1
|
Hadidi S, Varmira K, Soltani L. Evaluation of DNA damage induced by acesulfame potassium: spectroscopic, molecular modeling simulations and toxicity studies. J Biomol Struct Dyn 2023; 41:6262-6271. [PMID: 35916031 DOI: 10.1080/07391102.2022.2105955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Acesulfame potassium (Ace-K) is a widely used artificial sweetener that has been reported to interact with DNA and cause important genetic damage. However, the type of interaction mechanism is unknown. This study provides an approach to understanding the in vitro mechanism of Ace-K interaction with Ct-DNA using spectroscopic methods combined with molecular simulations. The hypochromic effect as obtained from UV-Vis spectra indicated the formation of the DNA-Ace-K complex in the minor groove. Further evidence for groove binding mode comes from the decrease in Hoechst-DNA fluorescence caused by increasing Ace-K concentrations, alongside no detectable change in MB-DNA emission band intensity. A negative value of ΔH and ΔS represents the hydrogen bonds and van der Waals forces between Ace-K and DNA. Based on the molecular docking, Ace-K was located between the guanine10 and 16 in DNA minor groove and stabilized by two hydrogen bonds and one π-Sulfur interaction. In vitro cell culture results showed that about 5 mg/mL of Ace-K caused the death of 85% of HUVEC cells after 48 h. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saba Hadidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Kambiz Varmira
- Research Center of Oils and Fats, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Leila Soltani
- Department of Animal Sciences, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|
2
|
Bridge-Comer PE, Vickers MH, Morton-Jones J, Spada A, Rong J, Reynolds CM. Impact of Maternal Intake of Artificial Sweetener, Acesulfame-K, on Metabolic and Reproductive Health Outcomes in Male and Female Mouse Offspring. Front Nutr 2021; 8:745203. [PMID: 34938757 PMCID: PMC8687087 DOI: 10.3389/fnut.2021.745203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Guidelines advising pregnant women to avoid food and beverages with high fat and sugar have led to an increase in the consumption of "diet" options sweetened by artificial sweeteners (AS). Yet, there is limited information regarding the impact of AS intake during pregnancy on the long-term risk of cardiometabolic and reproductive complications in adult offspring. This study examined the influence of maternal acesulfame-K (Ace-K) and fructose consumption on metabolic and reproductive outcomes in offspring. Pregnant C57BL/6 mice received standard chow ad-libitum with either water (CD), fructose (Fr; 20% kcal intake), or AS (AS; 12.5 mM Ace-K) throughout pregnancy and lactation (n = 8/group). Postweaning offspring were maintained on a CD diet for the remainder of the experiment. Body weight, food intake, and water intake were measured weekly. Oral glucose tolerance tests (OGTT) were undertaken at 12 weeks, and the offspring were culled at week 14. Female, but not male, AS groups exhibited decreased glucose tolerance compared to Fr. There was an increase in gonadal fat adipocyte size in male offspring from AS and Fr groups compared to CD groups. In female offspring, adipocyte size was increased in the Fr group compared to the CD group. In female, but not male offspring, there was a trend toward increase in Fasn gene expression in AS group compared to the CD group. Maternal AS and Fr also negatively impacted upon female offspring estrus cycles and induced alterations to markers associated with ovulation. In summary, exposure to Ace-k via the maternal diet leads to impaired glucose tolerance and impacts adipocyte size in a sex-specific manner as well as significantly affecting estrus cycles and related gene markers in female offspring. This has implications in terms of providing tailored dietary advice for pregnant women and highlights the potential negative influence of artificial sweetener intake in the context of intergenerational impacts.
Collapse
Affiliation(s)
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Ana Spada
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jing Rong
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand.,School of Public Health, Physiotherapy and Sports Science/Conway Institute/Institute of Food and Health/Diabetes Complications Research Centre, University College Dublin, Belfield, Ireland
| |
Collapse
|
3
|
Normand M, Ritz C, Mela D, Raben A. Low-energy sweeteners and body weight: a citation network analysis. BMJ Nutr Prev Health 2021; 4:319-332. [PMID: 34308140 PMCID: PMC8258071 DOI: 10.1136/bmjnph-2020-000210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Reviews on the relationship of low-energy sweeteners (LES) with body weight (BW) have reached widely differing conclusions. To assess possible citation bias, citation analysis was used to quantify the relevant characteristics of cited articles, and explore citation patterns in relation to review conclusions. DESIGN A systematic search identified reviews published from January 2010 to March 2020. Different characteristics (for example, type of review or research, journal impact factor, conclusions) were extracted from the reviews and cited articles. Logistic regression was used to estimate likelihood of articles with particular characteristics being cited in reviews. A qualitative network analysis linked reviews sub-grouped by conclusions with the types of articles they cited. MAIN OUTCOME MEASURES (OR; 95% CI) for likelihood that articles with particular characteristics were cited as evidence in reviews. RESULTS From 33 reviews identified, 183 different articles were cited (including other reviews). Narrative reviews were 62% less likely to be cited than systematic reviews with meta-analysis (OR 0.38; 0.16 to 0.86; p=0.03). Likelihood of being cited was higher for evidence on children than adults (OR 2.27; 1.59 to 3.25; p<0.0001), and with increased journal impact factor (OR 1.15; 1.00 to 1.31; p=0.04). No other factors were statistically significant in the main analysis, and few factors were significant in subgroup analyses. Network analysis showed that reviews concluding a beneficial relationship of LES with BW cited mainly randomised controlled trials, whereas reviews concluding an adverse relationship cited mainly observational studies. CONCLUSIONS Overall reference to the available evidence across reviews appears largely arbitrary, making citation bias likely. Differences in the conclusions of individual reviews map onto different types of evidence cited. Overall, inconsistent and selective use of the available evidence may account for the diversity of conclusions in reviews on LES and BW. TRIAL REGISTRATION NUMBER Prior to data analysis, the protocol was registered with the Open Science Framework (https://osf.io/9ghws).
Collapse
Affiliation(s)
- Mie Normand
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Christian Ritz
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | | | - Anne Raben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
- Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Ahmad SY, Friel JK, Mackay DS. Effect of sucralose and aspartame on glucose metabolism and gut hormones. Nutr Rev 2021; 78:725-746. [PMID: 32065635 DOI: 10.1093/nutrit/nuz099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Non-nutritive sweeteners are thought to be useful replacements for caloric sweeteners in sweet food and beverages, since the reduction in energy and carbohydrate intake may lead to health benefits stemming from weight management and glycemic control. However, the potential effects of non-nutritive sweeteners on glucose metabolism and gut hormones have not been determined definitively. Here, the available evidence of the effects of aspartame and sucralose consumption on glucose metabolism and gut hormones is reviewed. A majority of studies have found that consumption of aspartame or sucralose has no effect on concentrations of blood glucose, insulin, or gut hormones; however, 2 trials have shown that aspartame consumption affects glucose, insulin, and glucagon-like peptide 1 concentrations, while only a few trials have shown that sucralose consumption affects glucose, insulin, and glucagon-like peptide 1 concentrations. One study found higher glucose concentrations after sucralose consumption, while 3 studies found lower concentrations and 33 studies found no change in glucose concentrations. Moreover, only 4 studies reported increased concentrations of glucagon-like peptide 1. Three studies reported decreased insulin sensitivity following sucralose consumption, while 1 trial reported an increase in insulin sensitivity. In summary, the evidence from the clinical trials conducted to date is contradictory because of the different protocols used.
Collapse
Affiliation(s)
- Samar Y Ahmad
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James K Friel
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dylan S Mackay
- Department of Community Health Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
O'Connor D, Pang M, Castelnuovo G, Finlayson G, Blaak E, Gibbons C, Navas-Carretero S, Almiron-Roig E, Harrold J, Raben A, Martinez JA. A rational review on the effects of sweeteners and sweetness enhancers on appetite, food reward and metabolic/adiposity outcomes in adults. Food Funct 2020; 12:442-465. [PMID: 33325948 DOI: 10.1039/d0fo02424d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Numerous strategies have been investigated to overcome the excessive weight gain that accompanies a chronic positive energy balance. Most approaches focus on a reduction of energy intake and the improvement of lifestyle habits. The use of high intensity artificial sweeteners, also known as non-caloric sweeteners (NCS), as sugar substitutes in foods and beverages, is rapidly developing. NCS are commonly defined as molecules with a sweetness profile of 30 times higher or more that of sucrose, scarcely contributing to the individual's net energy intake as they are hardly metabolized. The purpose of this review is first, to assess the impact of NCS on eating behaviour, including subjective appetite, food intake, food reward and sensory stimulation; and secondly, to assess the metabolic impact of NCS on body weight regulation, glucose homeostasis and gut health. The evidence reviewed suggests that while some sweeteners have the potential to increase subjective appetite, these effects do not translate in changes in food intake. This is supported by a large body of empirical evidence advocating that the use of NCS facilitates weight management when used alongside other weight management strategies. On the other hand, although NCS are very unlikely to impair insulin metabolism and glycaemic control, some studies suggest that NCS could have putatively undesirable effects, through various indirect mechanisms, on body weight, glycemia, adipogenesis and the gut microbiota; however there is insufficient evidence to determine the degree of such effects. Overall, the available data suggests that NCS can be used to facilitate a reduction in dietary energy content without significant negative effects on food intake behaviour or body metabolism, which would support their potential role in the prevention of obesity as a complementary strategy to other weight management approaches. More research is needed to determine the impact of NCS on metabolic health, in particular gut microbiota.
Collapse
Affiliation(s)
- Dominic O'Connor
- Biopsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fardet A, Rock E. Exclusive reductionism, chronic diseases and nutritional confusion: the degree of processing as a lever for improving public health. Crit Rev Food Sci Nutr 2020; 62:2784-2799. [DOI: 10.1080/10408398.2020.1858751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anthony Fardet
- INRAE, Université Clermont Auvergne, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Edmond Rock
- INRAE, Université Clermont Auvergne, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| |
Collapse
|
7
|
Lucan SC, Maroko AR, Jin A, Chen A, Pan C, Sosa G, Schechter CB. Change in an urban food environment within a single year: Considerations for food-environment research and community health. Prev Med Rep 2020; 19:101102. [PMID: 32642401 PMCID: PMC7334403 DOI: 10.1016/j.pmedr.2020.101102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/17/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Past research on food-environment change has been limited in critical ways. This study demonstrates business-level changes: openings, closings, new offerings. The number and proportion of businesses offering any food/drink increased in a year. Businesses offering less-healthful items increased and remained more numerous. Changes have implications for both food-environment research and community health.
Past research on food-environment change has been limited in key ways: (1) considering only select storefront businesses; (2) presuming items sold based on businesses category; (3) describing change only in ecological terms; (4) considering multi-year intervals. The current study addressed past limitations by: (1) considering a full range of both storefront and non-storefront businesses; (2) focusing on items actually offered (both healthful and less-healthful varieties); (3) describing individual-business-level changes (openings, closings, changes in offerings); (4) evaluating changes within a single year. Using a longitudinal, matched-pair comparison of 119 street segments in the Bronx, NY (October 2016-August 2017), investigators assessed all businesses—food stores, restaurants, other storefront businesses (OSBs), street vendors—for healthful and less-healthful food/drink offerings. Changes were described for individual businesses, individual street segments, and for the area overall. Overall, the number (and percentage) of businesses offering any food/drink increased from 45 (41.7%) in 2016 to 49 (45.8%) in 2017; businesses newly opening or newly offering food/drink cumulatively exceeded those shutting down or ceasing food/drink sales. In 2016, OSBs (gyms, barber shops, laundromats, furniture stores, gas stations, etc.) together with street vendors represented 20.0% and 27.3% of businesses offering healthful and less-healthful items, respectively; in 2017, the percentages were 31.0% and 37.0%. While the number of businesses offering healthful items increased, the number offering less-healthful items likewise increased and remained greater. If change in a full range of food/drink availability is not appreciated: food-environment studies may generate erroneous conclusions; communities may misdirect resources to address food-access disparities; and community residents may have increasing, but unrecognized, opportunities for unhealthful consumption.
Collapse
Affiliation(s)
- Sean C Lucan
- Department of Family and Social Medicine, Albert Einstein College of Medicine
- Montefiore Health System, Bronx, NY, United States
| | - Andrew R Maroko
- Department of Environmental, Occupational, and Geospatial Health Sciences, CUNY Graduate School of Public Health and Health Policy, New York, NY, United States
| | - Aurora Jin
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Aixin Chen
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Charles Pan
- Albert Einstein College of Medicine, Bronx, NY, United States
| | | | - Clyde B Schechter
- Department of Family and Social Medicine, Albert Einstein College of Medicine
- Montefiore Health System, Bronx, NY, United States
| |
Collapse
|
8
|
Ryuk JA, Kang S, Daily JW, Ko BS, Park S. Moderate intake of aspartame and sucralose with meals, but not fructose, does not exacerbate energy and glucose metabolism in estrogen-deficient rats. J Clin Biochem Nutr 2019; 65:223-231. [PMID: 31777424 PMCID: PMC6877401 DOI: 10.3164/jcbn.19-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022] Open
Abstract
Both nutritive and non-nutritive sweeteners may influence energy and glucose metabolism differently. The hypothesis that sucrose, fructose, aspartame, and sucralose intake differently modulate energy and glucose metabolism was tested in an estrogen-deficient animal model. At 30 min after giving aspartame and sucralose (10 mg/kg body weight), an oral glucose tolerance test (OGTT) was conducted with glucose, sucrose, and fructose in ovariectomized (OVX) rats. After OGTT, they were continuously fed high fat diets including either 10% corn starch (Control), 10% sucrose (Sucrose), 10% fructose (Fructose), 0.05% aspartame + 9.95% starch (Aspartame) or 0.05% sucralose + 9.95% starch (Sucralose) for 8 week. During 30 min after acute administration of aspartame and sucralose, serum glucose concentrations increased despite slightly increased serum insulin levels before glucose infusion. However, glucose tolerance was not significantly different among the groups. In chronic study, serum glucose concentrations were lowest and insulin highest at the overnight-fasted state in Aspartame and Sucralose. Postprandial serum glucagon-like peptide-1 (GLP-1) and insulin levels were higher in Aspartame and Sucralose than Control. Hepatic insulin signaling (pAkt → pGSK-3β) and phosphoenolpyruvate carboxykinase (PEPCK) expression were lower in Sucralose and Aspartame than the Fructose. Serum acetate levels produced by gut microbiota were higher were lower in the fructose group than Aspartame and Sucralose groups. In conclusion, aspartame and sucralose with a meal might be preferable sweeteners to fructose and sucrose in estrogen deficient rats, and possibly post-menopausal women; however, this needs to be confirmed in human studies.
Collapse
Affiliation(s)
- Jin Ah Ryuk
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, 305-811, South Korea
| | - Suna Kang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do, 336-795, South Korea
| | - James W Daily
- Department of R&D, Daily Manufacturing Inc., Rockwell, NC, USA
| | - Byoung-Seob Ko
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, 305-811, South Korea
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do, 336-795, South Korea
| |
Collapse
|
9
|
Solomi L, Rees GA, Redfern KM. The acute effects of the non-nutritive sweeteners aspartame and acesulfame-K in UK diet cola on glycaemic response. Int J Food Sci Nutr 2019; 70:894-900. [PMID: 30892106 DOI: 10.1080/09637486.2019.1585418] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Substituting sugar-sweetened for artificially sweetened beverages may reduce energy intakes. This study aims to ascertain the acute glycaemic effects of the NNS aspartame and acesulfame-K in UK diet-cola (DC). Ten healthy participants attended the laboratory fasted on three occasions. Individuals drank (1) 25 g glucose in 125 mL water + 236 mL water, (2) 25 g glucose in 125 mL water with 236 mL DC and (3) 236 mL sucrose-sweetened cola with 125 mL water. Blood (glucose) was measured pre-test and every 15 minutes over a 120-minute period using portable glucometers. The glucose-control and glucose + DC elicited similar blood glucose rises above pre-prandial levels. Sucrose-sweetened cola showed a non-significant lower rise in postprandial glycaemia, exhibiting the lowest glycaemic index (GI) (77.0 ± 9.1). GI of glucose (100.0 ± 15.2) and glucose + DC (104.3 ± 8.5) was similar and a one-way repeated-measures ANOVA showed no significant differences in glycaemic response between test drinks (F(2,29) = 1.68, p > .05). Results demonstrate the glycaemic inactivity of non-nutritive sweeteners.
Collapse
Affiliation(s)
- Luke Solomi
- School of Biomedical Sciences, Faculty of Medicine and Dentistry, University of Plymouth , Plymouth , UK
| | - Gail A Rees
- School of Biomedical Sciences, Faculty of Medicine and Dentistry, University of Plymouth , Plymouth , UK
| | - Kathy M Redfern
- School of Biomedical Sciences, Faculty of Medicine and Dentistry, University of Plymouth , Plymouth , UK
| |
Collapse
|
10
|
Zhang H, Sun S, Wang Y, Fei Z, Cao J. Binding mechanism of five typical sweeteners with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:40-47. [PMID: 30015031 DOI: 10.1016/j.saa.2018.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
In this work, the interactions between bovine serum albumin (BSA) and five sweeteners including aspartame (APM), acesulfame (AK), sucralose (TGS), sodium cyclamate (SC), and rebaudioside-A (REB-A) have been studied by multispectroscopic techniques, and molecular simulation in order to provide much useful information for the application of new and safer artificial sweeteners. Fluorescence quenching assays indicated that the formation of complexes between sweeteners and BSA mainly induced the fluorescence quenching of protein and the binding site number were about 1 indicting that there is one mainly binding site of APM, AK, TGS, SC, or REB-A in domain of BSA with relatively weak interactions. Molecular modeling results indicated that hydrogen bonding interactions were the mainly binding forces of sweeteners with BSA. Circular dichroism spectra indicated that APM and REB-A obviously induced the secondary structure changes of BSA. The presence of APM increased the fraction of α-Helix of BSA from 65.4% to 73.8%, while the presence of REB-A resulted in decreasing the fraction of α-helix of BSA from 65.4% to 51.2%. The melting temperature studies showed that these five sweeteners except REB-A act as stabilizers to increase the thermal stability of BSA during the thermal denaturation process. In addition, AK, TGS, and SC obviously increased the esterase-like activity of BSA, and such loss of activity of BSA induced by APM and REB-A.
Collapse
Affiliation(s)
- Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Shixin Sun
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| | - Zhenghao Fei
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Jian Cao
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| |
Collapse
|
11
|
Wee M, Tan V, Forde C. A Comparison of Psychophysical Dose-Response Behaviour across 16 Sweeteners. Nutrients 2018; 10:E1632. [PMID: 30400167 PMCID: PMC6266678 DOI: 10.3390/nu10111632] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Reduction or replacement of sucrose while maintaining sweetness in foods is challenging, but today there are many sweeteners with diverse physical and caloric compositions to choose from. The choice of sweetener can be adapted to match reformulation goals whether these are to reduce calories, lower the glycaemic response, provide bulk or meet criteria as a natural ingredient. The current study sought to describe and compare the sweetness intensity dose-response, sweetness growth rate, sweetness potency, and potential for calorie reduction across 16 different sweeteners including sucrose. Sweetness growth rate was defined as the rate of change in sweetness intensity per unit of sweetener concentration. Sweetness potency was defined as the ratio of the concentration of a sweetener to that of sucrose at equivalent sweetness intensity, whereas the potential for calorie reduction is the caloric value of a sweetener compared to sucrose at matched sweetness intensities. Sweeteners were drawn from a range of nutritive saccharide (sucrose, dextrose, fructose, allulose (d-psicose), palatinose (isomaltulose), and a sucrose⁻allulose mixture), nutritive polyol (maltitol, erythritol, mannitol, xylitol, sorbitol), non-nutritive synthetic (aspartame, acesulfame-K, sucralose) and non-nutritive natural sweeteners stevia (rebaudioside A), luo han guo (mogroside V). Sweetness intensities of the 16 sweeteners were compared with a sensory panel of 40 participants (n = 40; 28 females). Participants were asked to rate perceived sweetness intensity for each sweetener series across a range of concentrations using psychophysical ratings taken on a general labelled magnitude scale (gLMS). All sweeteners exhibited sigmoidal dose-response behaviours and matched the 'moderate' sweetness intensity of sucrose (10% w/v). Fructose, xylitol and sucralose had peak sweetness intensities greater than sucrose at the upper concentrations tested, while acesulfame-K and stevia (rebA) were markedly lower. Independent of sweetener concentration, the nutritive sweeteners had similar sweetness growth rates to sucrose and were greater than the non-nutritive sweeteners. Non-nutritive sweeteners on the other hand had higher potencies relative to sucrose, which decreases when matching at higher sweetness intensities. With the exception of dextrose and palatinose, all sweeteners matched the sweetness intensity of sucrose across the measured range (3.8⁻25% w/v sucrose) with fewer calories. Overall, the sucrose⁻allulose mixture, maltitol and xylitol sweeteners were most similar to sucrose in terms of dose-response behaviour, growth rate and potency, and showed the most potential for sugar replacement within the range of sweetness intensities tested.
Collapse
Affiliation(s)
- May Wee
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore.
| | - Vicki Tan
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore.
| | - Ciarán Forde
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
12
|
Mosdøl A, Vist GE, Svendsen C, Dirven H, Lillegaard ITL, Mathisen GH, Husøy T. Hypotheses and evidence related to intense sweeteners and effects on appetite and body weight changes: A scoping review of reviews. PLoS One 2018; 13:e0199558. [PMID: 30020966 PMCID: PMC6051566 DOI: 10.1371/journal.pone.0199558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/08/2018] [Indexed: 01/08/2023] Open
Abstract
Observed associations between consumption of diet foods and obesity have sparked controversy over whether intense sweeteners may promote weight gain, despite their negligible energy contribution. We conducted a scoping review of reviews, to obtain an overview of hypotheses, research approaches and features of the evidence on intense sweeteners' potential relationships to appetite and weight changes. We searched for reviews of the scientific literature published from 2006 to May 2017. Two reviewers independently assessed title and abstracts, and full text publications. Arksey and O'Malley's framework for scoping reviews guided the process. We extracted and charted data on characteristics of the reviews and the evidence presented. The 40 included reviews present hypotheses both on how intense sweeteners can reduce or maintain body weight and on how these can promote weight gain. We classified only five publications as systematic reviews; another nine presented some systematic approaches, while 26 reviews did not describe criteria for selecting or assessing the primary studies. Evidence was often presented for intense sweeteners as a group or unspecified, and against several comparators (e.g. sugar, water, placebo, intake levels) with limited discussion on the interpretation of different combinations. Apart from the observational studies, the presented primary evidence in humans is dominated by small studies with short follow-up-considered insufficient to assess weight change. Systematic reviews of animal studies are lacking in this topic area. The systematic evidence only partly explore forwarded hypotheses found in the literature. Primary studies in humans seem to be available for systematic exploration of some hypotheses, but long-term experimental studies in humans appear sparse. With few exceptions, the reviews on intense sweeteners and weight change underuse systematic methodology, and thus, the available evidence. Further studies and systematic reviews should be explicit about the hypothesis explored and elucidate possible underlying mechanisms.
Collapse
Affiliation(s)
- Annhild Mosdøl
- Division for health services, Norwegian Institute of Public Health, Oslo, Norway
| | - Gunn Elisabeth Vist
- Division for health services, Norwegian Institute of Public Health, Oslo, Norway
| | - Camilla Svendsen
- Division for infection control and environmental health, Norwegian Institute of Public Health, Oslo, Norway
| | - Hubert Dirven
- Division for infection control and environmental health, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Trine Husøy
- Division for infection control and environmental health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
13
|
Zopun M, Liszt KI, Stoeger V, Behrens M, Redel U, Ley JP, Hans J, Somoza V. Human Sweet Receptor T1R3 is Functional in Human Gastric Parietal Tumor Cells (HGT-1) and Modulates Cyclamate and Acesulfame K-Induced Mechanisms of Gastric Acid Secretion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4842-4852. [PMID: 29665689 DOI: 10.1021/acs.jafc.8b00658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The noncaloric sweeteners (NCSs) cyclamate (Cycl) and acesulfame K (AceK) are widely added to foods and beverages. Little is known about their impact on gastric acid secretion (GAS), which is stimulated by dietary protein and bitter-tasting compounds. Since Cycl and AceK have a bitter off taste in addition to their sweet taste, we hypothesized they modulate mechanisms of GAS in human gastric parietal cells (HGT-1). HGT-1 cells were exposed to sweet tastants (50 mM of glucose, d-threonine, Cycl, or AceK) and analyzed for their intracellular pH index (IPX), as an indicator of proton secretion by means of a pH-sensitive dye, and for mRNA levels of GAS-associated genes by RT-qPCR. Since the NCSs act via the sweet taste-sensing receptor T1R2/T1R3, mRNA expression of the corresponding genes was analyzed in addition to immunocytochemical localization of the T1R2 and T1R3 receptor proteins. Exposure of HGT-1 cells to AceK or d-threonine increased the IPX to 0.60 ± 0.05 and 0.80 ± 0.04 ( P ≤ 0.05), respectively, thereby indicating a reduced secretion of protons, whereas Cycl demonstrated the opposite effect with IPX values of -0.69 ± 0.08 ( P ≤ 0.05) compared to controls (IPX = 0). Cotreatment with the T1R3-inhibitor lactisole as well as a TAS1R3 siRNA knock-down approach reduced the impact of Cycl, AceK, and d-thr on proton release ( P ≤ 0.05), whereas cotreatment with 10 mM glucose enhanced the NCS-induced effect ( P ≤ 0.05). Overall, we demonstrated Cycl and AceK as modulators of proton secretion in HGT-1 cells and identified T1R3 as a key element in this response.
Collapse
Affiliation(s)
- Muhammet Zopun
- Faculty of Chemistry, Department of Physiological Chemistry , University of Vienna , Althanstraße 14 , Vienna 1090 , Austria
| | - Kathrin I Liszt
- Faculty of Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds , University of Vienna , Althanstraße 14 , Vienna 1090 , Austria
| | - Verena Stoeger
- Faculty of Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds , University of Vienna , Althanstraße 14 , Vienna 1090 , Austria
| | - Maik Behrens
- Department of Molecular Genetics , German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee , 114-116 Nuthetal , Germany
| | - Ulrike Redel
- Department of Molecular Genetics , German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee , 114-116 Nuthetal , Germany
| | - Jakob P Ley
- Symrise AG , Mühlenfeldstraße 1 , 37603 Holzminden , Germany
| | - Joachim Hans
- Symrise AG , Mühlenfeldstraße 1 , 37603 Holzminden , Germany
| | - Veronika Somoza
- Faculty of Chemistry, Department of Physiological Chemistry , University of Vienna , Althanstraße 14 , Vienna 1090 , Austria
- Faculty of Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds , University of Vienna , Althanstraße 14 , Vienna 1090 , Austria
| |
Collapse
|
14
|
Glycemic impact of non-nutritive sweeteners: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 2018; 72:796-804. [PMID: 29760482 DOI: 10.1038/s41430-018-0170-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Nonnutritive sweeteners (NNSs) are zero- or low-calorie alternatives to nutritive sweeteners, such as table sugars. A systematic review and meta-analysis of randomized controlled trials was conducted to quantitatively synthesize existing scientific evidence on the glycemic impact of NNSs. SUBJECTS/METHODS PubMed and Web of Science databases were searched. Two authors screened the titles and abstracts of candidate publications. The third author was consulted to resolve discrepancies. Twenty-nine randomized controlled trials, with a total of 741 participants, were included and their quality assessed. NNSs under examination included aspartame, saccharin, steviosides, and sucralose. The review followed the PRISMA guidelines. RESULTS Meta-analysis was performed to estimate and track the trajectory of blood glucose concentrations over time after NNS consumption, and to test differential effects by type of NNS and participants' age, weight, and disease status. In comparison with the baseline, NNS consumption was not found to increase blood glucose level, and its concentration gradually declined over the course of observation following NNS consumption. The glycemic impact of NNS consumption did not differ by type of NNS but to some extent varied by participants' age, body weight, and diabetic status. CONCLUSIONS NNS consumption was not found to elevate blood glucose level. Future studies are warranted to assess the health implications of frequent and chronic NNS consumption and elucidate the underlying biological mechanisms.
Collapse
|
15
|
Myers EA, Passaro EM, Hedrick VE. The Comparative Reproducibility and Validity of a Non-Nutritive Sweetener Food Frequency Questionnaire. Nutrients 2018. [PMID: 29534454 PMCID: PMC5872752 DOI: 10.3390/nu10030334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In order to better assess non-nutritive sweetener (NNS) consumption, measurement tools with greater utility are needed. The objective of this investigation is to determine the reproducibility and validity of a newly developed NNS food frequency questionnaire (NNS-FFQ) that measures five types of NNS (saccharin, aspartame, acesulfame potassium, sucralose and erythritol). Adult participants (n = 123, 56% female, 75% Caucasian, mean age = 36.8 ± 16.6) completed the NNS-FFQ twice and had 24-h dietary recalls three times over a two-week study period. Reproducibility between two administrations of the NNS-FFQ was assessed via Bland–Altman plots, Spearman’s correlations (rs) and paired samples t-tests. Bland–Altman plots, Cohen’s κ, Spearman’s correlations (rs), and paired samples t-tests compared NNS intake between the two methods for validity. For reproducibility analyses, Bland–Altman analyses revealed agreement levels above the 95% acceptance level for total NNS (99.2%), erythritol (99.2%), and aspartame (96.7%). Agreement levels for acesulfame potassium (94.3%), saccharin (94.3%), and sucralose (94.3%) were slightly below the acceptable level. For validity analyses, Bland–Altman analyses revealed agreement levels above the 95% acceptance level for total NNS (95.1%), sucralose (95.9%), saccharin (95.9%), and erythritol (95.1%). Agreement levels for aspartame (94.3%) and acesulfame potassium (92.7%) were slightly below the acceptable level. Although less than desirable agreement was found between the methods for aspartame and acesulfame potassium, some variance was expected due to the habitual nature of the NNS-FFQ as compared to the recent intake reported by recalls. Within the context of this constraint, the NNS-FFQ demonstrates acceptable reproducibility and validity. The NNS-FFQ is a brief questionnaire that could be administered among diverse participants at the individual and population levels to measure habitual NNS intake.
Collapse
Affiliation(s)
- Emily A Myers
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, 295 West Campus Drive, Blacksburg, VA 24061, USA.
| | - Erin M Passaro
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, 295 West Campus Drive, Blacksburg, VA 24061, USA.
| | - Valisa E Hedrick
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, 295 West Campus Drive, Blacksburg, VA 24061, USA.
| |
Collapse
|
16
|
Monnard CR, Grasser EK. Perspective: Cardiovascular Responses to Sugar-Sweetened Beverages in Humans: A Narrative Review with Potential Hemodynamic Mechanisms. Adv Nutr 2018; 9:70-77. [PMID: 29659691 PMCID: PMC5916433 DOI: 10.1093/advances/nmx023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/18/2017] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases are still the primary cause of mortality worldwide, with high blood pressure and type 2 diabetes as major promoters. Over the past 3 decades, almost in parallel with the rise in cardiovascular disease incidence, the consumption of sugar-sweetened beverages (SSBs) has increased. In this context, SSBs are potential contributors to weight gain and increase the risk for elevations in blood pressure, type 2 diabetes, coronary heart disease, and stroke. Nevertheless, the mechanisms underlying the cardiovascular and metabolic responses to SSBs, in particular on blood pressure, are poorly understood. We discuss and propose potential mechanisms underlying differential effects of sugars on postprandial blood pressure regulation; provide evidence for additional molecular contributors, i.e., fibroblast growth factor 21, towards sugar-induced cardiovascular responses; and discuss potential cardiovascular neutral sugars. Furthermore, we explore whether pre-existing glucose intolerance in humans exacerbates the cardiovascular responses to SSBs, thus potentially aggravating the cardiovascular risk in already-susceptible individuals.
Collapse
Affiliation(s)
- Cathriona R Monnard
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Erik Konrad Grasser
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland,Address correspondence to EKG (e-mail: )
| |
Collapse
|
17
|
Masic U, Harrold JA, Christiansen P, Cuthbertson DJ, Hardman CA, Robinson E, Halford JCG. EffectS of non-nutritive sWeetened beverages on appetITe during aCtive weigHt loss (SWITCH): Protocol for a randomized, controlled trial assessing the effects of non-nutritive sweetened beverages compared to water during a 12-week weight loss period and a follow up weight maintenance period. Contemp Clin Trials 2016; 53:80-88. [PMID: 27979755 DOI: 10.1016/j.cct.2016.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Acute and medium-term intervention studies suggest that non-nutritive sweeteners (NNS) are beneficial for weight loss, however there is limited human data on the long-term effects of consuming NNS on weight loss, maintenance, and appetite. Further research is therefore required to elucidate the prolonged impact of NNS consumption on these outcome measures. METHODS/DESIGN A randomized parallel groups design will be used to assess whether regular NNS beverage intake is equivalent to a water control in promoting weight loss over 12-weeks (weekly weight loss sessions; Phase I), then supporting weight maintenance over 40-weeks (monthly sessions; Phase II) and subsequently independent weight maintenance over 52-weeks (Phase III) in 432 participants. A subset of these participants (n=116) will complete laboratory-based appetite probe days (15 sessions; 3 sessions each at baseline, at the start of phase I and the end of each phase). A separate subset (n=50) will complete body composition scans (DXA) at baseline and at the end of each phase. All participants will regularly be weighed and will complete questionnaires and cognitive tasks to assess changes in body weight and appetitive behaviours. Measures of physical activity and biochemical markers will also be taken. DISCUSSION The trial will assess the efficacy of NNS beverages compared to water during a behavioural weight loss and maintenance programme. We aim to understand whether the impact of NNS on weight, dietary adherence and well-being are beneficial or transient and effects on prolonged successful weight loss and weight maintenance through sustained changes in appetite and eating behaviour. TRIAL REGISTRATION Clinical Trials: NCT02591134; registered: 23.10.2015.
Collapse
|
18
|
Tuncer Budanur D, Yas MC, Sepet E. Potential hazards due to food additives in oral hygiene products. J Istanb Univ Fac Dent 2016; 50:61-69. [PMID: 28955568 PMCID: PMC5573534 DOI: 10.17096/jiufd.72103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/22/2016] [Indexed: 11/20/2022] Open
Abstract
Food additives used to preserve flavor or to
enhance the taste and appearance of foods are
also available in oral hygiene products. The aim
of this review is to provide information concerning
food additives in oral hygiene products and their
adverse effects. A great many of food additives in
oral hygiene products are potential allergens and
they may lead to allergic reactions such as urticaria,
contact dermatitis, rhinitis, and angioedema. Dental
practitioners, as well as health care providers, must
be aware of the possibility of allergic reactions due
to food additives in oral hygiene products. Proper
dosage levels, delivery vehicles, frequency, potential
benefits, and adverse effects of oral health products
should be explained completely to the patients. There
is a necessity to raise the awareness among dental
professionals on this subject and to develop a data
gathering system for possible adverse reactions.
Collapse
Affiliation(s)
| | | | - Elif Sepet
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Turkey
| |
Collapse
|
19
|
Abstract
Suboptimal nutrition is a leading cause of poor health. Nutrition and policy science have advanced rapidly, creating confusion yet also providing powerful opportunities to reduce the adverse health and economic impacts of poor diets. This review considers the history, new evidence, controversies, and corresponding lessons for modern dietary and policy priorities for cardiovascular diseases, obesity, and diabetes mellitus. Major identified themes include the importance of evaluating the full diversity of diet-related risk pathways, not only blood lipids or obesity; focusing on foods and overall diet patterns, rather than single isolated nutrients; recognizing the complex influences of different foods on long-term weight regulation, rather than simply counting calories; and characterizing and implementing evidence-based strategies, including policy approaches, for lifestyle change. Evidence-informed dietary priorities include increased fruits, nonstarchy vegetables, nuts, legumes, fish, vegetable oils, yogurt, and minimally processed whole grains; and fewer red meats, processed (eg, sodium-preserved) meats, and foods rich in refined grains, starch, added sugars, salt, and trans fat. More investigation is needed on the cardiometabolic effects of phenolics, dairy fat, probiotics, fermentation, coffee, tea, cocoa, eggs, specific vegetable and tropical oils, vitamin D, individual fatty acids, and diet-microbiome interactions. Little evidence to date supports the cardiometabolic relevance of other popular priorities: eg, local, organic, grass-fed, farmed/wild, or non-genetically modified. Evidence-based personalized nutrition appears to depend more on nongenetic characteristics (eg, physical activity, abdominal adiposity, gender, socioeconomic status, culture) than genetic factors. Food choices must be strongly supported by clinical behavior change efforts, health systems reforms, novel technologies, and robust policy strategies targeting economic incentives, schools and workplaces, neighborhood environments, and the food system. Scientific advances provide crucial new insights on optimal targets and best practices to reduce the burdens of diet-related cardiometabolic diseases.
Collapse
Affiliation(s)
- Dariush Mozaffarian
- From Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA.
| |
Collapse
|
20
|
Welcome MO, Mastorakis NE, Pereverzev VA. Sweet-Taste Receptor Signaling Network and Low-Calorie Sweeteners. REFERENCE SERIES IN PHYTOCHEMISTRY 2016. [DOI: 10.1007/978-3-319-26478-3_25-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Affiliation(s)
- Ronald E Kleinman
- From the Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA (e-mail: )
| |
Collapse
|
22
|
Gil-Campos M, San José González M, Díaz Martín J. Uso de azúcares y edulcorantes en la alimentación del niño. Recomendaciones del Comité de Nutrición de la Asociación Española de Pediatría. An Pediatr (Barc) 2015; 83:353.e1-7. [DOI: 10.1016/j.anpedi.2015.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/18/2015] [Indexed: 01/16/2023] Open
|
23
|
Use of sugars and sweeteners in children's diets. Recommendations of the Nutrition Committee of the Spanish Association of Paediatrics. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2015. [DOI: 10.1016/j.anpede.2015.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
24
|
Rogers PJ, Hogenkamp PS, de Graaf C, Higgs S, Lluch A, Ness AR, Penfold C, Perry R, Putz P, Yeomans MR, Mela DJ. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int J Obes (Lond) 2015; 40:381-94. [PMID: 26365102 PMCID: PMC4786736 DOI: 10.1038/ijo.2015.177] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023]
Abstract
By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a systematic review of relevant studies in animals and humans consuming LES with ad libitum access to food energy. In 62 of 90 animal studies exposure to LES did not affect or decreased BW. Of 28 reporting increased BW, 19 compared LES with glucose exposure using a specific ‘learning' paradigm. Twelve prospective cohort studies in humans reported inconsistent associations between LES use and body mass index (−0.002 kg m−2 per year, 95% confidence interval (CI) −0.009 to 0.005). Meta-analysis of short-term randomized controlled trials (129 comparisons) showed reduced total EI for LES versus sugar-sweetened food or beverage consumption before an ad libitum meal (−94 kcal, 95% CI −122 to −66), with no difference versus water (−2 kcal, 95% CI −30 to 26). This was consistent with EI results from sustained intervention randomized controlled trials (10 comparisons). Meta-analysis of sustained intervention randomized controlled trials (4 weeks to 40 months) showed that consumption of LES versus sugar led to relatively reduced BW (nine comparisons; −1.35 kg, 95% CI –2.28 to −0.42), and a similar relative reduction in BW versus water (three comparisons; −1.24 kg, 95% CI –2.22 to −0.26). Most animal studies did not mimic LES consumption by humans, and reverse causation may influence the results of prospective cohort studies. The preponderance of evidence from all human randomized controlled trials indicates that LES do not increase EI or BW, whether compared with caloric or non-caloric (for example, water) control conditions. Overall, the balance of evidence indicates that use of LES in place of sugar, in children and adults, leads to reduced EI and BW, and possibly also when compared with water.
Collapse
Affiliation(s)
- P J Rogers
- School of Experimental Psychology, University of Bristol, Bristol, UK
| | - P S Hogenkamp
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - C de Graaf
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - S Higgs
- The School of Psychology, University of Birmingham, Birmingham, UK
| | - A Lluch
- Danone Research, Centre Daniel Carasso, RD, Palaiseau Cedex, France
| | - A R Ness
- National Institute for Health Research Biomedical Research Unit in Nutrition, Diet and Lifestyle at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol and School of Oral and Dental Sciences, University of Bristol, Level 3, University Hospitals Bristol Education Centre, Bristol, UK
| | - C Penfold
- National Institute for Health Research Biomedical Research Unit in Nutrition, Diet and Lifestyle at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol and School of Oral and Dental Sciences, University of Bristol, Level 3, University Hospitals Bristol Education Centre, Bristol, UK
| | - R Perry
- National Institute for Health Research Biomedical Research Unit in Nutrition, Diet and Lifestyle at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol and School of Oral and Dental Sciences, University of Bristol, Level 3, University Hospitals Bristol Education Centre, Bristol, UK
| | - P Putz
- European Branch, ILSI Europe a.i.s.b.l., Brussels, Belgium
| | - M R Yeomans
- School of Psychology, University of Sussex, Brighton, UK
| | - D J Mela
- Unilever R&D Vlaardingen, Vlaardingen, the Netherlands
| |
Collapse
|
25
|
Affiliation(s)
- R. Miller
- British Nutrition Foundation; London UK
| |
Collapse
|
26
|
Gibson S, Drewnowski A, Hill J, Raben AB, Tuorila H, Widström E. Consensus statement on benefits of low‐calorie sweeteners. NUTR BULL 2014. [DOI: 10.1111/nbu.12116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. Gibson
- Sig‐Nurture, Ltd. Guildford Surrey UK
| | - A. Drewnowski
- University of Washington Center for Obesity Research Washington, DC USA
| | - J. Hill
- Anschutz Health and Wellness Center University of Colorado Boulder CO USA
| | - A. B. Raben
- Department of Human Nutrition University of Copenhagen Denmark
| | - H. Tuorila
- Department of Food and Environmental Sciences University of Helsinki Finland
| | - E. Widström
- National Institute for Health and Welfare Helsinki Finland
| |
Collapse
|
27
|
Miller PE, Perez V. Low-calorie sweeteners and body weight and composition: a meta-analysis of randomized controlled trials and prospective cohort studies. Am J Clin Nutr 2014; 100:765-77. [PMID: 24944060 PMCID: PMC4135487 DOI: 10.3945/ajcn.113.082826] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Replacement of caloric sweeteners with lower- or no-calorie alternatives may facilitate weight loss or weight maintenance by helping to reduce energy intake; however, past research examining low-calorie sweeteners (LCSs) and body weight has produced mixed results. OBJECTIVE The objective was to systematically review and quantitatively evaluate randomized controlled trials (RCTs) and prospective cohort studies, separately, that examined the relation between LCSs and body weight and composition. DESIGN A systematic literature search identified 15 RCTs and 9 prospective cohort studies that examined LCSs from foods or beverages or LCSs consumed as tabletop sweeteners. Meta-analyses generated weighted mean differences in body weight and composition values between the LCS and control groups among RCTs and weighted mean correlations for LCS intake and these parameters among prospective cohort studies. RESULTS In RCTs, LCSs modestly but significantly reduced all outcomes examined, including body weight (-0.80 kg; 95% CI: -1.17, -0.43), body mass index [BMI (in kg/m²): -0.24; 95% CI: -0.41, -0.07], fat mass (-1.10 kg; 95% CI: -1.77, -0.44), and waist circumference (-0.83 cm; 95% CI: -1.29, -0.37). Among prospective cohort studies, LCS intake was not associated with body weight or fat mass, but was significantly associated with slightly higher BMI (0.03; 95% CI: 0.01, 0.06). CONCLUSIONS The current meta-analysis provides a rigorous evaluation of the scientific evidence on LCSs and body weight and composition. Findings from observational studies showed no association between LCS intake and body weight or fat mass and a small positive association with BMI; however, data from RCTs, which provide the highest quality of evidence for examining the potentially causal effects of LCS intake, indicate that substituting LCS options for their regular-calorie versions results in a modest weight loss and may be a useful dietary tool to improve compliance with weight loss or weight maintenance plans.
Collapse
Affiliation(s)
- Paige E Miller
- From the Center for Epidemiology, Biostatistics, and Computational Biology, Exponent Inc, Chicago, IL
| | - Vanessa Perez
- From the Center for Epidemiology, Biostatistics, and Computational Biology, Exponent Inc, Chicago, IL
| |
Collapse
|
28
|
Pandurangan M, Park J, Kim E. Aspartame downregulates 3T3-L1 differentiation. In Vitro Cell Dev Biol Anim 2014; 50:851-7. [DOI: 10.1007/s11626-014-9789-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 06/09/2014] [Indexed: 12/20/2022]
|
29
|
Analysis of additives in dairy products by liquid chromatography coupled to quadrupole-orbitrap mass spectrometry. J Chromatogr A 2014; 1336:67-75. [DOI: 10.1016/j.chroma.2014.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 12/11/2022]
|
30
|
Abstract
Recent progress in unravelling the nutrient-sensing mechanisms in the taste buds of the tongue has triggered studies on the existence and role of chemosensory cells in the gut. Indeed, the gastrointestinal tract is the key interface between food and the human body and can sense basic tastes in much the same way as the tongue, through the use of similar G-protein-coupled taste receptors. These receptors 'taste' the luminal content and transmit signals that regulate nutrient transporter expression and nutrient uptake, and also the release of gut hormones and neurotransmitters involved in the regulation of energy and glucose homeostasis. Hence, they play a prominent role in the communication between the lumen, epithelium, smooth muscle cells, afferent nerve fibres and the brain to trigger adaptive responses that affect gastrointestinal function, food intake and glucose metabolism. This review summarises how sensing of nutrients by taste receptors along the gut plays a key role in the process of digestion, and how disturbances or adaptations of these chemosensory signalling pathways may contribute to the induction or resolution of a number of pathological conditions related to diabetes, obesity, or diet-induced symptom generation in irritable bowel syndrome. Targeting these receptors may represent a promising novel route for the treatment of a number of these diseases.
Collapse
|
31
|
Swithers SE. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol Metab 2013; 24:431-41. [PMID: 23850261 PMCID: PMC3772345 DOI: 10.1016/j.tem.2013.05.005] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/29/2013] [Accepted: 05/21/2013] [Indexed: 02/06/2023]
Abstract
The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements.
Collapse
Affiliation(s)
- Susan E Swithers
- Department of Psychological Sciences and Ingestive Behavior Research Center, Purdue University, 703 Third Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
32
|
Pepino MY, Tiemann CD, Patterson BW, Wice BM, Klein S. Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care 2013; 36:2530-5. [PMID: 23633524 PMCID: PMC3747933 DOI: 10.2337/dc12-2221] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Nonnutritive sweeteners (NNS), such as sucralose, have been reported to have metabolic effects in animal models. However, the relevance of these findings to human subjects is not clear. We evaluated the acute effects of sucralose ingestion on the metabolic response to an oral glucose load in obese subjects. RESEARCH DESIGN AND METHODS Seventeen obese subjects (BMI 42.3 ± 1.6 kg/m(2)) who did not use NNS and were insulin sensitive (based on a homeostasis model assessment of insulin resistance score ≤ 2.6) underwent a 5-h modified oral glucose tolerance test on two separate occasions preceded by consuming either sucralose (experimental condition) or water (control condition) 10 min before the glucose load in a randomized crossover design. Indices of β-cell function, insulin sensitivity (SI), and insulin clearance rates were estimated by using minimal models of glucose, insulin, and C-peptide kinetics. RESULTS Compared with the control condition, sucralose ingestion caused 1) a greater incremental increase in peak plasma glucose concentrations (4.2 ± 0.2 vs. 4.8 ± 0.3 mmol/L; P = 0.03), 2) a 20 ± 8% greater incremental increase in insulin area under the curve (AUC) (P < 0.03), 3) a 22 ± 7% greater peak insulin secretion rate (P < 0.02), 4) a 7 ± 4% decrease in insulin clearance (P = 0.04), and 5) a 23 ± 20% decrease in SI (P = 0.01). There were no significant differences between conditions in active glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, glucagon incremental AUC, or indices of the sensitivity of the β-cell response to glucose. CONCLUSIONS These data demonstrate that sucralose affects the glycemic and insulin responses to an oral glucose load in obese people who do not normally consume NNS.
Collapse
Affiliation(s)
- M Yanina Pepino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | | | |
Collapse
|
33
|
|