1
|
Bassetti M, Kanj SS, Kiratisin P, Rodrigues C, Van Duin D, Villegas MV, Yu Y. Early appropriate diagnostics and treatment of MDR Gram-negative infections. JAC Antimicrob Resist 2022; 4:dlac089. [PMID: 36111208 PMCID: PMC9469888 DOI: 10.1093/jacamr/dlac089] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The term difficult-to-treat resistance has been recently coined to identify Gram-negative bacteria exhibiting resistance to all fluoroquinolones and all β-lactam categories, including carbapenems. Such bacteria are posing serious challenges to clinicians trying to identify the best therapeutic option for any given patient. Delayed appropriate therapy has been associated with worse outcomes including increase in length of stay, increase in total in-hospital costs and ∼20% increase in the risk of in-hospital mortality. In addition, time to appropriate antibiotic therapy has been shown to be an independent predictor of 30 day mortality in patients with resistant organisms. Improving and anticipating aetiological diagnosis through optimizing not only the identification of phenotypic resistance to antibiotic classes/agents, but also the identification of specific resistance mechanisms, would have a major impact on reducing the frequency and duration of inappropriate early antibiotic therapy. In light of these considerations, the present paper reviews the increasing need for rapid diagnosis of bacterial infections and efficient laboratory workflows to confirm diagnoses and facilitate prompt de-escalation to targeted therapy, in line with antimicrobial stewardship principles. Rapid diagnostic tests currently available and future perspectives for their use are discussed. Early appropriate diagnostics and treatment of MDR Gram-negative infections require a multidisciplinary approach that includes multiple different diagnostic methods and further consensus of algorithms, protocols and guidelines to select the optimal antibiotic therapy.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Science, University of Genoa, Italy
- Infectious Diseases Clinic, Ospedale Policlinico San Martino Hospital – IRCCS, Genoa, Italy
| | - Souha S Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Camilla Rodrigues
- Department of Microbiology, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| | - David Van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - María Virginia Villegas
- Grupo de Investigaciones en Resistencia Antimicrobiana y Epidemiología Hospitalaria (RAEH), Universidad El Bosque, Bogotá DC, Colombia
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Burillo A, Bouza E. Faster infection diagnostics for intensive care unit (ICU) patients. Expert Rev Mol Diagn 2022; 22:347-360. [PMID: 35152813 DOI: 10.1080/14737159.2022.2037422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : The patient admitted to intensive care units (ICU) is critically ill, to some extent immunosuppressed, with a high risk of infection, sometimes by multidrug-resistant microorganisms. In this context, the intensivist expects from the microbiology service quick and understandable information so that appropriate antimicrobial treatment for that particular patient and infection can be initiated. AREAS COVERED : In this review of recent literature (2015-2021), we identified diagnostic methods for the most prevalent infections in these patients through a search of the databases Pubmed, evidence-based medicine online, York University reviewers group, Cochrane, MBE-Trip, and Sumsearch using the terms: adult, clinical laboratory techniques, critical care, early diagnosis, microbiology, molecular diagnostic techniques, spectrometry and metagenomics. EXPERT OPINION : There has been an exponential surge in diagnostic systems used directly on blood and other samples to expedite microbial identification and antimicrobial susceptibility testing of pathogens. Few studies have thus far assessed their clinical impact; final outcomes will also depend on preanalytical and post-analytical factors. Besides, many of the resistance mechanisms cannot yet be detected with molecular techniques, which impairs the prediction of the actual resistance phenotype. Nonetheless, this is an exciting field with much yet to explore.
Collapse
Affiliation(s)
- Almudena Burillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain.,Gregorio Marañón Health Research Institute, Doctor Esquerdo 46, 28007, Madrid, Spain
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain.,Gregorio Marañón Health Research Institute, Doctor Esquerdo 46, 28007, Madrid, Spain.,CIBER of Respiratory Diseases (CIBERES CB06/06/0058), Av. Monforte de Lemos 3-5, Pabellón 11, Planta, 28029 Madrid, Spain
| |
Collapse
|
3
|
Ibrahim W, Carr L, Cordell R, Wilde MJ, Salman D, Monks PS, Thomas P, Brightling CE, Siddiqui S, Greening NJ. Breathomics for the clinician: the use of volatile organic compounds in respiratory diseases. Thorax 2021; 76:514-521. [PMID: 33414240 PMCID: PMC7611078 DOI: 10.1136/thoraxjnl-2020-215667] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023]
Abstract
Exhaled breath analysis has the potential to provide valuable insight on the status of various metabolic pathways taking place in the lungs locally and other vital organs, via systemic circulation. For years, volatile organic compounds (VOCs) have been proposed as feasible alternative diagnostic and prognostic biomarkers for different respiratory pathologies.We reviewed the currently published literature on the discovery of exhaled breath VOCs and their utilisation in various respiratory diseasesKey barriers in the development of clinical breath tests include the lack of unified consensus for breath collection and analysis and the complexity of understanding the relationship between the exhaled VOCs and the underlying metabolic pathways. We present a comprehensive overview, in light of published literature and our experience from coordinating a national breathomics centre, of the progress made to date and some of the key challenges in the field and ways to overcome them. We particularly focus on the relevance of breathomics to clinicians and the valuable insights it adds to diagnostics and disease monitoring.Breathomics holds great promise and our findings merit further large-scale multicentre diagnostic studies using standardised protocols to help position this novel technology at the centre of respiratory disease diagnostics.
Collapse
Affiliation(s)
- Wadah Ibrahim
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Leicester, UK
| | - Liesl Carr
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Leicester, UK
| | | | | | - Dahlia Salman
- Department of Chemistry, Loughborough University, Loughborough, UK
| | - Paul S Monks
- School of Chemistry, University of Leicester, Leicester, UK
| | - Paul Thomas
- Department of Chemistry, Loughborough University, Loughborough, UK
| | - Chris E Brightling
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Leicester, UK
| | - Salman Siddiqui
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Leicester, UK
| | - Neil J Greening
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Leicester, UK
| |
Collapse
|
4
|
Vallecoccia MS, Dominedò C, Cutuli SL, Martin-Loeches I, Torres A, De Pascale G. Is ventilated hospital-acquired pneumonia a worse entity than ventilator-associated pneumonia? Eur Respir Rev 2020; 29:29/157/200023. [PMID: 32759376 PMCID: PMC9488552 DOI: 10.1183/16000617.0023-2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/14/2020] [Indexed: 12/02/2022] Open
Abstract
Introduction Nosocomial pneumonia develops after ≥48 h of hospitalisation and is classified as ventilator-associated pneumonia (VAP) and hospital-acquired pneumonia (HAP); the latter may require mechanical ventilation (V-HAP) or not (NV-HAP). Main findings VAP and HAP affect a significant proportion of hospitalised patients and are characterised by poor clinical outcomes. Among them, V-HAP has the greatest 28-day mortality rate followed by VAP and NV-HAP (27.8% versus 18% versus 14.5%, respectively). However, no differences in terms of pathophysiology, underlying microbiological pathways and subsequent therapy have been identified. International guidelines suggest specific flow charts to help clinicians in the therapeutic management of such diseases; however, there are no specific recommendations beyond VAP and HAP classification. HAP subtypes are scarcely considered as different entities and the lack of data from the clinical scenario limits any final conclusion. Hopefully, recent understanding of the pathophysiology of such diseases, as well as the discovery of new therapies, will improve the outcome associated with such pulmonary infections. Conclusion Nosocomial pneumonia is a multifaced disease with features of pivotal interest in critical care medicine. Due to the worrisome data on mortality of patients with nosocomial pneumonia, further prospective studies focused on this topic are urgently needed. Due to the different mortality of each subtype of nosocomial pneumonia, including ventilator-associated pneumonia and hospital-acquired pneumonia requiring mechanical ventilation, new prospective studies are urgently neededhttps://bit.ly/3fFoZ6U
Collapse
Affiliation(s)
- Maria Sole Vallecoccia
- Dept of Anesthesiology, Intensive Care and Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy.,Joint first authors
| | - Cristina Dominedò
- Dept of Anesthesiology, Intensive Care and Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy.,Joint first authors
| | - Salvatore Lucio Cutuli
- Dept of Anesthesiology, Intensive Care and Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ignacio Martin-Loeches
- Dept of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Dublin, Ireland.,Service of Pneumology, Hospital Clinic of Barcelona, University of Barcelona, Institut d'Investigació August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red, Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Antoni Torres
- Service of Pneumology, Hospital Clinic of Barcelona, University of Barcelona, Institut d'Investigació August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red, Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Gennaro De Pascale
- Dept of Anesthesiology, Intensive Care and Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy .,Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
5
|
Liapikou A, Cillóniz C, Torres A. Emerging strategies for the noninvasive diagnosis of nosocomial pneumonia. Expert Rev Anti Infect Ther 2019; 17:523-533. [PMID: 31237462 PMCID: PMC7103721 DOI: 10.1080/14787210.2019.1635010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Hospital-acquired pneumonia is a common and therapeutically challenging diagnosis that can lead to severe sepsis, critical illness, and respiratory failure. In this review, we focus on efforts to enhance microbiological diagnosis of hospital-acquired pneumonia, including ventilator-associated pneumonia. Areas covered: A systematic literature review was conducted by searching Medline from inception to December 2018, including hand-searching of the reference lists for additional studies. The search strategy comprised the following common search terms: hospital pneumonia OR nosocomial pneumonia OR noninvasive OR molecular diagnostic tests (OR point-of-care systems OR VOC [i.e. volatile organic compounds]) OR rapid (or simple or quick test), including brand names for the most common commercial tests. Expert opinion: In recent years, the microbiological diagnosis of respiratory pathogens has improved significantly by the development and implementation of molecular diagnostic tests for pneumonia. Real-time polymerase chain reaction, hybridization, and mass spectrometry-based platforms dominate the scene, with microarray-based assays, multiplex polymerase chain reaction, and MALDI-TOF mass spectrometry capable of detecting the determinants of antimicrobial resistance (mainly β-lactamase genes). Introducing these assays into routine clinical practice for rapid identification of the causative microbes and their resistance patterns could transform the care of pneumonia, improving antimicrobial selection, de-escalation, and stewardship.
Collapse
Affiliation(s)
- Adamantia Liapikou
- a 6th Respiratory Department , Sotiria Chest Diseases Hospital , Athens , Greece
| | - Catia Cillóniz
- b Servei de Pneumologia , Institut Clinic del Tòrax, Hospital Clinic, Barcelona, IDIBAPS, CIBER Enfermedades Respiratorias, University of Barcelona , Barcelona , Spain
| | - Antoni Torres
- b Servei de Pneumologia , Institut Clinic del Tòrax, Hospital Clinic, Barcelona, IDIBAPS, CIBER Enfermedades Respiratorias, University of Barcelona , Barcelona , Spain
| |
Collapse
|
6
|
Elliott RM, Burrell AR, Harrigan PW, Murgo M, Rolls KD, Sibbritt DW, Iredell JR, Elliott D. Antimicrobial prescription patterns and ventilator associated pneumonia: findings from a 10-site prospective audit. BMC Res Notes 2018; 11:769. [PMID: 30373649 PMCID: PMC6206906 DOI: 10.1186/s13104-018-3878-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022] Open
Abstract
Objective To examine anti-microbial prescribing practices associated with ventilator-associated pneumonia from data gathered during an audit of practice and outcomes in intensive care units (ICUs) in a previously published study. Results The patient sample of 169 was 65% male with an average age of 59.7 years, a mean APACHE II score of 20.6, and a median ICU stay of 11 days. While ventilator-associated pneumonia was identified using a specific 4-item checklist in 29 patients, agreement between the checklist and independent physician diagnosis was only 17%. Sputum microbe culture reporting was sparse. Approximately 75% of the sample was administered an antimicrobial (main indications: lung infection [54%] and prophylaxis [11%]). No clinical justification was documented for 20% of prescriptions. Piperacillin/tazobactam was most frequently prescribed (1/3rd of all antimicrobial prescriptions) with about half of those for prophylaxis. Variations in prescribing practices were identified, including apparent gaps in antimicrobial stewardship; particularly in relation to prescribing for prophylaxis and therapy de-escalation. Sputum microbe culture reports for VAP did not appear to contribute to prescribing decisions but physician suspicion of lung infection and empiric therapy rather than ventilator-associated pneumonia criteria and guideline concordance.
Collapse
Affiliation(s)
- Rosalind M Elliott
- University of Technology Sydney, Broadway, NSW, 2007, Australia. .,Northern Sydney Local Health District, Reserve Road, St Leonards, NSW, 2065, Australia.
| | | | - Peter W Harrigan
- John Hunter Hospital, Lookout Road, New Lambton, NSW, 2305, Australia
| | - Margherita Murgo
- Australian Commission on Safety and Quality in Health Care, Sydney, 5/255 Elizabeth St, Sydney, NSW, 2000, Australia.,The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Kaye D Rolls
- The University of Sydney, Camperdown, NSW, 2006, Australia.,Intensive Care NSW, Agency for Clinical Innovation, 67 Albert Avenue, Chatswood, NSW, 2067, Australia.,Alliance for Vascular Access Teaching and Research, Menzies Health Institute, Griffith University, Meadowbrook, QLD, 4222, Australia.,Faculty of Nursing and Midwifery, Sydney School of Nursing, The University of Sydney, Camperdown, NSW, 2006, Australia
| | | | - Jonathan R Iredell
- Westmead Clinical School, The University of Sydney, Darcy Rd, Westmead, NSW, 2145, Australia.,Infectious Diseases, Westmead Hospital and Western Sydney Local Health District, Darcy Rd, Westmead, NSW, 2145, Australia
| | - Doug Elliott
- University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
7
|
Risk Factors and Outcomes for Ineffective Empiric Treatment of Sepsis Caused by Gram-Negative Pathogens: Stratification by Onset of Infection. Antimicrob Agents Chemother 2017; 62:AAC.01577-17. [PMID: 29109168 DOI: 10.1128/aac.01577-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
Sepsis and septic shock remain serious consequences of infections, with reported mortality rates in excess of 40 percent. Timely antibiotic therapy in cases of sepsis and septic shock is recognized as an important determinant of outcome. However, the administration of ineffective empirical treatment (IET) (an initial antibiotic regimen that is not active against the identified pathogen[s] based on in vitro susceptibility testing results) is associated with excess mortality compared to effective empirical treatment (EET). We examined all hospitalized patients at Barnes-Jewish Hospital with a sterile site (blood or pleural, abdominal, cerebrospinal, synovial, and pericardial fluid) culture positive for Gram-negative (GN) bacteria combined with a primary or secondary ICD-9-CM code for severe sepsis (995.92) or septic shock (785.52) between January 2010 and October 2015. Variables significantly associated with early-onset (<48 h of hospitalization) IET of GN sterile site sepsis and septic shock included age, recent hospitalization, and prior intravenous antibiotics. Late-onset IET was associated with increasing numbers of hospitalization days before infection onset and prior intravenous antibiotic administration. For patients with early-onset infection, we found no difference in rates of survival between patients receiving IET and EET. However, patients in the late-onset infection group receiving IET had a statistically lower rate of survival than those receiving EET. These data suggest that risk factors and outcomes for IET can vary based on the time of onset of infection. Our results also highlight the importance of prior intravenous antibiotic exposure as a risk factor for IET in infections by GN bacteria regardless of the time of onset of infection.
Collapse
|