen rather than as a commensal. We present a novel in vitro gut model in which the fungal pathogenicity is reduced to a minimum by increasing the biological complexity. In this model, enterocytes represent the epithelial barrier and goblet cells limit C. albicans adhesion and invasion. Significant protection against C. albicans-induced necrotic damage was achieved by the introduction of a microbiota of antagonistic lactobacilli. We demonstrated a time-, dose- and species-dependent protective effect against C. albicans-induced cytotoxicity. This required bacterial growth, which relied on the presence of host cells, but was not dependent on the competition for adhesion sites. Lactobacillus rhamnosus reduced hyphal elongation, a key virulence attribute. Furthermore, bacterial-driven shedding of hyphae from the epithelial surface, associated with apoptotic epithelial cells, was identified as a main and novel mechanism of damage protection. However, host cell apoptosis was not the driving mechanism behind shedding. Collectively, we established an in vitro gut model that can be used to experimentally dissect commensal-like interactions of C. albicans with a bacterial microbiota and the host epithelial barrier. We also discovered fungal shedding as a novel mechanism by which bacteria contribute to the protection of epithelial surfaces.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Katja Graf
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Antonia Last
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Rena Gratz
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Susanne Linde
- Center for Electron Microscopy Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Martin Westermann
- Center for Electron Microscopy Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Marko Gröger
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Alexander S Mosig
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany.,Institute of Biochemistry II, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Mark S Gresnigt
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany .,Friedrich Schiller University, Fürstengraben 1, 07743 Jena, Germany
| |
Collapse
|
8
|
Swartwout B, Luo XM. Implications of Probiotics on the Maternal-Neonatal Interface: Gut Microbiota, Immunomodulation, and Autoimmunity. Front Immunol 2018; 9:2840. [PMID: 30559747 PMCID: PMC6286978 DOI: 10.3389/fimmu.2018.02840] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Probiotics are being investigated for the treatment of autoimmune disease by re-balancing dysbiosis induced changes in the immune system. Pregnancy is a health concern surrounding autoimmune disease, both for the mother and her child. Probiotics for maternity are emerging on the market and have gained significant momentum in the literature. Thus far, evidence supports that probiotics alter the structure of the normal microbiota and the microbiota changes significantly during pregnancy. The interaction between probiotics-induced changes and normal changes during pregnancy is poorly understood. Furthermore, there is emerging evidence that the maternal gut microbiota influences the microbiota of offspring, leading to questions on how maternal probiotics may influence the health of neonates. Underpinning the development and balance of the immune system, the microbiota, especially that of the gut, is significantly important, and dysbiosis is an agent of immune dysregulation and autoimmunity. However, few studies exist on the implications of maternal probiotics for the outcome of pregnancy in autoimmune disease. Is it helpful or harmful for mother with autoimmune disease to take probiotics, and would this be protective or pathogenic for her child? Controversy surrounds whether probiotics administered maternally or during infancy are healthful for allergic disease, and their use for autoimmunity is relatively unexplored. This review aims to discuss the use of maternal probiotics in health and autoimmune disease and to investigate their immunomodulatory properties.
Collapse
Affiliation(s)
- Brianna Swartwout
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
9
|
Di Cerbo A, Palmieri B, Aponte M, Morales-Medina JC, Iannitti T. Mechanisms and therapeutic effectiveness of lactobacilli. J Clin Pathol 2015; 69:187-203. [PMID: 26578541 PMCID: PMC4789713 DOI: 10.1136/jclinpath-2015-202976] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/14/2015] [Indexed: 12/11/2022]
Abstract
The gut microbiome is not a silent ecosystem but exerts several physiological and immunological functions. For many decades, lactobacilli have been used as an effective therapy for treatment of several pathological conditions displaying an overall positive safety profile. This review summarises the mechanisms and clinical evidence supporting therapeutic efficacy of lactobacilli. We searched Pubmed/Medline using the keyword ‘Lactobacillus’. Selected papers from 1950 to 2015 were chosen on the basis of their content. Relevant clinical and experimental articles using lactobacilli as therapeutic agents have been included. Applications of lactobacilli include kidney support for renal insufficiency, pancreas health, management of metabolic imbalance, and cancer treatment and prevention. In vitro and in vivo investigations have shown that prolonged lactobacilli administration induces qualitative and quantitative modifications in the human gastrointestinal microbial ecosystem with encouraging perspectives in counteracting pathology-associated physiological and immunological changes. Few studies have highlighted the risk of translocation with subsequent sepsis and bacteraemia following probiotic administration but there is still a lack of investigations on the dose effect of these compounds. Great care is thus required in the choice of the proper Lactobacillus species, their genetic stability and the translocation risk, mainly related to inflammatory disease-induced gut mucosa enhanced permeability. Finally, we need to determine the adequate amount of bacteria to be delivered in order to achieve the best clinical efficacy decreasing the risk of side effects.
Collapse
Affiliation(s)
- Alessandro Di Cerbo
- School of Specialization in Clinical Biochemistry, "G. d'Annunzio" University, Chieti, Italy
| | - Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Maria Aponte
- Department of Agriculture, University of Naples "Federico II", Portici, Naples, Italy
| | - Julio Cesar Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV- Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Tommaso Iannitti
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Wassenaar T, Beimfohr C, Geske T, Zimmermann K. Voluntarily exposure to a single, high dose of probiotic Escherichia coli results in prolonged colonisation. Benef Microbes 2014; 5:367-75. [DOI: 10.3920/bm2013.0087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of probiotic Escherichia coli to colonise the human gut was determined in a volunteer study following national (German) regulations. Five persons voluntarily took a single, high dose of Symbioflor®2, which contains 6 different probiotic E. coli genotypes, to assess tolerance of the product, after which presence of E. coli in their faeces was tested for a follow-up period of 30 weeks. Intake of the product did not result in severe side effect in any of the individuals, though mild side effects were observed. Stool analysis showed that the probiotic E. coli had colonised all five persons for a period of 10 to 30 weeks (mean: 18.7 weeks, median: 25.7 weeks). In two individuals there was evidence of competition between host E. coli and probiotic E. coli, while in two others total E. coli levels increased persistently with at least a factor of 10 as a result of the received dose. In one individual, who had lacked detectable levels of faecal E. coli at the start of the post-authorisation safety study, long-term colonisation was established, first by probiotic E. coli exclusively, which were later replaced by host E. coli strains. In four out of five individuals, total E. coli faecal counts were higher on average than at the start of the experiment, while in none total levels exceeded 5×107 cfu/g. When the specific genotypes of the 6 probiotic E. coli were analysed, it was found that one and the same common genotype was responsible for prolonged colonisation in all five individuals.
Collapse
Affiliation(s)
- T.M. Wassenaar
- Molecular Microbiology and Genomics Consultants, Tannenstrasse 7, 55576 Zotzenheim, Germany
| | - C. Beimfohr
- Vermicon AG, Emmy-Noether-Straße 2, 80992 München, Germany
| | - T. Geske
- Medical Services, Hennigsdorfer Str. 141S, 13503 Berlin, Germany
| | - K. Zimmermann
- SymbioPharm GmbH, Auf den Lüppen 8, 35745 Herborn, Germany
| |
Collapse
|
11
|
Rodes L, Tomaro-Duchesneau C, Saha S, Paul A, Malhotra M, Marinescu D, Shao W, Kahouli I, Prakash S. Enrichment of Bifidobacterium longum subsp. infantis ATCC 15697 within the human gut microbiota using alginate-poly-L-lysine-alginate microencapsulation oral delivery system: an in vitro analysis using a computer-controlled dynamic human gastrointestinal model. J Microencapsul 2013; 31:230-8. [PMID: 24124888 DOI: 10.3109/02652048.2013.834990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study evaluates alginate-poly-L-lysine-alginate Bifidobacterium longum subsp. infantis ATCC 15697-loaded microcapsules to enrich the human gut microbiota. The cell survival of alginate-poly-L-lysine-alginate microencapsulated B. infantis ATCC 15697 in gastric acid, bile, and through human gastrointestinal transit was investigated, as well as the formulation's effect on the gut microbiota. Results show that microencapsulation increases B. infantis ATCC 15697 cell survival at pH1.0 (33.54 ± 2.80% versus <1.00 ± 0.00%), pH1.5 (41.15 ± 2.06% versus <1.00 ± 0.00%), pH2.0 (60.88 ± 1.73% versus 36.01 ± 2.63%), pH3.0 (75.43 ± 1.23% versus 46.30 ± 1.43%), pH4.0 (71.40 ± 2.02% versus 47.75 ± 3.12%) and pH5.0 (73.88 ± 3.79% versus 58.93 ± 2.26%) (p < 0.05). In addition, microencapsulation increases cell survival at 0.5% (76.85 ± 0.80% versus 70.77 ± 0.64%), 1.0% (59.99 ± 0.97% versus 53.47 ± 0.58%) and 2.0% (53.10 ± 1.87% versus 44.59 ± 1.52%) (p < 0.05) (w/v) bile. Finally, daily administration of alginate-poly-L-lysine-alginate microencapsulated B. infantis ATCC 15697 in a human gastrointestinal model induces a significant enrichment of B. infantis within the ascending (184.51 ± 17.30% versus 53.83 ± 17.82%; p < 0.05), transverse (174.79 ± 25.32% versus 73.17 ± 15.30%; p < 0.05) and descending (94.90 ± 25.22% versus 46.37 ± 18.93%; p > 0.05) colonic microbiota.
Collapse
Affiliation(s)
- Laetitia Rodes
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, Artificial Cells and Organs Research Centre, McGill University , Montreal, Quebec , Canada
| | | | | | | | | | | | | | | | | |
Collapse
|