1
|
Kashiwagi S, Mihara T, Yokoi A, Yokoyama C, Nakajima D, Goto T. Effect of remote ischemic preconditioning on lung function after surgery under general anesthesia: a systematic review and meta-analysis. Sci Rep 2023; 13:17720. [PMID: 37853024 PMCID: PMC10584824 DOI: 10.1038/s41598-023-44833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Remote ischemic preconditioning (RIPC) protects organs from ischemia-reperfusion injury. Recent trials showed that RIPC improved gas exchange in patients undergoing lung or cardiac surgery. We performed a systematic search to identify randomized controlled trials involving RIPC in surgery under general anesthesia. The primary outcome was the PaO2/FIO2 (P/F) ratio at 24 h after surgery. Secondary outcomes were A-a DO2, the respiratory index, duration of postoperative mechanical ventilation (MV), incidence of acute respiratory distress syndrome (ARDS), and serum cytokine levels. The analyses included 71 trials comprising 7854 patients. Patients with RIPC showed higher P/F ratio than controls (mean difference [MD] 36.6, 95% confidence interval (CI) 12.8 to 60.4, I2 = 69%). The cause of heterogeneity was not identified by the subgroup analysis. Similarly, A-a DO2 (MD 15.2, 95% CI - 29.7 to - 0.6, I2 = 87%) and respiratory index (MD - 0.17, 95% CI - 0.34 to - 0.01, I2 = 94%) were lower in the RIPC group. Additionally, the RIPC group was weaned from MV earlier (MD - 0.9 h, 95% CI - 1.4 to - 0.4, I2 = 78%). Furthermore, the incidence of ARDS was lower in the RIPC group (relative risk 0.73, 95% CI 0.60 to 0.89, I2 = 0%). Serum TNFα was lower in the RIPC group (SMD - 0.6, 95%CI - 1.0 to - 0.3 I2 = 87%). No significant difference was observed in interleukin-6, 8 and 10. Our meta-analysis suggested that RIPC improved oxygenation after surgery under general anesthesia.Clinical trial number: This study protocol was registered in the University Hospital Medical Information Network (registration number: UMIN000030918), https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000035305.
Collapse
Affiliation(s)
- Shizuka Kashiwagi
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
- Department of Anesthesiology, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-Ku, Yokohama City, Kanagawa-Ken, 236-0004, Japan.
| | - Takahiro Mihara
- Department of Health Data Science, Yokohama City University Graduate School of Data Science, Yokohama, Japan
| | - Ayako Yokoi
- Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chisaki Yokoyama
- Department of Anesthesia, Chiba Children's Hospital, Chiba, Japan
| | - Daisuke Nakajima
- Department of Anesthesiology, Yokohama City University Medical Center, Yokohama City, Japan
| | - Takahisa Goto
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
2
|
Cheung YF, Li VWY, So EKF, Cheng FWT, Yau JPW, Chiu SY, Wong WHS, Cheuk DKL. Remote Ischemic Conditioning in Pediatric Cancer Patients Receiving Anthracycline Chemotherapy: A Sham-Controlled Single-Blind Randomized Trial. JACC CardioOncol 2023; 5:332-342. [PMID: 37397078 PMCID: PMC10308057 DOI: 10.1016/j.jaccao.2022.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 07/04/2023] Open
Abstract
Background Anthracycline cardiotoxicity is a concern in survivors of childhood cancers. Recent evidence suggests that remote ischemic conditioning (RIC) may offer myocardial protection. Objectives This randomized sham-controlled single-blind study tested the hypothesis that RIC may reduce myocardial injury in pediatric cancer patients receiving anthracycline chemotherapy. Methods We performed a phase 2 sham-controlled single-blind randomized controlled trial to determine the impact of RIC on myocardial injury in pediatric cancer patients receiving anthracycline-based chemotherapy. Patients were randomized to receive RIC (3 cycles of 5-minute inflation of a blood pressure cuff placed over 1 limb to 15 mm Hg above systolic pressure) or sham intervention. The intervention was applied within 60 minutes before initiation of the first dose and before up to 4 cycles of anthracycline therapy. The primary outcome was the plasma high-sensitivity cardiac troponin T (hs-cTnT) level. The secondary outcome measures included echocardiographic indexes of left ventricular systolic and diastolic function and the occurrence of cardiovascular events. Results A total of 68 children 10.9 ± 3.9 years of age were randomized to receive RIC (n = 34) or sham (n = 34) intervention. Plasma levels of hs-cTnT showed a progressive increase across time points in the RIC (P < 0.001) and sham (P < 0.001) groups. At each of the time points, there were no significant differences in hs-cTnT levels or LV tissue Doppler and strain parameters between the 2 groups (all P > 0.05). None of the patients developed heart failure or cardiac arrhythmias. Conclusions RIC did not exhibit cardioprotective effects in childhood cancer patients receiving anthracycline-based chemotherapy. (Remote Ischaemic Preconditioning in Childhood Cancer [RIPC]; NCT03166813).
Collapse
Affiliation(s)
- Yiu-fai Cheung
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Vivian Wing-yi Li
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Edwina Kam-fung So
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Frankie Wai-tsoi Cheng
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Jeffery Ping-wa Yau
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Sau-ying Chiu
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Wilfred Hing-sang Wong
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Daniel Ka-leung Cheuk
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| |
Collapse
|
3
|
Li J, Wang X, Liu W, Wen S, Li X. Remote ischemic preconditioning and clinical outcomes after pediatric cardiac surgery: a systematic review and meta-analysis. BMC Anesthesiol 2023; 23:105. [PMID: 37005591 PMCID: PMC10067320 DOI: 10.1186/s12871-023-02064-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/22/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND The benefit of remote ischemia preconditioning (RIPreC) in pediatric cardiac surgery is unclear. The objective of this systematic review and meta-analysis was to examine the effectiveness of RIPreC in reducing the duration of mechanical ventilation and intensive care unit (ICU) length of stay after pediatric cardiac surgery. METHODS We searched PubMed, EMBASE and the Cochrane Library from inception to December 31, 2022. Randomized controlled trials comparing RIPreC versus control in children undergoing cardiac surgery were included. The risk of bias of included studies was assessed using the Risk of Bias 2 (RoB 2) tool. The outcomes of interest were postoperative duration of mechanical ventilation and ICU length of stay. We conducted random-effects meta-analysis to calculate weighted mean difference (WMD) with 95% confidence interval (CI) for the outcomes of interest. We performed sensitivity analysis to examine the influence of intraoperative propofol use. RESULTS Thirteen trials enrolling 1,352 children were included. Meta-analyses of all trials showed that RIPreC did not reduce postoperative duration of mechanical ventilation (WMD -5.35 h, 95% CI -12.12-1.42) but reduced postoperative ICU length of stay (WMD -11.48 h, 95% CI -20.96- -2.01). When only trials using propofol-free anesthesia were included, both mechanical ventilation duration (WMD -2.16 h, 95% CI -3.87- -0.45) and ICU length of stay (WMD -7.41 h, 95% CI -14.77- -0.05) were reduced by RIPreC. The overall quality of evidence was moderate to low. CONCLUSIONS The effects of RIPreC on clinical outcomes after pediatric cardiac surgery were inconsistent, but both postoperative mechanical ventilation duration and ICU length of stay were reduced in the subgroup of children not exposed to propofol. These results suggested a possible interaction effect of propofol. More studies with adequate sample size and without intraoperative propofol use are needed to define the role of RIPreC in pediatric cardiac surgery.
Collapse
Affiliation(s)
- Jianwen Li
- Departments of Anesthesiology, DongGuan SongShan Lake Tungwah Hospital, DongGuan, China
| | - Xiwen Wang
- Departments of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wengui Liu
- Departments of Anesthesiology, DongGuan SongShan Lake Tungwah Hospital, DongGuan, China
| | - Shihong Wen
- Departments of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Xueping Li
- Departments of Anesthesiology, DongGuan SongShan Lake Tungwah Hospital, DongGuan, China.
| |
Collapse
|
4
|
Wu Q, Wang T, Chen S, Zhou Q, Li H, Hu N, Feng Y, Dong N, Yao S, Xia Z. Cardiac protective effects of remote ischaemic preconditioning in children undergoing tetralogy of fallot repair surgery: a randomized controlled trial. Eur Heart J 2019; 39:1028-1037. [PMID: 28329231 PMCID: PMC6018784 DOI: 10.1093/eurheartj/ehx030] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/17/2017] [Indexed: 01/17/2023] Open
Abstract
Aims Remote ischaemic preconditioning (RIPC) by inducing brief ischaemia in distant tissues protects the heart against myocardial ischaemia-reperfusion injury (IRI) in children undergoing open-heart surgery, although its effectiveness in adults with comorbidities is controversial. The effectiveness and mechanism of RIPC with respect to myocardial IRI in children with tetralogy of Fallot (ToF), a severe cyanotic congenital cardiac disease, undergoing open heart surgery are unclear. We hypothesized that RIPC can confer cardioprotection in children undergoing ToF repair surgery. Methods and results Overall, 112 ToF children undergoing radical open cardiac surgery using cardiopulmonary bypass (CPB) were randomized to either a RIPC group (n = 55) or a control group (n = 57). The RIPC protocol consisted of three cycles of 5-min lower limb occlusion and 5-min reperfusion using a cuff-inflator. Serum inflammatory cytokines and cardiac injury markers were measured before surgery and after CPB. Right ventricle outflow tract (RVOT) tissues were collected during the surgery to assess hypoxia-inducible factor (Hif)-1α and other signalling proteins. Cardiac mitochondrial injury was assessed by electron microscopy. The primary results showed that the length of stay in the intensive care unit (ICU) was longer in the control group than in the RIPC group (52.30 ± 13.43 h vs. 47.55 ± 10.34 h, respectively, P = 0.039). Patients in the control group needed longer post-operative ventilation time compared to the RIPC group (35.02 ± 6.56 h vs. 31.96 ± 6.60 h, respectively, P = 0.016). The levels of post-operative serum troponin-T at 12 and 18 h, CK-MB at 24 h, as well as the serum h-FABP levels at 6 h, after CPB were significantly lower, which was coincident with significantly higher protein expression of cardiac Hif-1α, p-Akt, p-STAT3, p-STAT5, and p-eNOS and less vacuolization of mitochondria in the RIPC group compared to the control group. Conclusion In ToF children undergoing open heart surgery, RIPC attenuates myocardial IRI and improves the short-term prognosis.
Collapse
Affiliation(s)
- Qingping Wu
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Tingting Wang
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shiqiang Chen
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Quanjun Zhou
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Haobo Li
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,Department of Anaesthesiology, University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
| | - Na Hu
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yinglu Feng
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shanglong Yao
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,Department of Anaesthesiology, University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
5
|
Tan W, Zhang C, Liu J, Li X, Chen Y, Miao Q. Remote Ischemic Preconditioning has a Cardioprotective Effect in Children in the Early Postoperative Phase: A Meta-Analysis of Randomized Controlled Trials. Pediatr Cardiol 2018; 39:617-626. [PMID: 29302715 DOI: 10.1007/s00246-017-1802-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/22/2017] [Indexed: 12/17/2022]
Abstract
In this updated meta-analysis, we assessed the cardioprotective effect of remote ischemic preconditioning (RIPC) in pediatric patients undergoing congenital heart surgery. A total of 9 randomized controlled trials (RCTs) involving 793 pediatric patients under 18 years old were identified. RIPC obviously reduced the release of troponin I at 6 h after surgery [standard mean difference (SMD) -0.59, 95% confidence interval (CI) -1.14 to -0.04; p = 0.03], mitigated the inotropic scores within 4-6 h (SMD -0.43, 95% CI -0.72 to -0.14; p = 0.004) and within 12 h (SMD -0.26, 95% CI -0.50 to -0.02; p = 0.03) and shortened the ventilator support time (SMD -0.28, 95% CI -0.49 to -0.07; p = 0.01) as well as the duration of intensive care unit (ICU) stay (SMD -0.21, 95% CI -0.35 to -0.06; p = 0.004). Our meta-analysis determined that RIPC had cardioprotective effects in the early postoperative phase. Additional RCTs focused on the cardiac benefits from RIPC in pediatric patients are warranted.
Collapse
Affiliation(s)
- Wen Tan
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chaoji Zhang
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jianzhou Liu
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaofeng Li
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuzhi Chen
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qi Miao
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Adams JA, Pastuszko P, Uryash A, Wilson D, Lopez Padrino JR, Nadkarni V, Pastuszko A. Whole Body Periodic Acceleration (pGz) as a non-invasive preconditioning strategy for pediatric cardiac surgery. Med Hypotheses 2017; 110:144-149. [PMID: 29317058 DOI: 10.1016/j.mehy.2017.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/03/2017] [Indexed: 01/05/2023]
Abstract
We hypothesized that pGz has cardio and neuroprotective effects due to upregulation of pathways which include eNOS, anti-apoptotic, and anti-inflammatory pathways. We analyze protein expression of these pathways in the brain of neonatal piglets, as well as report on the myocardial function after Deep Hypothermic Circulatory Arrest (DHCA) and pGz preconditioning. Animal data affirms both a cardio and neuroprotective role for pGz. These findings suggest that pGz can be a simple, non-invasive cardio and neuroprotective strategy preconditioning strategy in children requiring surgical intervention.
Collapse
Affiliation(s)
- Jose A Adams
- Division of Neonatology and Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States.
| | - Peter Pastuszko
- Pediatric Cardiovascular Surgery, Mount Sinai Health Systems, New York, NY, United States
| | - Arkady Uryash
- Division of Neonatology and Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - David Wilson
- Department of Biochemistry & Biophysics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Jose R Lopez Padrino
- Division of Neonatology and Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Vinay Nadkarni
- Anesthesia and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Anna Pastuszko
- Department of Biochemistry & Biophysics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
7
|
Brager AJ, Yang T, Ehlen JC, Simon RP, Meller R, Paul KN. Sleep Is Critical for Remote Preconditioning-Induced Neuroprotection. Sleep 2016; 39:2033-2040. [PMID: 27568798 DOI: 10.5665/sleep.6238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022] Open
Abstract
STUDY OBJECTIVES Episodes of brief limb ischemia (remote preconditioning) in mice induce tolerance to modeled ischemic stroke (focal brain ischemia). Since stroke outcomes are in part dependent on sleep-wake history, we sought to determine if sleep is critical for the neuroprotective effect of limb ischemia. METHODS EEG/EMG recording electrodes were implanted in mice. After a 24 h baseline recording, limb ischemia was induced by tightening an elastic band around the left quadriceps for 10 minutes followed by 10 minutes of release for two cycles. Two days following remote preconditioning, a second 24 h EEG/EMG recording was completed and was immediately followed by a 60-minute suture occlusion of the middle cerebral artery (modeled ischemic stroke). This experiment was then repeated in a model of circadian and sleep abnormalities (Bmal1 knockout [KO] mice sleep 2 h more than wild-type littermates). Brain infarction was determined by vital dye staining, and sleep was assessed by trained identification of EEG/EMG recordings. RESULTS Two days after limb ischemia, wild-type mice slept an additional 2.4 h. This additional sleep was primarily comprised of non-rapid eye movement (NREM) sleep during the middle of the light-phase (i.e., naps). Repeating the experiment but preventing increases in sleep after limb ischemia abolished tolerance to ischemic stroke. In Bmal1 knockout mice, remote preconditioning did not increase daily sleep nor provide tolerance to subsequent focal ischemia. CONCLUSIONS These results suggest that sleep induced by remote preconditioning is both sufficient and necessary for its neuroprotective effects on stroke outcome.
Collapse
Affiliation(s)
- Allison J Brager
- Circadian Rhythms and Sleep Disorders Program, Department of Neurobiology, Morehouse School of Medicine, Atlanta GA.,Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD
| | - Tao Yang
- Translational Programs in Stroke, Neuroscience Institute, Morehouse School of Medicine, Atlanta GA
| | - J Christopher Ehlen
- Circadian Rhythms and Sleep Disorders Program, Department of Neurobiology, Morehouse School of Medicine, Atlanta GA
| | - Roger P Simon
- Translational Programs in Stroke, Neuroscience Institute, Morehouse School of Medicine, Atlanta GA
| | - Robert Meller
- Translational Programs in Stroke, Neuroscience Institute, Morehouse School of Medicine, Atlanta GA
| | - Ketema N Paul
- Circadian Rhythms and Sleep Disorders Program, Department of Neurobiology, Morehouse School of Medicine, Atlanta GA.,Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|