1
|
Feng XM, Zhang WH, Liu J. Adenosine as an Adjunctive Therapy for Acute Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Rev Cardiovasc Med 2025; 26:24065. [PMID: 40026527 PMCID: PMC11868911 DOI: 10.31083/rcm24065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 03/05/2025] Open
Abstract
Background Adenosine administration can improve coronary blood flow in patients undergoing primary percutaneous coronary intervention (PCI); however, the therapeutic effects of adenosine on ST resolution and major adverse cardiovascular events (MACEs) after PCI remain unclear. This study aimed to assess the therapeutic effects of adjunctive adenosine administration on patients with acute myocardial infarction (AMI) undergoing PCI using a meta-analytic approach. Methods We conducted a systematic search across PubMed, Embase, and the Cochrane Library to identify eligible randomized controlled trials (RCTs) published from inception through to March 2024. Primary outcomes included ST resolution and MACEs. The pooled analyses were all conducted using the random-effects model. Additionally, exploratory analyses were carried out through the application of sensitivity and subgroup analyses. Results Twenty-one RCTs involving 2467 patients with AMI were selected for the meta-analysis. Adenosine significantly increased the incidence of ST resolution (relative risk [RR]: 1.30; 95% confidence interval [CI]: 1.15-1.46; p < 0.001), while it significantly reduced the risk of MACEs (RR: 0.67; 95% CI: 0.51-0.87; p = 0.003). Moreover, the use of adenosine was associated with reduced incidences of no reflow (RR: 0.35; 95% CI: 0.24-0.52; p < 0.001) and myocardial blush grade (MBG) 0 to 1 (RR: 0.75; 95% CI: 0.58-0.99; p = 0.041). Furthermore, adenosine significantly reduced the risk of heart failure (RR: 0.66; 95% CI: 0.44-0.99; p = 0.044). Finally, adenosine use was associated with a lower creatine kinase-MB (CK-MB) peak value (weighted mean difference: -36.94; 95% CI: -73.76- -0.11; p = 0.049). Conclusions This study revealed that adenosine use was associated with an increased incidence of ST resolution, and reduced risk of MACEs. The INPLASY registration INPLASY202510051, https://inplasy.com/inplasy-2025-1-0051/.
Collapse
Affiliation(s)
- Xue-Mei Feng
- School of Basic Medical Sciences, Shanghai Jiaotong University, 200025 Shanghai, China
| | - Wen-Hui Zhang
- Department of Digestive Oncology, Baotou Cancer Hospital, 014030 Baotou, Inner Mongolia, China
| | - Jia Liu
- School of International Pharmaceutical Business China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Li Y, Yu J, Wang Y. Mechanism of Coronary Microcirculation Obstruction after Acute Myocardial Infarction and Cardioprotective Strategies. Rev Cardiovasc Med 2024; 25:367. [PMID: 39484142 PMCID: PMC11522835 DOI: 10.31083/j.rcm2510367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 11/03/2024] Open
Abstract
ST-segment elevation myocardial infarction patients are best treated with emergency percutaneous coronary intervention (PCI), while coronary microvascular dysfunction and obstruction (CMVO) are indicated by the absence or slowing of antegrade epicardial flow on angiography, resulting in suboptimal myocardial perfusion despite the lack of mechanical vascular obstruction. CMVO occurs in up to half of patients who undergo PCI for the first time and is associated with poor outcomes. This review summarizes the complex mechanisms leading to CMVO and elaborates on the changes observed at the organism, tissue, organ, cellular, and molecular levels. It also describes the current diagnostic methods and comprehensive treatment methods for CMVO.
Collapse
Affiliation(s)
- Yuyu Li
- Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029 Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Disease, 100029 Beijing, China
| | - Jiaqi Yu
- Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029 Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Disease, 100029 Beijing, China
| | - Yuan Wang
- Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029 Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Disease, 100029 Beijing, China
| |
Collapse
|
3
|
Marchi E, Muraca I, Berteotti M, Gori AM, Valenti R, Marcucci R. Adenosine in Interventional Cardiology: Physiopathologic and Pharmacologic Effects in Coronary Artery Disease. Int J Mol Sci 2024; 25:5852. [PMID: 38892037 PMCID: PMC11172110 DOI: 10.3390/ijms25115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This review article focuses on the role of adenosine in coronary artery disease (CAD) diagnosis and treatment. Adenosine, an endogenous purine nucleoside, plays crucial roles in cardiovascular physiology and pathology. Its release and effects, mediated by specific receptors, influence vasomotor function, blood pressure regulation, heart rate, and platelet activity. Adenosine therapeutic effects include treatment of the no-reflow phenomenon and paroxysmal supraventricular tachycardia. The production of adenosine involves complex cellular pathways, with extracellular and intracellular synthesis mechanisms. Adenosine's rapid metabolism underscores its short half-life and physiological turnover. Furthermore, adenosine's involvement in side effects of antiplatelet therapy, particularly ticagrelor and cangrelor, highlights its clinical significance. Moreover, adenosine serves as a valuable tool in CAD diagnosis, aiding stress testing modalities and guiding intracoronary physiological assessments. Its use in assessing epicardial stenosis and microvascular dysfunction is pivotal for treatment decisions. Overall, understanding adenosine's mechanisms and clinical implications is essential for optimizing CAD management strategies, encompassing both therapeutic interventions and diagnostic approaches.
Collapse
Affiliation(s)
- Enrico Marchi
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, Careggi University Hospital, University of Florence, 50134 Florence, Italy
| | - Iacopo Muraca
- Division of Interventional Cardiology, Cardiothoracovascular Department, Careggi University Hospital, 50134 Florence, Italy
| | - Martina Berteotti
- Atherothrombotic Center, Department of Experimental and Clinical Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy (R.M.)
| | - Anna Maria Gori
- Atherothrombotic Center, Department of Experimental and Clinical Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy (R.M.)
| | - Renato Valenti
- Division of Interventional Cardiology, Cardiothoracovascular Department, Careggi University Hospital, 50134 Florence, Italy
| | - Rossella Marcucci
- Atherothrombotic Center, Department of Experimental and Clinical Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy (R.M.)
| |
Collapse
|
4
|
Sayegh MN, Cooney KA, Han WM, Cicka M, Strobel F, Wang L, García AJ, Levit RD. Hydrogel delivery of purinergic enzymes improves cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 176:98-109. [PMID: 36764383 PMCID: PMC10006353 DOI: 10.1016/j.yjmcc.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
RATIONALE The innate immune response contributes to cardiac injury in myocardial ischemia/reperfusion (MI/R). Neutrophils are an important early part of the innate immune response to MI/R. Adenosine, an endogenous purine, is a known innate immune modulator and inhibitor of neutrophil activation. However, its delivery to the heart is limited by its short half-life (<30 s) and off-target side effects. CD39 and CD73 are anti-inflammatory homeostatic enzymes that can generate adenosine from phosphorylated adenosine substrate such as ATP released from injured tissue. OBJECTIVE We hypothesize that hydrogel-delivered CD39 and CD73 target the local early innate immune response, reduce neutrophil activation, and preserve cardiac function in MI/R injury. METHODS AND RESULTS We engineered a poly(ethylene) glycol (PEG) hydrogel loaded with the adenosine-generating enzymes CD39 and CD73. We incubated the hydrogels with neutrophils in vitro and showed a reduction in hydrogen peroxide production using Amplex Red. We demonstrated availability of substrate for the enzymes in the myocardium in MI/R by LC/MS, and tested release kinetics from the hydrogel. On echocardiography, global longitudinal strain (GLS) was preserved in MI/R hearts treated with the loaded hydrogel. Delivery of purinergic enzymes via this synthetic hydrogel resulted in lower innate immune infiltration into the myocardium post-MI/R, decreased markers of macrophage and neutrophil activation (NETosis), and decreased leukocyte-platelet complexes in circulation. CONCLUSIONS In a rat model of MI/R injury, CD39 and CD73 delivered via a hydrogel preserve cardiac function by modulating the innate immune response.
Collapse
Affiliation(s)
- Michael N Sayegh
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Kimberly A Cooney
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biological Sciences, Tennessee State University, Nashville, TN, United States of America
| | - Woojin M Han
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America; Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Markus Cicka
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Frederick Strobel
- Department of Chemistry, Emory University, Atlanta, GA, United States of America
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America.
| |
Collapse
|
5
|
Laborante R, Bianchini E, Restivo A, Ciliberti G, Galli M, Vergallo R, Rodolico D, Zito A, Princi G, Leone AM, Aurigemma C, Romagnoli E, Montone RA, Burzotta F, Trani C, Crea F, D'Amario D. Adenosine as adjunctive therapy in acute coronary syndrome: a meta-analysis of randomized controlled trials. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2023; 9:173-182. [PMID: 36496163 DOI: 10.1093/ehjcvp/pvac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
AIMS Adenosine has been tested in several randomized controlled trials (RCTs) to minimize the incidence of coronary microvascular obstruction (CMVO). The aim of this study was to pool all the RCTs comparing intracoronary or intravenous adenosine versus placebo in patients with acute coronary syndrome (ACS) undergoing myocardial revascularization. METHODS AND RESULTS PubMed and Scopus electronic databases were scanned for eligible studies up to 5th June 2022. A total of 26 RCTs with 5843 patients were included. Efficacy endpoints were major adverse cardiac events (MACE), all-cause death, non-fatal myocardial infarction, and heart failure. Atrioventricular blocks and ventricular fibrillation/sustained ventricular tachycardia (VF/SVT) were the safety endpoints. Myocardial blush grade, thrombolysis in myocardial infarction (TIMI) flow grade, left ventricular ejection fraction (LVEF), infarct size, and ST-segment resolution were also assessed. Adenosine administration was not associated with any clinical benefit in terms of MACE, all-cause death, non-fatal myocardial infarction, and heart failure. However, adenosine was associated with an increased rate of advanced atrioventricular blocks and of VF/SVT in studies with total mean ischaemic time >3 h, compared to placebo. Remarkably, among patients undergoing percutaneous coronary intervention, adenosine was associated with reduced myocardial blush grade 0-1 and TIMI flow grade 0-2, compared to placebo. Furthermore, adenosine did not show favourable effects on LVEF and infarct size. CONCLUSION Adenosine infusion, as adjunctive therapy in ACS, was associated with an increased risk of advanced atrioventricular blocks and increased rates of adenosine-triggered ventricular arrhythmias in patients with long ischaemic time, without providing any clinical benefit compared to placebo.
Collapse
Affiliation(s)
- Renzo Laborante
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Emiliano Bianchini
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Attilio Restivo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Giuseppe Ciliberti
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Mattia Galli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome 00168, Italy.,Department of Cardiology, Maria Cecilia Hospital, GVM Care & Research, Cotignola (RA), Cotignola 48033, Italy
| | - Rocco Vergallo
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Andrea Zito
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Giuseppe Princi
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Antonio Maria Leone
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Cristina Aurigemma
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Enrico Romagnoli
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Rocco Antonio Montone
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Francesco Burzotta
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome 00168, Italy.,Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Carlo Trani
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome 00168, Italy.,Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome 00168, Italy.,Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Domenico D'Amario
- Department of Translational Medicine, Università del Piemonte Orientale, Padiglione G, L.go Bellini, Novara, NO, 28100, Italy
| |
Collapse
|
6
|
De Marco C, Charron T, Rousseau G. Adenosine in Acute Myocardial Infarction-Associated Reperfusion Injury: Does it Still Have a Role? Front Pharmacol 2022; 13:856747. [PMID: 35645815 PMCID: PMC9140324 DOI: 10.3389/fphar.2022.856747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
The mainstay of acute myocardial infarction has long been timely reperfusion of the culprit obstruction. Reperfusion injury resulting from a multitude of pathophysiological processes has been demonstrated to negatively affect myocardial recovery and function post-infarction. Adenosine interacts directly with the sequential pathophysiological processes culminating in reperfusion injury by inhibiting them upstream. The evidence for adenosine’s benefit in acute myocardial infarction has produced mixed results with regards to myocardial salvage and long-term mortality. The heterogenous evidence with regards to benefits on clinical outcomes has resulted in modest uptake of adenosine in the clinical setting. However, it is critical to analyze the variability in study methodologies. The goal of this review is to evaluate how adenosine dose, route of administration, timing of administration, and site of administration play essential roles in the molecule’s efficacy. The benefits of adenosine, as highlighted in the following review, are clear and its role in the treatment of acute myocardial infarction should not be discounted
Collapse
Affiliation(s)
- Corrado De Marco
- CIUSSS du Nord-de-l’Île-de-Montréal, Hôpital du Sacré-Coeur, Department of Medicine, QC, Montréal, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Thierry Charron
- CIUSSS du Nord-de-l’Île-de-Montréal, Hôpital du Sacré-Coeur, Department of Medicine, QC, Montréal, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Guy Rousseau
- CIUSSS du Nord-de-l’Île-de-Montréal, Hôpital du Sacré-Coeur, Department of Medicine, QC, Montréal, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Guy Rousseau,
| |
Collapse
|
7
|
Sadeghian M, Mousavi SH, Aamaraee Z, Shafiee A. Administration of intracoronary adenosine before stenting for the prevention of no-reflow in patients with ST-elevation myocardial infarction. SCAND CARDIOVASC J 2022; 56:23-27. [DOI: 10.1080/14017431.2022.2035807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohammad Sadeghian
- Department of Cardiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Mousavi
- Department of Cardiology, Imam Reza Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Zahra Aamaraee
- Department of Cardiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Shafiee
- Department of Cardiovascular Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Myocardial preservation during primary percutaneous intervention: It's time to rethink? Indian Heart J 2021; 73:395-403. [PMID: 34474749 PMCID: PMC8424360 DOI: 10.1016/j.ihj.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Randomized trial of intracoronary adenosine as adjunctive therapy for prevention of the no-reflow phenomenon. Coron Artery Dis 2020; 31:527-529. [PMID: 32134758 DOI: 10.1097/mca.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
No-reflow phenomenon as a serious complication following percutaneous coronary intervention, deteriorates clinical outcomes. Intracoronary (IC) Adenosine, seems to be a way to deal with it. One hundred four consecutive patients with ST-segment elevation myocardial infarction were randomized into two groups. Each group consisted of 52 patients who managed with two bolus doses of IC Adenosine (Adenosine group) or two bolus doses of IC normal saline (placebo group) administered before and after stenting. Thrombolysis in myocardial infarction (TIMI) grade flow, ST-segment resolution (STR) and post-procedural clinical outcomes were used as endpoints. IC adenosine led to lower rates of no-reflow based on TIMI grade flow scaling (15.4% vs. 44.3%; P-value: 0.02). STR classified as complete, partial and no resolution was similar between two groups (P-value: 0.748). Also, post-interventional clinical outcomes, including arrhythmia, left ventricular ejection fraction, hospitalization time, and 30 days mortality were similar between Adenosine and placebo groups.
Collapse
|
10
|
Management of No-Reflow. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Shin B, Saeed MY, Esch JJ, Guariento A, Blitzer D, Moskowitzova K, Ramirez-Barbieri G, Orfany A, Thedsanamoorthy JK, Cowan DB, Inkster JA, Snay ER, Staffa SJ, Packard AB, Zurakowski D, Del Nido PJ, McCully JD. A Novel Biological Strategy for Myocardial Protection by Intracoronary Delivery of Mitochondria: Safety and Efficacy. ACTA ACUST UNITED AC 2019; 4:871-888. [PMID: 31909298 PMCID: PMC6938990 DOI: 10.1016/j.jacbts.2019.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction is the determinant insult of ischemia-reperfusion injury. Autologous mitochondrial transplantation involves supplying one's healthy mitochondria to the ischemic region harboring damaged mitochondria. The authors used in vivo swine to show that mitochondrial transplantation in the heart by intracoronary delivery is safe, with specific distribution to the heart, and results in significant increase in coronary blood flow, which requires intact mitochondrial viability, adenosine triphosphate production, and, in part, the activation of vascular KIR channels. Intracoronary mitochondrial delivery after temporary regional ischemia significantly improved myocardial function, perfusion, and infarct size. The authors concluded that intracoronary delivery of mitochondria is safe and efficacious therapy for myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Borami Shin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Mossab Y Saeed
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Jesse J Esch
- Harvard Medical School, Boston, Massachusetts.,Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Alvise Guariento
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - David Blitzer
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Kamila Moskowitzova
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Giovanna Ramirez-Barbieri
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Arzoo Orfany
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Jerusha K Thedsanamoorthy
- Harvard Medical School, Boston, Massachusetts.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Douglas B Cowan
- Harvard Medical School, Boston, Massachusetts.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - James A Inkster
- Harvard Medical School, Boston, Massachusetts.,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
| | - Erin R Snay
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
| | - Steven J Staffa
- Harvard Medical School, Boston, Massachusetts.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Alan B Packard
- Harvard Medical School, Boston, Massachusetts.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - David Zurakowski
- Harvard Medical School, Boston, Massachusetts.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - James D McCully
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
2019 Canadian Cardiovascular Society/Canadian Association of Interventional Cardiology Guidelines on the Acute Management of ST-Elevation Myocardial Infarction: Focused Update on Regionalization and Reperfusion. Can J Cardiol 2019; 35:107-132. [PMID: 30760415 DOI: 10.1016/j.cjca.2018.11.031] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
Rapid reperfusion of the infarct-related artery is the cornerstone of therapy for the management of acute ST-elevation myocardial infarction (STEMI). Canada's geography presents unique challenges for timely delivery of reperfusion therapy for STEMI patients. The Canadian Cardiovascular Society/Canadian Association of Interventional Cardiology STEMI guideline was developed to provide advice regarding the optimal acute management of STEMI patients irrespective of where they are initially identified: in the field, at a non-percutaneous coronary intervention-capable centre or at a percutaneous coronary intervention-capable centre. We had also planned to evaluate and incorporate sex and gender considerations in the development of our recommendations. Unfortunately, inadequate enrollment of women in randomized trials, lack of publication of main outcomes stratified according to sex, and lack of inclusion of gender as a study variable in the available literature limited the feasibility of such an approach. The Grading Recommendations, Assessment, Development, and Evaluation system was used to develop specific evidence-based recommendations for the early identification of STEMI patients, practical aspects of patient transport, regional reperfusion decision-making, adjunctive prehospital interventions (oxygen, opioids, antiplatelet therapy), and procedural aspects of mechanical reperfusion (access site, thrombectomy, antithrombotic therapy, extent of revascularization). Emphasis is placed on integrating these recommendations as part of an organized regional network of STEMI care and the development of appropriate reperfusion and transportation pathways for any given region. It is anticipated that these guidelines will serve as a practical template to develop systems of care capable of providing optimal treatment for a wide range of STEMI patients.
Collapse
|
13
|
Kumar J, O’Connor CT, Kumar R, Arnous SK, Kiernan TJ. Coronary no-reflow in the modern era: a review of advances in diagnostic techniques and contemporary management. Expert Rev Cardiovasc Ther 2019; 17:605-623. [DOI: 10.1080/14779072.2019.1653187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jathinder Kumar
- Department of Cardiology University Hospital Limerick, GEMS, University of Limerick, Limerick, Ireland
| | - Cormac T O’Connor
- Department of Cardiology University Hospital Limerick, GEMS, University of Limerick, Limerick, Ireland
| | - Rajesh Kumar
- Department of Cardiology University Hospital Limerick, GEMS, University of Limerick, Limerick, Ireland
| | - Samer Khalil Arnous
- Department of Cardiology University Hospital Limerick, GEMS, University of Limerick, Limerick, Ireland
| | - Thomas J. Kiernan
- Department of Cardiology University Hospital Limerick, GEMS, University of Limerick, Limerick, Ireland
| |
Collapse
|
14
|
|
15
|
Li J, Xu X, Zhou X, Dai J, Ma L, Chen C, Li X, Mao W. Cardiovascular events associated with nicorandil administration prior to primary percutaneous coronary intervention in patients with acute ST-segment elevated myocardial infarction: a systematic review and meta-analysis. Expert Opin Drug Saf 2019; 18:537-547. [PMID: 31117845 DOI: 10.1080/14740338.2019.1617848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiaying Li
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaoming Xu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinbin Zhou
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jin Dai
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lan Ma
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chen Chen
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinyao Li
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wei Mao
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Michels da Silva D, Langer H, Graf T. Inflammatory and Molecular Pathways in Heart Failure-Ischemia, HFpEF and Transthyretin Cardiac Amyloidosis. Int J Mol Sci 2019; 20:ijms20092322. [PMID: 31083399 PMCID: PMC6540104 DOI: 10.3390/ijms20092322] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Elevated pro-inflammatory biomarkers and cytokines are associated with morbidity and mortality in heart failure (HF). Preclinical and clinical studies have shown multiple inflammatory mechanisms causing cardiac remodeling, dysfunction and chronic failure. Therapeutics in trials targeting the immune response in heart failure and its effects did not result in evident benefits regarding clinical endpoints and mortality. This review elaborates pathways of immune cytokines in pathogenesis and worsening of heart failure in clinical and cellular settings. Besides the well-known mechanisms of immune activation and inflammation in atherosclerosis causing ischemic cardiomyopathy or myocarditis, attention is focused on other mechanisms leading to heart failure such as transthyretin (TTR) amyloidosis or heart failure with preserved ejection fraction. The knowledge of the pathogenesis in heart failure and amyloidosis on a molecular and cellular level might help to highlight new disease defining biomarkers and to lead the way to new therapeutic targets.
Collapse
Affiliation(s)
- Diana Michels da Silva
- Department of Cardiology, Angiology and Intensive Care, Medicine Medical Clinic II, University Heart Center Lübeck, 23562 Lübeck, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany.
| | - Harald Langer
- Department of Cardiology, Angiology and Intensive Care, Medicine Medical Clinic II, University Heart Center Lübeck, 23562 Lübeck, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany.
| | - Tobias Graf
- Department of Cardiology, Angiology and Intensive Care, Medicine Medical Clinic II, University Heart Center Lübeck, 23562 Lübeck, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany.
| |
Collapse
|
17
|
Allencherril J, Alam M, Levine G, Jneid H, Atar D, Kloner RA, Birnbaum Y. Do We Need Potent Intravenous Antiplatelet Inhibition at the Time of Reperfusion During ST-Segment Elevation Myocardial Infarction? J Cardiovasc Pharmacol Ther 2018; 24:215-224. [PMID: 30563349 DOI: 10.1177/1074248418812167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute myocardial infarction (MI) is still a large source of morbidity and mortality worldwide. Although early reperfusion therapy has been prioritized in the modern era of percutaneous coronary intervention and thrombolysis, attempts at incremental improvements in clinical outcomes by reducing MI size have not been successful so far. Herein, we review the studies that have evaluated immediate-onset antiplatelet therapy as attempts to improve meaningful clinical outcomes in ST-segment elevation MI (STEMI). Unfortunately, many of the adjunctive pharmacotherapies have proven to be disappointing. Recent studies performed in the background of routine oral administration of P2Y12 adenosine receptor inhibitors, which may take several hours to take full effect, and aspirin have largely shown no improvement in outcomes, despite an earlier onset of antiplatelet activity of the investigative agents. Further progress in improving outcomes during STEMI may depend on exploring therapeutics that modulate the pathophysiology of microvascular damage during ischemia-reperfusion injury, a phenomenon whose effects evolve over hours to days. We speculate that the dynamic nature of the no-reflow phenomenon may be an explanation for these disappointing results with the intravenous antiplatelet agents. We hope that appreciation for what has not worked in this domain may direct future research efforts to focus on novel pathways. Myocardial ischemia and reperfusion injury are very much still a lingering issue. Despite significant improvements in door-to-balloon times, rates of in-hospital mortality for STEMI remain unchanged. Outcomes following successfully reperfused STEMI are likely determined by the initial size of myocardial necrosis (ie, cardiomyocyte death during the period of ongoing ischemia), patency of the infarct-related epicardial coronary artery, possible reperfusion injury, the microvascular no-reflow phenomenon, and adverse remodeling after infarction.
Collapse
Affiliation(s)
| | - Mahboob Alam
- 1 Section of Cardiology, Baylor College of Medicine, Houston, TX, USA
| | - Glenn Levine
- 1 Section of Cardiology, Baylor College of Medicine, Houston, TX, USA
| | - Hani Jneid
- 1 Section of Cardiology, Baylor College of Medicine, Houston, TX, USA
| | - Dan Atar
- 2 Department of Cardiology B, Oslo University Hospital, and Institute of Clinical Sciences, University of Oslo, Oslo, Norway
| | - Robert A Kloner
- 3 Huntington Medical Research Institute, Pasadena, CA, USA
- 4 Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yochai Birnbaum
- 1 Section of Cardiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
18
|
Panahi M, Papanikolaou A, Torabi A, Zhang JG, Khan H, Vazir A, Hasham MG, Cleland JGF, Rosenthal NA, Harding SE, Sattler S. Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition. Cardiovasc Res 2018; 114:1445-1461. [PMID: 30010800 PMCID: PMC6106100 DOI: 10.1093/cvr/cvy145] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/26/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Following a myocardial infarction (MI), the immune system helps to repair ischaemic damage and restore tissue integrity, but excessive inflammation has been implicated in adverse cardiac remodelling and development towards heart failure (HF). Pre-clinical studies suggest that timely resolution of inflammation may help prevent HF development and progression. Therapeutic attempts to prevent excessive post-MI inflammation in patients have included pharmacological interventions ranging from broad immunosuppression to immunomodulatory approaches targeting specific cell types or factors with the aim to maintain beneficial aspects of the early post-MI immune response. These include the blockade of early initiators of inflammation including reactive oxygen species and complement, inhibition of mast cell degranulation and leucocyte infiltration, blockade of inflammatory cytokines, and inhibition of adaptive B and T-lymphocytes. Herein, we provide a systematic review on post-MI immunomodulation trials and a meta-analysis of studies targeting the inflammatory cytokine Interleukin-1. Despite an enormous effort into a significant number of clinical trials on a variety of targets, a striking heterogeneity in study population, timing and type of treatment, and highly variable endpoints limits the possibility for meaningful meta-analyses. To conclude, we highlight critical considerations for future studies including (i) the therapeutic window of opportunity, (ii) immunological effects of routine post-MI medication, (iii) stratification of the highly diverse post-MI patient population, (iv) the potential benefits of combining immunomodulatory with regenerative therapies, and at last (v) the potential side effects of immunotherapies.
Collapse
Affiliation(s)
- Mona Panahi
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| | - Angelos Papanikolaou
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| | - Azam Torabi
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | - Ji-Gang Zhang
- The Jackson Laboratory, 600 Main Street, Bar Harbor, USA
| | - Habib Khan
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | - Ali Vazir
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | | | - John G F Cleland
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | - Nadia A Rosenthal
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
- The Jackson Laboratory, 600 Main Street, Bar Harbor, USA
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| |
Collapse
|
19
|
Gao QJ, Yang B, Chen J, Shi SB, Yang HJ, Liu X. Sigma-1 Receptor Stimulation with PRE-084 Ameliorates Myocardial Ischemia-Reperfusion Injury in Rats. Chin Med J (Engl) 2018; 131:539-543. [PMID: 29483387 PMCID: PMC5850669 DOI: 10.4103/0366-6999.226076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The sigma receptors are a relatively novel receptor group with respect to knowledge of their effect on health. Although the sigma-1 receptor agonist PRE-084 exhibits a cardioprotective effect in some studies, the benefits in cases of myocardial ischemia/reperfusion (I/R) are not clear. The aim of this study was to explore the mechanism of action and assess the effect of PRE-084 on myocardial I/R injury in rats. METHODS In this study, rats were assigned randomly to three groups with computer (n = 14 for each group): a sham group, an I/R group, and a PRE-084 group. In the PRE-084 group, rats were administered PRE-084 1 h before operation. In the myocardial I/R model, the left anterior descending branch of rats was ligated and opened half an hour later. Cardiac function was assessed, and the apoptosis index was evaluated. The mechanisms of the cardioprotective effects of PRE-084 were explored. RESULTS PRE-084 pretreatment preserved cardiac function and reduced myocardial apoptosis (F = 86.0, P < 0.01) with Western blotting analysis, showing significantly reduced expression of Bax (F = 75.7, P < 0.01) and cleaved-caspase 3 (F = 44.7, P < 0.01), along with increased expression of the Bcl-2 protein (P < 0.01) and phosphorylated protein kinase B (p-Akt) (P < 0.01) and phosphorylated-endothelial nitric oxide synthase (p-eNOS; P < 0.01). CONCLUSION PRE-084 preserved cardiac function and reduced myocardial apoptosis through the activation of Akt and eNOS.
Collapse
Affiliation(s)
- Qi-Jun Gao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
- Department of Cardiology, First Hospital of Jingmen, Jingmen, Hubei 448000, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Shao-Bo Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Hong-Jie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
| |
Collapse
|
20
|
Niu X, Zhang J, Bai M, Peng Y, Sun S, Zhang Z. Effect of intracoronary agents on the no-reflow phenomenon during primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction: a network meta-analysis. BMC Cardiovasc Disord 2018; 18:3. [PMID: 29320987 PMCID: PMC5763527 DOI: 10.1186/s12872-017-0722-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023] Open
Abstract
Background Despite the restoration of epicardial flow after primary percutaneous coronary intervention (PPCI), myocardial reperfusion remains impaired in a significant proportion of patients. We performed a network meta-analysis to assess the effect of 7 intracoronary agents (adenosine, anisodamine, diltiazem, nicorandil, nitroprusside, urapidil, and verapamil) on the no-reflow phenomenon in patients with ST-elevation myocardial infarction (STEMI) undergoing PPCI. Methods Database searches were conducted to identify randomized controlled trials (RCTs) comparing the 7 agents with each other or with standard PPCI. Outcome measures included thrombolysis in myocardial infarction flow grade (TFG), ST-segment resolution (STR), left ventricular ejection fraction (LVEF), major adverse cardiovascular events (MACEs), and adverse events. Results Forty-one RCTs involving 4069 patients were analyzed. The addition of anisodamine to standard PPCI for STEMI was associated with improved post-procedural TFG, more occurrences of STR, and improvement of LVEF. The cardioprotective effect of anisodamine conferred a MACE-free survival benefit. Additionally, nitroprusside was regarded as efficient in improving coronary flow and clinical outcomes. Compared with standard care, adenosine, nicorandil, and verapamil improved coronary flow but had no corresponding benefits regarding cardiac function and clinical outcomes. The ranking probability for the 7 treatment drugs showed that anisodamine consistently ranked the highest in efficacy outcomes (TFG < 3, STR, LVEF, and MACEs). No severe adverse events, such as hypotension and malignant arrhythmia, were observed in patients treated with anisodamine. Network meta-regression analysis showed that age, the time to reperfusion, and study follow-up did not affect the treatment effects. Conclusions The intracoronary administration of anisodamine appears to improve myocardial reperfusion, cardiac function, and clinical outcomes in patients with STEMI undergoing PPCI. Given the limited quality and quantity of the included studies, more rigorous RCTs are needed to verify the role of this inexpensive and well-tolerated regimen. Electronic supplementary material The online version of this article (10.1186/s12872-017-0722-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaowei Niu
- The First School of Clinical Medicine, Lanzhou University, Tianshui South Road, No. 222, Lanzhou, Gansu, 730000, China
| | - Jingjing Zhang
- Baiyin Second People's Hospital, Gongyuan Road, No. 509, Baiyin, Gansu, 730900, China
| | - Ming Bai
- Department of Cardiology, the First Hospital of Lanzhou University, Donggang West Road, No. 1, Lanzhou, Gansu, 730000, China
| | - Yu Peng
- Department of Cardiology, the First Hospital of Lanzhou University, Donggang West Road, No. 1, Lanzhou, Gansu, 730000, China
| | - Shaobo Sun
- Key Lab of Prevention and Treatment for Chronic Disease, Gansu University of Chinese Medicine, Dingxi East Road, No. 35, Lanzhou, Gansu, 730000, China
| | - Zheng Zhang
- Department of Cardiology, the First Hospital of Lanzhou University, Donggang West Road, No. 1, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
21
|
Management of No-Reflow Phenomenon in the Catheterization Laboratory. JACC Cardiovasc Interv 2017; 10:215-223. [PMID: 28183461 DOI: 10.1016/j.jcin.2016.11.059] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/07/2016] [Accepted: 11/29/2016] [Indexed: 12/29/2022]
Abstract
At the conclusion of a primary percutaneous coronary intervention for ST-segment elevation myocardial infarction, and after the cardiologist makes certain that there is no residual stenosis following stenting, assessment of coronary flow becomes the top priority. The presence of no-reflow is a serious prognostic sign. No-reflow can result in poor healing of the infarct and adverse left ventricular remodeling, increasing the risk for major adverse cardiac events, including congestive heart failure and death. To achieve normal flow, features associated with a high incidence of no-reflow must be anticipated, and measures must be undertaken to prevent its occurrence. In this review, the authors discuss various preventive strategies for no-reflow as well as pharmacological and nonpharmacological interventions that improve coronary blood flow, such as intracoronary adenosine and nitroprusside. Nonpharmacological therapies, such as induced hypothermia, were successful in animal studies, but their effectiveness in reducing no-reflow in humans remains to be determined.
Collapse
|
22
|
Gupta S, Gupta MM. No reflow phenomenon in percutaneous coronary interventions in ST-segment elevation myocardial infarction. Indian Heart J 2016; 68:539-51. [PMID: 27543480 PMCID: PMC4990737 DOI: 10.1016/j.ihj.2016.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/27/2016] [Accepted: 04/07/2016] [Indexed: 12/19/2022] Open
Abstract
Percutaneous coronary intervention (PCI) is effective in opening the infarct related artery and restoring thrombolysis in myocardial infarction flow 3 (TIMI-flow 3) in large majority of ST-elevation myocardial infarction (STEMI). However there remain a small but significant proportion of patients, who continue to manifest diminished myocardial reperfusion despite successful opening of the obstructed epicardial artery. This phenomenon is called no-reflow. Clinically it manifests with recurrence of chest pain and dyspnea and may progress to cardiogenic shock, cardiac arrest, serious arrhythmias and acute heart failure. No reflow is regarded as independent predictor of death or recurrent myocardial infarction. No reflow is a multi-factorial phenomenon. However micro embolization of atherothrombotic debris during PCI remains the principal mechanism responsible for microvascular obstruction. This review summarizes the pathogenesis, diagnostic methods and the results of various recent randomized trials and studies on the prevention and management of no-reflow.
Collapse
|