1
|
McCue MV, Rebalka IA, Hawke TJ, MacLean DA. Examining tissue-level changes in doxorubicin accumulation and nitric oxide formation in skeletal muscle and tumours in a mouse model of breast cancer. Can J Physiol Pharmacol 2025; 103:163-171. [PMID: 39999429 DOI: 10.1139/cjpp-2024-0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Doxorubicin is a commonly used chemotherapy that rapidly accumulates in skeletal muscle and disrupts nitric oxide (NO) formation. However, studies investigating these effects have largely been performed in tumour-free models, therefore it remains unknown whether intramuscular accumulation and disruptions to NO content persist during tumour growth. Female C57bl/6 mice (n = 8/group) were randomly assigned to true control, doxorubicin control, tumour only, or tumour plus doxorubicin groups. Tumours were grown for 21, 24, or 28 days using E0771 cells. Doxorubicin was administered as a single 10 mg/kg intraperitoneal dose on day 21. Doxorubicin accumulation was similar in muscle with and without tumours present. Doxorubicinol, a metabolite of doxorubicin, was elevated (p < 0.05) in 24-day tumour + doxorubicin compared to doxorubicin alone. NO was similar across all groups in muscle; however, tumour NO was 15-fold higher at day 21 compared to 24, or 28 days (p < 0.05). The results confirm that doxorubicin is sequestered in skeletal muscle when a tumour is present, which may impact bioavailability. Tumour growth transiently increased intramuscular doxorubicinol, potentially exacerbating the toxicity of the drug. Earlier stage tumour growth appeared to profoundly elevate NO, which could suggest temporal angiogenesis and vasodilation to facilitate growth.
Collapse
Affiliation(s)
- Meghan V McCue
- Biomolecular Sciences, Laurentian University, Sudbury, ON, Canada
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - David A MacLean
- Biomolecular Sciences, Laurentian University, Sudbury, ON, Canada
- Division of Medical Sciences, NOSM University, Sudbury, ON, Canada
| |
Collapse
|
2
|
Ma S, Lu Y, Sui S, Yang JS, Fu BB, Tan PX, Chai Y, Lv J, Kong L, Wu X, Gao YB, Yan T. Unraveling the triad of immunotherapy, tumor microenvironment, and skeletal muscle biomechanics in oncology. Front Immunol 2025; 16:1572821. [PMID: 40242775 PMCID: PMC12000078 DOI: 10.3389/fimmu.2025.1572821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 04/18/2025] Open
Abstract
The intricate interaction between skeletal muscle biomechanics, the tumor microenvironment, and immunotherapy constitutes a pivotal research focus oncology. This work provides a comprehensive review of methodologies for evaluating skeletal muscle biomechanics, including handheld dynamometry, advanced imaging techniques, electrical impedance myography, elastography, and single-fiber experiments to assess muscle quality and performance. Furthermore, it elucidates the mechanisms, applications, and limitations of various immunotherapy modalities, including immune checkpoint inhibitors, adoptive cell therapy, cancer vaccines, and combined chemoimmunotherapy, while examining their effects on skeletal muscle function and systemic immune responses. Key findings indicate that although immunotherapy is effective in augmenting antitumor immunity, it frequently induces muscle-related adverse effects such as weakness, fatigue, or damage, primarily mediated by cytokine release and immune activation. This work underscores the significance of immune niches within the tumor microenvironment in influencing treatment outcomes and proposes strategies to optimize therapy through personalized regimens and combinatorial approaches. This review highlights the need for further research on the formation of immune niches and interactions muscle-tumor. Our work is crucial for advancing the efficacy of immunotherapy, reducing adverse effects, and ultimately improving survival rates and quality of life of patients with cancer.
Collapse
Affiliation(s)
- Shuang Ma
- School of Information Science and Engineering, Shenyang Ligong University, Shenyang, China
| | - Ying Lu
- School of Information Science and Engineering, Shenyang Ligong University, Shenyang, China
| | - Shang Sui
- St. John’s Kilmarnock School, Breslau, ON, Canada
| | - Jia-shuo Yang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing-bing Fu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei-xin Tan
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yicheng Chai
- School of Information Science and Engineering, Shenyang Ligong University, Shenyang, China
| | - Jiaqi Lv
- School of Information Science and Engineering, Shenyang Ligong University, Shenyang, China
| | - Lingyu Kong
- School of Information Science and Engineering, Shenyang Ligong University, Shenyang, China
| | - Xiaolin Wu
- School of Mathematics and Statistics, Liaoning University, Shenyang, China
| | - Yi-bo Gao
- Department of Oral and Maxillofacial Surgery, Taikang Bybo Dental, Beijing, China
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Chen LN, Ma X, Herzberg B, Henick BS, Biswas AK, Acharyya S, Shu CA. Weight loss in patients on osimertinib for metastatic EGFR-mutant non-small cell lung cancer. Oncologist 2024:oyae315. [PMID: 39703162 DOI: 10.1093/oncolo/oyae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/21/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cachexia is characterized by weight loss and decline in muscle mass and function and is a poor prognostic factor among patients with cancer. Patients with metastatic EGFR-mutant non-small cell lung cancer (NSCLC) derive remarkable survival benefits with osimertinib, a third-generation EGFR tyrosine kinase inhibitor. It is not known whether patients treated with osimertinib experience any weight loss or whether weight loss impacts patient outcomes. Therefore, we sought to describe the frequency and consequences of weight loss in this patient population. MATERIALS AND METHODS We conducted a single-center retrospective pilot study of 56 patients treated with first-line osimertinib for metastatic EGFR-mutant NSCLC. We defined on-treatment weight loss as a loss of ≥5% body weight at 6 or 12 months of treatment. We described the characteristics of patients with and without on-treatment weight loss and differences in progression-free survival (PFS), time on treatment with osimertinib, and overall survival (OS). RESULTS Forty-six percent (n = 26) of patients met the criteria for on-treatment weight loss. There were no significant differences in patient or disease characteristics between patients with and without weight loss. Compared to patients without weight loss, patients with weight loss had similar PFS and time on treatment with osimertinib. Yet, patients with weight loss had significantly worse overall survival (HR 4.91, 95% CI, 1.56-15.5, P = .007). CONCLUSION Weight loss was observed in nearly half of patients with metastatic EGFR-mutant NSCLC treated with osimertinib, and patients with weight loss had significantly worse overall survival.
Collapse
Affiliation(s)
- Lanyi Nora Chen
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
| | - Xin Ma
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
- Department of Statistics, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Benjamin Herzberg
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
| | - Brian S Henick
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
| | - Anup K Biswas
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
- Institute for Cancer Genetics and Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Swarnali Acharyya
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
- Institute for Cancer Genetics and Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Catherine A Shu
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
| |
Collapse
|
4
|
Bozzetti F. Age-related and cancer-related sarcopenia: is there a difference? Curr Opin Clin Nutr Metab Care 2024; 27:410-418. [PMID: 38488242 DOI: 10.1097/mco.0000000000001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
PURPOSE OF REVIEW The aim of this review is the attempt to differentiating the pathophysiologic and clinical features of the aging-related sarcopenia from cancer-related sarcopenia. In fact, there is some controversy among the experts mainly regarding two points: is always sarcopenia, even that aging-related one, the expression of a generalized disease or may exist independently and without major alteration of the muscle function? Are always aging-related and cancer-related sarcopenia completely separated entities? RECENT FINDINGS Literature shows that sarcopenia, defined as simple skeletal muscle mass loss, may range from a mainly focal problem which is common in many healthy elderly people, to a component of a complex multiorgan syndrome as cancer cachexia. Disuse, malnutrition and (neuro)degenerative processes can account for most of the aging-related sarcopenias while systemic inflammation and secretion of cancer-and immune-related molecules play an additional major role in cachexia. SUMMARY A multimodal approach including physical exercise and optimized nutritional support are the key measures to offset sarcopenia with some contribution by the anti-inflammatory drugs in cancer patients. Results are more promising in elderly patients and are still pending for cancer patients where a more specific approach will only rely on the identification and contrast of the key mediators of the cachectic process.
Collapse
|
5
|
Klassen PN, Mazurak VC, Thorlakson J, Servais S. Call for standardization in assessment and reporting of muscle and adipose change using computed tomography analysis in oncology: A scoping review. J Cachexia Sarcopenia Muscle 2023; 14:1918-1931. [PMID: 37675809 PMCID: PMC10570077 DOI: 10.1002/jcsm.13318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 09/08/2023] Open
Abstract
Investigators are increasingly measuring skeletal muscle (SM) and adipose tissue (AT) change during cancer treatment to understand impact on patient outcomes. Recent meta-analyses have reported high heterogeneity in this literature, representing uncertainty in the resulting estimates. Using the setting of palliative-intent chemotherapy as an exemplar, we aimed to systematically summarize the sources of variability among studies evaluating SM and AT change during cancer treatment and propose standards for future studies to enable reliable meta-analysis. Studies that measured computed tomography-defined SM and/or AT change in adult patients during palliative-intent chemotherapy for solid tumours were included, with no date or geographical limiters. Of 2496 publications screened by abstract/title, 83 were reviewed in full text and 38 included for extraction, representing 34 unique cohorts across 8 tumour sites. The timing of baseline measurement was frequently defined as prior to treatment, while endpoint timing ranged from 6 weeks after treatment start to time of progression. Fewer than 50% specified the actual time interval between measurements. Measurement error was infrequently discussed (8/34). A single metric (cm2 /m2 , cm2 or %) was used to describe SM change in 18/34 cohorts, while multiple metrics were presented for 10/34 and no descriptive metrics for 6/34. AT change metrics and sex-specific reporting were available for 10/34 cohorts. Associations between SM loss and overall survival were evaluated in 24 publications, with classification of SM loss ranging from any loss to >14% loss over variable time intervals. Age and sex were the most common covariates, with disease response in 50% of models. Despite a wealth of data and effort, heterogeneity in study design, reporting and statistical analysis hinders evidence synthesis regarding the severity and outcomes of SM and AT change during cancer treatment. Proposed standards for study design include selection of homogenous cohorts, clear definition of baseline/endpoint timing and attention to measurement error. Standard reporting should include baseline SM and AT by sex, actual scan interval, SM and AT change using multiple metrics and visualization of the range of change observed. Reporting by sex would advance understanding of sexual dimorphism in SM and AT change. Evaluating the impact of tissue change on outcomes requires adjustment for relevant covariates and concurrent disease response. Adoption of these standards by researchers and publishers would alter the current paradigm to enable meta-analysis of future studies and move the field towards meaningful application of SM and AT change to clinical care.
Collapse
Affiliation(s)
- Pamela N. Klassen
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonABCanada
| | - Vera C. Mazurak
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonABCanada
| | | | - Stephane Servais
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonABCanada
- Faculté de MédecineInserm UMR1069 Nutrition Croissance et Cancer, Université de ToursTours CedexFrance
| |
Collapse
|
6
|
Serini S, Trombino S, Curcio F, Sole R, Cassano R, Calviello G. Hyaluronic Acid-Mediated Phenolic Compound Nanodelivery for Cancer Therapy. Pharmaceutics 2023; 15:1751. [PMID: 37376199 DOI: 10.3390/pharmaceutics15061751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Phenolic compounds are bioactive phytochemicals showing a wide range of pharmacological activities, including anti-inflammatory, antioxidant, immunomodulatory, and anticancer effects. Moreover, they are associated with fewer side effects compared to most currently used antitumor drugs. Combinations of phenolic compounds with commonly used drugs have been largely studied as an approach aimed at enhancing the efficacy of anticancer drugs and reducing their deleterious systemic effects. In addition, some of these compounds are reported to reduce tumor cell drug resistance by modulating different signaling pathways. However, often, their application is limited due to their chemical instability, low water solubility, or scarce bioavailability. Nanoformulations, including polyphenols in combination or not with anticancer drugs, represent a suitable strategy to enhance their stability and bioavailability and, thus, improve their therapeutic activity. In recent years, the development of hyaluronic acid-based systems for specific drug delivery to cancer cells has represented a pursued therapeutic strategy. This is related to the fact that this natural polysaccharide binds to the CD44 receptor that is overexpressed in most solid cancers, thus allowing its efficient internalization in tumor cells. Moreover, it is characterized by high biodegradability, biocompatibility, and low toxicity. Here, we will focus on and critically analyze the results obtained in recent studies regarding the use of hyaluronic acid for the targeted delivery of bioactive phenolic compounds to cancer cells of different origins, alone or in combination with drugs.
Collapse
Affiliation(s)
- Simona Serini
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Gabriella Calviello
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| |
Collapse
|
7
|
Kadakia KC, Hamilton-Reeves JM, Baracos VE. Current Therapeutic Targets in Cancer Cachexia: A Pathophysiologic Approach. Am Soc Clin Oncol Educ Book 2023; 43:e389942. [PMID: 37290034 PMCID: PMC11019847 DOI: 10.1200/edbk_389942] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Significant progress in our understanding of cancer cachexia has occurred in recent years. Despite these advances, no pharmacologic agent has achieved US Food and Drug Administration approval for this common and highly morbid syndrome. Fortunately, improved understanding of the molecular basis of cancer cachexia has led to novel targeted approaches that are in varying stages of drug development. This article reviews two major thematic areas that are driving these pharmacologic strategies, including those targeting signal mediators at the level of the CNS and skeletal muscle. Additionally, pharmacologic strategies are being tested in combination with targeted nutrients, nutrition therapy, and exercise to treat cancer cachexia. To this end, we highlight recently published and ongoing trials evaluating cancer cachexia therapies in these specific areas.
Collapse
Affiliation(s)
- Kunal C. Kadakia
- Department of Solid Tumor Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC
- Department of Supportive Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Jill M. Hamilton-Reeves
- Department of Urology, University of Kansas Medical Center, Kansas City, KS
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS
| | - Vickie E. Baracos
- Division of Palliative Care Medicine, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|