1
|
Yamagata K, Yanagawa M, Hata A, Ogawa R, Kikuchi N, Doi S, Ninomiya K, Tokuda Y, Tomiyama N. Three-dimensional iodine mapping quantified by dual-energy CT for predicting programmed death-ligand 1 expression in invasive pulmonary adenocarcinoma. Sci Rep 2024; 14:18310. [PMID: 39112802 PMCID: PMC11306593 DOI: 10.1038/s41598-024-69470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
We examined the association between texture features using three-dimensional (3D) io-dine density histogram on delayed phase of dual-energy CT (DECT) and expression of programmed death-ligand 1 (PD-L1) using immunostaining methods in non-small cell lung cancer. Consecutive 37 patients were scanned by DECT. Unenhanced and enhanced (3 min delay) images were obtained. 3D texture analysis was performed for each nodule to obtain 7 features (max, min, median, mean, standard deviation, skewness, and kurtosis) from iodine density mapping and extracellular volume (ECV). A pathologist evaluated a tumor proportion score (TPS, %) using PD-L1 immunostaining: PD-L1 high (TPS ≥ 50%) and low or negative expression (TPS < 50%). Associations between PD-L1 expression and each 8 parameter were evaluated using logistic regression analysis. The multivariate logistic regression analysis revealed that skewness and ECV were independent indicators associated with high PD-L1 expression (skewness: odds ratio [OR] 7.1 [95% CI 1.1, 45.6], p = 0.039; ECV: OR 6.6 [95% CI 1.1, 38.4], p = 0.037). In the receiver-operating characteristic analysis, the area under the curve of the combination of skewness and ECV was 0.83 (95% CI 0.67, 0.93) with sensitivity of 64% and specificity of 96%. Skewness from 3D iodine density histogram and ECV on dual energy CT were significant factors for predicting PD-L1 expression.
Collapse
Affiliation(s)
- Kazuki Yamagata
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Masahiro Yanagawa
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan.
| | - Akinori Hata
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Ryo Ogawa
- Future Diagnostic Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Noriko Kikuchi
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Shuhei Doi
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Keisuke Ninomiya
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Yukiko Tokuda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| |
Collapse
|
2
|
Wang Y, Abdelhafez YG, Spencer BA, Verma R, Parikh M, Stollenwerk N, Nardo L, Jones T, Badawi RD, Cherry SR, Wang G. High-Temporal-Resolution Kinetic Modeling of Lung Tumors with Dual-Blood Input Function Using Total-Body Dynamic PET. J Nucl Med 2024; 65:714-721. [PMID: 38548347 PMCID: PMC11064825 DOI: 10.2967/jnumed.123.267036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/21/2024] [Indexed: 05/03/2024] Open
Abstract
The lungs are supplied by both the pulmonary arteries carrying deoxygenated blood originating from the right ventricle and the bronchial arteries carrying oxygenated blood downstream from the left ventricle. However, this effect of dual blood supply has never been investigated using PET, partially because the temporal resolution of conventional dynamic PET scans is limited. The advent of PET scanners with a long axial field of view, such as the uEXPLORER total-body PET/CT system, permits dynamic imaging with high temporal resolution (HTR). In this work, we modeled the dual-blood input function (DBIF) and studied its impact on the kinetic quantification of normal lung tissue and lung tumors using HTR dynamic PET imaging. Methods: Thirteen healthy subjects and 6 cancer subjects with lung tumors underwent a dynamic 18F-FDG scan with the uEXPLORER for 1 h. Data were reconstructed into dynamic frames of 1 s in the early phase. Regional time-activity curves of lung tissue and tumors were analyzed using a 2-tissue compartmental model with 3 different input functions: the right ventricle input function, left ventricle input function, and proposed DBIF, all with time delay and dispersion corrections. These models were compared for time-activity curve fitting quality using the corrected Akaike information criterion and for differentiating lung tumors from lung tissue using the Mann-Whitney U test. Voxelwise multiparametric images by the DBIF model were further generated to verify the regional kinetic analysis. Results: The effect of dual blood supply was pronounced in the high-temporal-resolution time-activity curves of lung tumors. The DBIF model achieved better time-activity curve fitting than the other 2 single-input models according to the corrected Akaike information criterion. The estimated fraction of left ventricle input was low in normal lung tissue of healthy subjects but much higher in lung tumors (∼0.04 vs. ∼0.3, P < 0.0003). The DBIF model also showed better robustness in the difference in 18F-FDG net influx rate [Formula: see text] and delivery rate [Formula: see text] between lung tumors and normal lung tissue. Multiparametric imaging with the DBIF model further confirmed the differences in tracer kinetics between normal lung tissue and lung tumors. Conclusion: The effect of dual blood supply in the lungs was demonstrated using HTR dynamic imaging and compartmental modeling with the proposed DBIF model. The effect was small in lung tissue but nonnegligible in lung tumors. HTR dynamic imaging with total-body PET can offer a sensitive tool for investigating lung diseases.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
- Nuclear Medicine Unit, South Egypt Cancer Institute, Assiut University, Assiut, Egypt; and
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
| | - Rashmi Verma
- Comprehensive Cancer Center, University of California Davis Medical Center, Sacramento, California
| | - Mamta Parikh
- Comprehensive Cancer Center, University of California Davis Medical Center, Sacramento, California
| | - Nicholas Stollenwerk
- Comprehensive Cancer Center, University of California Davis Medical Center, Sacramento, California
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
| | - Terry Jones
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Simon R Cherry
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Guobao Wang
- Department of Radiology, University of California Davis Medical Center, Sacramento, California;
| |
Collapse
|
3
|
Bodenberger AL, Konietzke P, Weinheimer O, Wagner WL, Stiller W, Weber TF, Heussel CP, Kauczor HU, Wielpütz MO. Quantification of airway wall contrast enhancement on virtual monoenergetic images from spectral computed tomography. Eur Radiol 2023; 33:5557-5567. [PMID: 36892642 PMCID: PMC10326154 DOI: 10.1007/s00330-023-09514-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/31/2022] [Accepted: 02/02/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVES Quantitative computed tomography (CT) plays an increasingly important role in phenotyping airway diseases. Lung parenchyma and airway inflammation could be quantified by contrast enhancement at CT, but its investigation by multiphasic examinations is limited. We aimed to quantify lung parenchyma and airway wall attenuation in a single contrast-enhanced spectral detector CT acquisition. METHODS For this cross-sectional retrospective study, 234 lung-healthy patients who underwent spectral CT in four different contrast phases (non-enhanced, pulmonary arterial, systemic arterial, and venous phase) were recruited. Virtual monoenergetic images were reconstructed from 40-160 keV, on which attenuations of segmented lung parenchyma and airway walls combined for 5th-10th subsegmental generations were assessed in Hounsfield Units (HU) by an in-house software. The spectral attenuation curve slope between 40 and 100 keV (λHU) was calculated. RESULTS Mean lung density was higher at 40 keV compared to that at 100 keV in all groups (p < 0.001). λHU of lung attenuation was significantly higher in the systemic (1.7 HU/keV) and pulmonary arterial phase (1.3 HU/keV) compared to that in the venous phase (0.5 HU/keV) and non-enhanced (0.2 HU/keV) spectral CT (p < 0.001). Wall thickness and wall attenuation were higher at 40 keV compared to those at 100 keV for the pulmonary and systemic arterial phase (p ≤ 0.001). λHU for wall attenuation was significantly higher in the pulmonary arterial (1.8 HU/keV) and systemic arterial (2.0 HU/keV) compared to that in the venous (0.7 HU/keV) and non-enhanced (0.3 HU/keV) phase (p ≤ 0.002). CONCLUSIONS Spectral CT may quantify lung parenchyma and airway wall enhancement with a single contrast phase acquisition, and may separate arterial and venous enhancement. Further studies are warranted to analyze spectral CT for inflammatory airway diseases. KEY POINTS • Spectral CT may quantify lung parenchyma and airway wall enhancement with a single contrast phase acquisition. • Spectral CT may separate arterial and venous enhancement of lung parenchyma and airway wall. • The contrast enhancement can be quantified by calculating the spectral attenuation curve slope from virtual monoenergetic images.
Collapse
Affiliation(s)
- Arndt Lukas Bodenberger
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Philip Konietzke
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstraße 1, 69126, Heidelberg, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstraße 1, 69126, Heidelberg, Germany
| | - Willi Linus Wagner
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstraße 1, 69126, Heidelberg, Germany
| | - Wolfram Stiller
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstraße 1, 69126, Heidelberg, Germany
| | - Tim Frederik Weber
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstraße 1, 69126, Heidelberg, Germany
| | - Claus Peter Heussel
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstraße 1, 69126, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstraße 1, 69126, Heidelberg, Germany
| | - Mark Oliver Wielpütz
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstraße 1, 69126, Heidelberg, Germany.
| |
Collapse
|
4
|
Dual-energy computed tomography as a lower radiation dose alternative to perfusion computed tomography in tumor viability assessment. Sci Rep 2023; 13:120. [PMID: 36599882 DOI: 10.1038/s41598-022-27221-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
To present the utility of dual-energy computed tomography (DECT) in the assessment of angiogenesis of focal lesions as an example of a solitary pulmonary nodule (SPN). This prospective study comprised 28 patients with SPN who underwent DECT and perfusion computed tomography (CTP), according to a proprietary protocol. Two radiologists independently analyzed four perfusion parameters, namely blood flow (BF), blood volume (BV), the time to maximum of the tissue residue function (Tmax), permeability surface area product (PS) from CTP, in addition to the iodine concentration (IC) and normalized iodine concentration (NIC) of the SPN from DECT. We used the Pearson R correlation and interclass correlation coefficients (ICCs). Statistical significance was assumed at p < 0.05. The mean tumor size was 23.5 ± 6.5 mm. We observed good correlations between IC and BF (r = 0.78, p < 0.000) and NIC and BF (r = 0.71, p < 0.000) as well as between IC and BV (r = 0.73, p < 0.000) and NIC and BV (r = 0.73, p < 0.000) and poor correlation between IC and PS (r = 0.38, p = 0.044).There was no correlation between NIC and PS (r = 0.35, p = 0.064), IC content and Tmax (r = - 0.28, p = 0.147) and NIC and Tmax (r = - 0.21, p = 0.266). Inter-reader agreement on quantitative parameters at CTP (ICCPS = 0.97, ICCTmax = 0.96, ICCBV = 0.98, and ICCBF = 0.99) and DECT (ICCIC = 0.98) were excellent. The radiation dose was significantly lower in DECT than that in CTP (4.84 mSv vs. 9.07 mSv, respectively). DECT is useful for the functional assessment of oncological lesions with less exposure to radiation compared to perfusion computed tomography.
Collapse
|
5
|
State of the Art: Lung Cancer Staging Using Updated Imaging Modalities. Bioengineering (Basel) 2022; 9:bioengineering9100493. [PMID: 36290461 PMCID: PMC9598500 DOI: 10.3390/bioengineering9100493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Lung cancer is among the most common mortality causes worldwide. This scientific article is a comprehensive review of current knowledge regarding screening, subtyping, imaging, staging, and management of treatment response for lung cancer. The traditional imaging modality for screening and initial lung cancer diagnosis is computed tomography (CT). Recently, a dual-energy CT was proven to enhance the categorization of variable pulmonary lesions. The National Comprehensive Cancer Network (NCCN) recommends usage of fluorodeoxyglucose positron emission tomography (FDG PET) in concert with CT to properly stage lung cancer and to prevent fruitless thoracotomies. Diffusion MR is an alternative to FDG PET/CT that is radiation-free and has a comparable diagnostic performance. For response evaluation after treatment, FDG PET/CT is a potent modality which predicts survival better than CT. Updated knowledge of lung cancer genomic abnormalities and treatment regimens helps to improve the radiologists’ skills. Incorporating the radiologic experience is crucial for precise diagnosis, therapy planning, and surveillance of lung cancer.
Collapse
|
6
|
Assessment of Correlation between Dual-Energy Ct (De-Ct)-Derived Iodine Concentration and Local Flourodeoxyglucose (Fdg) Uptake in Patients with Primary Non-Small-Cell Lung Cancer. Tomography 2022; 8:1770-1780. [PMID: 35894014 PMCID: PMC9326656 DOI: 10.3390/tomography8040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
(1) The current literature contains several studies investigating the correlation between dual-energy-derived iodine concentration (IC) and positron emission tomography (PET)-derived Flourodeoxyglucose (18F-FDG) uptake in patients with non-small-cell lung cancer (NSCLC). In previously published studies, either the entire tumor volume or a region of interest containing the maximum IC or 18F-FDG was assessed. However, the results have been inconsistent. The objective of this study was to correlate IC with FDG both within the entire volume and regional sub-volumes of primary tumors in patients with NSCLC. (2) In this retrospective study, a total of 22 patients with NSCLC who underwent both dual-energy CT (DE-CT) and 18F-FDG PET/CT were included. A region of interest (ROI) encircling the entire primary tumor was delineated, and a rigid registration of the DE-CT, iodine maps and FDG images was performed for the ROI. The correlation between tumor measurements and area-specific measurements of ICpeak and the peak standardized uptake value (SUVpeak) was found. Finally, a correlation between tumor volume and the distance between SUVpeak and ICpeak centroids was found. (3) For the entire tumor, moderate-to-strong correlations were found between SUVmax and ICmax (R = 0.62, p = 0.002), and metabolic tumor volume vs. total iodine content (R = 0.91, p < 0.001), respectively. For local tumor sub-volumes, a negative correlation was found between ICpeak and SUVpeak (R = −0.58, p = 0.0046). Furthermore, a strong correlation was found between the tumor volume and the distance in millimeters between SUVpeak and ICpeak centroids (R = 0.81, p < 0.0001). (4) In patients with NSCLC, high FDG uptakes and high DE-CT-derived iodine concentrations correlated on a whole-tumor level, but the peak areas were positioned at different locations within the tumor. 18F-FDG PET/CT and DE-CT provide complementary information and might represent different underlying patho-physiologies.
Collapse
|
7
|
Deng L, Zhang G, Lin X, Han T, Zhang B, Jing M, Zhou J. Comparison of Spectral and Perfusion Computed Tomography Imaging in the Differential Diagnosis of Peripheral Lung Cancer and Focal Organizing Pneumonia. Front Oncol 2021; 11:690254. [PMID: 34778025 PMCID: PMC8578997 DOI: 10.3389/fonc.2021.690254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the spectral and perfusion computed tomography (CT) findings of peripheral lung cancer (PLC) and focal organizing pneumonia (FOP) and to compare the accuracy of spectral and perfusion CT imaging in distinguishing PLC from FOP. Materials and Methods Patients who were suspected of having lung tumor and underwent “one-stop” chest spectral and perfusion CT, with their diagnosis confirmed pathologically, were prospectively enrolled from September 2020 to March 2021. Patients who were suspected of having lung tumor and underwent “one-stop” chest spectral and perfusion CT, with their diagnosis confirmed pathologically, were prospectively enrolled from September 2020 to March 2021. A total of 57 and 35 patients with PLC and FOP were included, respectively. Spectral parameters (CT40keV, CT70keV, CT100keV, iodine concentration [IC], water concentration [WC], and effective atomic number [Zeff]) of the lesions in the arterial and venous phases were measured in both groups. The slope of the spectral curve (K70keV) was calculated. The perfusion parameters, including blood volume (BV), blood flow (BF), mean transit time (MTT), and permeability surface (PS), were measured simultaneously in both groups. The differences in the spectral and perfusion parameters between the groups were examined. Receiver operating characteristic (ROC) curves were generated to calculate and compare the area under the curve (AUC), sensitivity, specificity, and accuracy of both sets of parameters in both groups. Results The patients’ demographic and clinical characteristics were similar in both groups (P > 0.05). In the arterial and venous phases, the values of spectral parameters (CT40keV, CT70keV, spectral curve K70keV, IC, and Zeff) were greater in the FOP group than in the PLC group (P < 0.05). In contrast, the values of the perfusion parameters (BV, BF, MTT, and PS) were smaller in the FOP group than in the PLC group (P < 0.05). The AUC of the combination of the spectral parameters was larger than that of the perfusion parameters. For the former imaging method, the AUC, sensitivity, and specificity were 0.89 (95% confidence interval [CI]: 0.82–0.96), 0.86, and 0.83, respectively. For the latter imaging method, the AUC, sensitivity, and specificity were 0.80 (95% CI: 0.70–0.90), 0.71, and 0.83, respectively. There was no significant difference in AUC between the two imaging methods (P > 0.05). Conclusion Spectral and perfusion CT both has the capability to differentiate PLC and FOP. However, compared to perfusion CT imaging, spectral CT imaging has higher diagnostic efficiency in distinguishing them.
Collapse
Affiliation(s)
- Liangna Deng
- Second Clinical School, Lanzhou University, Lanzhou, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China.,Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Guojin Zhang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqiang Lin
- Second Clinical School, Lanzhou University, Lanzhou, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China.,Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Tao Han
- Second Clinical School, Lanzhou University, Lanzhou, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China.,Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Bin Zhang
- Second Clinical School, Lanzhou University, Lanzhou, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China.,Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Mengyuan Jing
- Second Clinical School, Lanzhou University, Lanzhou, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China.,Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Junlin Zhou
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China.,Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
8
|
Huang S, Meng H, Cen R, Ni Z, Li X, Suwal S, Chen H. Use quantitative parameters in spectral computed tomography for the differential diagnosis of metastatic mediastinal lymph nodes in lung cancer patients. J Thorac Dis 2021; 13:4703-4713. [PMID: 34527311 PMCID: PMC8411177 DOI: 10.21037/jtd-21-385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/23/2021] [Indexed: 11/12/2022]
Abstract
Background Accurate diagnosis of mediastinal lymph node (LN) metastases is very important for the treatment and prognosis in lung cancer patients. Spectral computed tomography (CT), as a non-invasive approach, has good prospects for detecting mediastinal nodal metastasis. However, the diagnostic criteria of differentiating metastatic and nonmetastatic LNs have not been determined. Methods Clinical and imaging data of 64 lung cancer patients (mean age 61.3±10.3 years, 41 men) from April to December 2019 were retrospectively analyzed. The unenhanced scan and contrast enhanced arterial phase (AP) and venous phase (VP) spectral CT scans were performed. The 70 keV monochromatic image and iodine-based image in all phases were analyzed to measure the parameters of LNs. LNs were divided into the metastatic and non-metastatic groups based on confirmative pathological results, and their differences were statistically analyzed. The receiver operating characteristics curve (ROC) was used to evaluate the efficacy of the differential diagnosis. Results Seventy-four metastatic LNs and 152 non-metastatic LNs were obtained. Compared with non-metastatic LNs, metastatic LNs often had a larger size (P<0.001). In the unenhanced scans, the density of metastatic LNs was lower than that of non-metastatic LNs (P<0.001); however, there was no difference in CT value in AP and VP between metastatic and non-metastatic LNs (P=0.07, P=0.08, respectively). A statistically significant difference was found in iodine concentration (IC), normalized iodine concentration (NIC) and slope of the spectral curve (λHU) in unenhanced scan, IC and λHU in AP, as well as IC, NIC and λHU in VP between metastatic and non-metastatic LNs. There was no difference in NIC in AP between them. Conclusions Combined with morphology, spectral CT quantitative parameters demonstrate certain diagnostic efficiency for differential diagnosis between metastatic and non-metastatic LNs in lung cancer patients.
Collapse
Affiliation(s)
- Suidan Huang
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongjia Meng
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Renli Cen
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiwen Ni
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoling Li
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sushant Suwal
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huai Chen
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Qiu L, Hu J, Weng Z, Liu S, Jiang G, Cai X. A prospective study of dual-energy computed tomography for differentiating metastatic and non-metastatic lymph nodes of colorectal cancer. Quant Imaging Med Surg 2021; 11:3448-3459. [PMID: 34341722 DOI: 10.21037/qims-20-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/28/2021] [Indexed: 11/06/2022]
Abstract
Background Colorectal cancer (CRC) is the third most common malignancy worldwide, and lymph node metastasis is considered to be a risk factor for local recurrence and a poor prognosis in colorectal cancer. However, there remains a lack of reliable and non-invasive biomarkers to identify the lymph node status of CRC patients preoperatively. The purpose of this study was to explore the ability of dual-energy computed tomography (DECT) to differentiate metastatic from non-metastatic lymph nodes in colorectal cancer. Methods Seventy-one patients with primary colorectal cancer underwent contrast-enhanced dual-energy computed tomography imaging preoperatively. The colorectal specimen was scanned postoperatively, and lymph nodes were matched to the pathology report. The following dual-energy computed tomography quantitative parameters were analyzed: dual-energy curve slope value (λHU), standardized iodine concentration (n△HU), iodine water ratio (nIWR), electron density value (nρeff), and effective atom-number (nZ), based on metastatic and non-metastatic lymph node differentiation. Also, sensitivity and specificity analyses were performed using receiver operating characteristic curves. Results In all patients, one hundred and fifty lymph nodes, including 66 non-metastatic and 84 metastatic lymph nodes, were matched using the radiological-pathological correlation. Metastatic nodes had significantly greater λHU, n△HU, and nIWR values than non-metastatic nodes in both the arterial and venous phases (P<0.01). The area under curve (AUC), sensitivity, and specificity were 0.80, 80%, and 66% for λHU; 0.86, 70%, and 95% for n△HU; and 0.88, 71%, and 95% for nIWR in the arterial phase. There was no significant difference in electron density and effective Z values between metastatic and non-metastatic lymph nodes. Conclusions DECT quantitative parameters may help differentiate between metastatic and normal lymph nodes in patients with CRC.
Collapse
Affiliation(s)
- Lin Qiu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Junjiao Hu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zeping Weng
- Pathology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sirun Liu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guangyu Jiang
- Pathology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangran Cai
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Lennartz S, Parakh A, Cao J, Zopfs D, Große Hokamp N, Kambadakone A. Inter-scan and inter-scanner variation of quantitative dual-energy CT: evaluation with three different scanner types. Eur Radiol 2021; 31:4438-4451. [PMID: 33443600 DOI: 10.1007/s00330-020-07611-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 03/24/2023]
Abstract
OBJECTIVES To investigate inter-scan and inter-scanner variation of iodine concentration (IC) and attenuation in virtual monoenergetic images at 65 keV (HU65keV) in patients with repeated abdominal examinations on dual-source (dsDECT), rapid kV switching (rsDECT), and dual-layer detector DECT (dlDECT). METHODS We retrospectively included 131 patients who underwent two abdominal DECT examinations on the same scanner (dsDECT: n = 46, rsDECT: n = 45, dlDECT: n = 40). IC and HU65keV were measured by placing regions of interest in the liver, spleen, kidneys, aorta, portal vein, and inferior vena cava. Overall IC and HU65keV for each scanner, their inter-scan differences and proportional variation were calculated and compared between scanner types. RESULTS The three scanner-specific cohorts showed similar weight, body diameter, age, sex, and contrast media injection parameters as well as inter-scan differences hereof (p range: 0.23-0.99). Absolute inter-scan differences of HU65keV and IC were comparable between scanners (p range: 0.08-1.0). Overall inter-scan variation was significantly higher in IC than HU65keV (p < 0.05). For the liver, rsDECT showed significantly lower inter-scan variation of IC compared to dsDECT/dlDECT (p = 0.005/0.01), while for the spleen, this difference was only significant compared to dsDECT (p = 0.015). Normalizing IC of the liver to the portal vein and of the spleen to the aorta did not significantly reduce inter-scan variation (p = 0.97 and 0.50). CONCLUSIONS Iodine measurements across different DECT scanners show inter-scan variation which is higher compared to variation of attenuation values. Inter-scanner differences in longitudinal variation and overall iodine concentration depend on the scanner pairs and organs assessed and should be acknowledged in clinical and scientific DECT applications. KEY POINTS • All scanner types showed comparable inter-scan variation of attenuation, while for iodine, the rapid kV switching DECT showed lower variability in the liver and spleen. • Iodine concentration showed higher inter-scan variation than attenuation measurements; normalization to vessels did not significantly improve inter-scan reproducibility of iodine concentration in parenchymal organs. • Differences between the three scanner types regarding overall iodine concentration and attenuation obtained from both timepoints were within the range of average intra-patient, inter-scan differences for most assessed organs and vessels.
Collapse
Affiliation(s)
- Simon Lennartz
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
- Institute for Diagnostic and Interventional Radiology, University Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Anushri Parakh
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Jinjin Cao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - David Zopfs
- Institute for Diagnostic and Interventional Radiology, University Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, University Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA.
| |
Collapse
|
11
|
Konietzke P, Steentoft HH, Wagner WL, Albers J, Dullin C, Skornitzke S, Stiller W, Weber TF, Kauczor HU, Wielpütz MO. Consolidated lung on contrast-enhanced chest CT: the use of spectral-detector computed tomography parameters in differentiating atelectasis and pneumonia. Heliyon 2021; 7:e07066. [PMID: 34113729 PMCID: PMC8170158 DOI: 10.1016/j.heliyon.2021.e07066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
Objectives To investigate the value of spectral-detector computed tomography (SDCT) parameters for the quantitative differentiation between atelectasis and pneumonia on contrast-enhanced chest CT. Material and methods Sixty-three patients, 22 clinically diagnosed with pneumonia and 41 with atelectasis, underwent contrast-enhanced SDCT scans during the venous phase. CT numbers (Hounsfield Units [HU]) were measured on conventional reconstructions (CON120kVp) and the iodine concentration (Ciodine, [mg/ml]), and effective atomic number (Zeff) on spectral reconstructions, using region-of-interest (ROI) analysis. Receiver operating characteristics (ROC) and contrast-to-noise ratios (CNRs) were calculated to assess each reconstruction's potential to differentiate between atelectasis and pneumonia. Results On contrast-enhanced SDCT, the difference between atelectasis and pneumonia was significant on CON120kVp, Ciodine, and Zeff images (p < 0.001). On CON120kVp images, a threshold of 81 HU achieved a sensitivity of 93 % and a specificity of 95 % for identifying pneumonia, while Ciodine and Zeff images reached the same sensitivity but lower specificities of 85 % and 83 %. CON120kVp images showed significantly higher CNRs between normal lung and atelectasis or pneumonia with 30.63 and 27.69 compared to Ciodine images with 3.54 and 1.27 and Zeff images with 4.22 and 7.63 (p < 0.001). None of the parameters could differentiate atelectasis and pneumonia without contrast media. Conclusions Contrast-enhanced SDCT can differentiate atelectasis and pneumonia based on the spectral parameters Ciodine, and Zeff. However, they had no added value compared to CT number measurement on CON120kVp images. Furthermore, contrast media is still needed for a differentiation based on quantitative SDCT parameters.
Collapse
Affiliation(s)
- Philip Konietzke
- Diagnostic and Interventional Radiology (DiR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstraße 1, 69126 Heidelberg, Germany
- Corresponding author.
| | - Hauke H. Steentoft
- Diagnostic and Interventional Radiology (DiR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Willi L. Wagner
- Diagnostic and Interventional Radiology (DiR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstraße 1, 69126 Heidelberg, Germany
| | - Jonas Albers
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Christian Dullin
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Stephan Skornitzke
- Diagnostic and Interventional Radiology (DiR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Wolfram Stiller
- Diagnostic and Interventional Radiology (DiR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Tim F. Weber
- Diagnostic and Interventional Radiology (DiR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Diagnostic and Interventional Radiology (DiR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstraße 1, 69126 Heidelberg, Germany
| | - Mark O. Wielpütz
- Diagnostic and Interventional Radiology (DiR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstraße 1, 69126 Heidelberg, Germany
| |
Collapse
|
12
|
A New Outlook on the Ability to Accumulate an Iodine Contrast Agent in Solid Lung Tumors Based on Virtual Monochromatic Images in Dual Energy Computed Tomography (DECT): Analysis in Two Phases of Contrast Enhancement. J Clin Med 2021; 10:jcm10091870. [PMID: 33925945 PMCID: PMC8123482 DOI: 10.3390/jcm10091870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
For some time, dual energy computed tomography (DECT) has been an established method used in a vast array of clinical applications, including lung nodule assessment. The aim of this study was to analyze (using monochromatic DECT images) how the X-ray absorption of solitary pulmonary nodules (SPNs) depends on the iodine contrast agent and when X-ray absorption is no longer dependent on the accumulated contrast agent. Sixty-six patients with diagnosed solid lung tumors underwent DECT scans in the late arterial phase (AP) and venous phase (VP) between January 2017 and June 2018. Statistically significant correlations (p ≤ 0.001) of the iodine contrast concentration were found in the energy range of 40–90 keV in the AP phase and in the range of 40–80 keV in the VP phase. The strongest correlation was found between the concentrations of the contrast agent and the scanning energy of 40 keV. At the higher scanning energy, no significant correlations were found. We concluded that it is most useful to evaluate lung lesions in DECT virtual monochromatic images (VMIs) in the energy range of 40–80 keV. We recommend assessing SPNs in only one phase of contrast enhancement to reduce the absorbed radiation dose.
Collapse
|
13
|
Wang L, Zhang Y, Chen Y, Tan J, Wang L, Zhang J, Yang C, Ma Q, Ge Y, Xu Z, Pan Z, Du L, Yan F, Yao W, Zhang H. The Performance of a Dual-Energy CT Derived Radiomics Model in Differentiating Serosal Invasion for Advanced Gastric Cancer Patients After Neoadjuvant Chemotherapy: Iodine Map Combined With 120-kV Equivalent Mixed Images. Front Oncol 2021; 10:562945. [PMID: 33585186 PMCID: PMC7874026 DOI: 10.3389/fonc.2020.562945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022] Open
Abstract
Objectives The aim was to determine whether the dual-energy CT radiomics model derived from an iodine map (IM) has incremental diagnostic value for the model based on 120-kV equivalent mixed images (120 kVp) in preoperative restaging of serosal invasion with locally advanced gastric cancer (LAGC) after neoadjuvant chemotherapy (NAC). Methods A total of 155 patients (110 in the training cohort and 45 in the testing cohort) with LAGC who had standard NAC before surgery were retrospectively enrolled. All CT images were analyzed by two radiologists for manual classification. Volumes of interests (VOIs) were delineated semi-automatically, and 1,226 radiomics features were extracted from every segmented lesion in both IM and 120 kVp images, respectively. Spearman's correlation analysis and the least absolute shrinkage and selection operator (LASSO) penalized logistic regression were implemented for filtering unstable and redundant features and screening out vital features. Two predictive models (120 kVp and IM-120 kVp) based on 120 kVp selected features only and 120 kVp combined with IM selected features were established by multivariate logistic regression analysis. We then build a combination model (ComModel) developed with IM-120 kVp signature and ycT. The performance of these three models and manual classification were evaluated and compared. Result Three radiomics models showed great predictive accuracy and performance in both the training and testing cohorts (ComModel: AUC: training, 0.953, testing, 0.914; IM-120 kVp: AUC: training, 0.953, testing, 0.879; 120 kVp: AUC: training, 0.940, testing, 0.831). All these models showed higher diagnostic accuracy (ComModel: 88.9%, IM-120 kVp: 84.4%, 120 kVp: 80.0%) than manual classification (68.9%) in the testing group. ComModel and IM-120 kVp model had better performances than manual classification both in the training (both p<0.001) and testing cohorts (p<0.001 and p=0.034, respectively). Conclusions Dual-energy CT-based radiomics models demonstrated convincible diagnostic performance in differentiating serosal invasion in preoperative restaging for LAGC. The radiomics features derived from IM showed great potential for improving the diagnostic capability.
Collapse
Affiliation(s)
- Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Zhang
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingwen Tan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxue Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianchen Ma
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingqian Ge
- CHN DI CT Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Zhihan Xu
- CHN DI CT Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Zilai Pan
- Department of Radiology, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianjun Du
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwu Yao
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Ma YC, Zhang SH, Xie ZY, Guo F, Chen AQ. Comparison of spectral computed tomography imaging parameters between squamous cell carcinoma and adenocarcinoma at the gastroesophageal junction. Technol Health Care 2020; 29:619-627. [PMID: 33285653 DOI: 10.3233/thc-202343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To compare the spectral computed tomography (CT) imaging parameters between squamous cell carcinoma (SCC) and adenocarcinoma (AC) at the gastroesophageal junction (GEJ). METHODS A total of 80 patients were enrolled in this retrospective study. Among them, 35 were diagnosed with SCC (SCC group) and 45 were diagnosed with AC (AC group). All patients underwent an enhanced scan with spectral CT. The following CT imaging parameters were evaluated: iodine concentration (IC), water content (WC), effective atomic number (Eff-Z) and slope of the spectral HU curve (λHU) of lesions. Receiver operating characteristic (ROC) curve was used to analyze the predictive value of spectral CT imaging parameters for diagnosis of SCC and AC. RESULTS Patients with SCC had lower IC, Eff-Z, and λHU in arterial phase and venous phase compared with AC (p< 0.05). There were no significant differences in WC between the two groups. ROC curve analyses revealed that IC, Eff-Z, and λHU in arterial phase and venous phase were predictors for diagnosis of SCC and AC (AUC > 0.5). Moreover, the IC, Eff-Z and λHU in venous phase had better differential diagnostic performances than that in arterial phase. CONCLUSIONS Spectral CT could be useful in the differential diagnosis of SCC and AC at the GEJ. Therefore, a routine spectral CT scan is recommended for patients with carcinoma of the GEJ.
Collapse
Affiliation(s)
- Yi-Chuan Ma
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Shun-Hua Zhang
- Department of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
| | - Zong-Yu Xie
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Fei Guo
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Ai-Qi Chen
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
15
|
Kim C, Kim W, Park SJ, Lee YH, Hwang SH, Yong HS, Oh YW, Kang EY, Lee KY. Application of Dual-Energy Spectral Computed Tomography to Thoracic Oncology Imaging. Korean J Radiol 2020; 21:838-850. [PMID: 32524784 PMCID: PMC7289700 DOI: 10.3348/kjr.2019.0711] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/16/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
Computed tomography (CT) is an important imaging modality in evaluating thoracic malignancies. The clinical utility of dual-energy spectral computed tomography (DESCT) has recently been realized. DESCT allows for virtual monoenergetic or monochromatic imaging, virtual non-contrast or unenhanced imaging, iodine concentration measurement, and effective atomic number (Zeff map). The application of information gained using this technique in the field of thoracic oncology is important, and therefore many studies have been conducted to explore the use of DESCT in the evaluation and management of thoracic malignancies. Here we summarize and review recent DESCT studies on clinical applications related to thoracic oncology.
Collapse
Affiliation(s)
- Cherry Kim
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Wooil Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Joon Park
- Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Young Hen Lee
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Sung Ho Hwang
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hwan Seok Yong
- Department of Radiology, Korea University Guro Hospital, College of Medicine Korea University, Seoul, Korea
| | - Yu Whan Oh
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Eun Young Kang
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Ki Yeol Lee
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea.
| |
Collapse
|
16
|
Zopfs D, Graffe J, Reimer RP, Schäfer S, Persigehl T, Maintz D, Borggrefe J, Haneder S, Lennartz S, Große Hokamp N. Quantitative distribution of iodinated contrast media in body computed tomography: data from a large reference cohort. Eur Radiol 2020; 31:2340-2348. [PMID: 32997173 PMCID: PMC7979665 DOI: 10.1007/s00330-020-07298-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Dual-energy computed tomography allows for an accurate and reliable quantification of iodine. However, data on physiological distribution of iodine concentration (IC) is still sparse. This study aims to establish guidance for IC in abdominal organs and important anatomical landmarks using a large cohort of individuals without radiological tumor burden. METHODS Five hundred seventy-one oncologic, portal venous phase dual-layer spectral detector CT studies of the chest and abdomen without tumor burden at time point of imaging confirmed by > 3-month follow-up were included. ROI were placed in parenchymatous organs (n = 25), lymph nodes (n = 6), and vessels (n = 3) with a minimum of two measurements per landmark. ROI were placed on conventional images and pasted to iodine maps to retrieve absolute IC. Normalization to the abdominal aorta was conducted to obtain iodine perfusion ratios. Bivariate regression analysis, t tests, and ANOVA with Tukey-Kramer post hoc test were used for statistical analysis. RESULTS Absolute IC showed a broad scatter and varied with body mass index, between different age groups and between the sexes in parenchymatous organs, lymph nodes, and vessels (range 0.0 ± 0.0 mg/ml-6.6 ± 1.3 mg/ml). Unlike absolute IC, iodine perfusion ratios did not show dependency on body mass index; however, significant differences between the sexes and age groups persisted, showing a tendency towards decreased perfusion ratios in elderly patients (e.g., liver 18-44 years/≥ 64 years: 0.50 ± 0.11/0.43 ± 0.10, p ≤ 0.05). CONCLUSIONS Distribution of IC obtained from a large-scale cohort is provided. As significant differences between sexes and age groups were found, this should be taken into account when obtaining quantitative iodine concentrations and applying iodine thresholds. KEY POINTS • Absolute iodine concentration showed a broad variation and differed between body mass index, age groups, and between the sexes in parenchymatous organs, lymph nodes, and vessels. • The iodine perfusion ratios did not show dependency on body mass index while significant differences between sexes and age groups persisted. • Provided guidance values may serve as reference when aiming to differentiate healthy and abnormal tissue based on iodine perfusion ratios.
Collapse
Affiliation(s)
- David Zopfs
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Josefine Graffe
- Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Robert Peter Reimer
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | | | - Thorsten Persigehl
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - David Maintz
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Jan Borggrefe
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Stefan Haneder
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Simon Lennartz
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nils Große Hokamp
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany.
| |
Collapse
|
17
|
Yu C, Li T, Zhang R, Yang X, Yang Z, Xin L, Zhao Z. Dual-energy CT perfusion imaging for differentiating WHO subtypes of thymic epithelial tumors. Sci Rep 2020; 10:5511. [PMID: 32218504 PMCID: PMC7098982 DOI: 10.1038/s41598-020-62466-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
To evaluate the role of conventional contrast-enhanced CT (CECT) imaging and dual-energy spectral CT (DECT) perfusion imaging in differentiating the WHO histological subtypes of thymic epithelial tumours (TETs). Eighty-eight patients with TETs who underwent DECT perfusion scans (n = 51) and conventional CT enhancement scans (n = 37) using a GE Discovery CT750 HD scanner were enrolled in this study. The mean maximal contrast-enhanced range (mean CEmax) and the perfusion and spectral parameters of the lesions were analysed. Among the six WHO subtypes (Type A, AB, B1, B2, and B3 thymoma and thymic carcinoma), the mean CEmax values and most of the perfusion and spectral parameter values of Type A and Type AB were significantly higher than those of the other subtypes (all P < 0.05), and there was no difference among Type B1, B2 and B3 (all P > 0.05). The mean CEmax value was not different between Type B (including Type B1, B2, and B3) and thymic carcinoma (P = 1.000). The PS, IC, NIC and λHU values in the optimal venous phase of thymic carcinoma were higher than those of Type B (all P < 0.05). The parameters of conventional CECT imaging and DECT perfusion imaging can help identify the subtype of TETs, especially those of DECT perfusion imaging in type B thymomas and thymic carcinomas.
Collapse
Affiliation(s)
- Chunhai Yu
- Imaging Department, Shanxi Tumor Hospital, The Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, P.R. China
| | - Ting Li
- Department of Nephrology, Taiyuan People's Hospital, Taiyuan, Shanxi, 030001, P.R. China
| | - Ruiping Zhang
- Imaging Department, Shanxi Tumor Hospital, The Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, P.R. China.
| | - Xiaotang Yang
- Imaging Department, Shanxi Tumor Hospital, The Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, P.R. China
| | - Zhao Yang
- Imaging Department, Shanxi Tumor Hospital, The Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, P.R. China
| | - Lei Xin
- Imaging Department, Shanxi Tumor Hospital, The Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, P.R. China
| | - Zhikai Zhao
- Imaging Department, Shanxi Tumor Hospital, The Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, P.R. China
| |
Collapse
|
18
|
Iodine Parameters in Triple-Bolus Dual-Energy CT Correlate With Perfusion CT Biomarkers of Angiogenesis in Renal Cell Carcinoma. AJR Am J Roentgenol 2020; 214:808-816. [PMID: 32069083 DOI: 10.2214/ajr.19.21969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE. The purpose of this study is to determine the degree of the relationship between perfusion CT (PCT) parameters and iodine concentration metrics derived from triple-bolus dual-energy CT (DECT) and to compare the radiation dose delivered. SUBJECTS AND METHODS. This single-center prospective study was conducted from October 2015 to September 2017. Twenty-three consenting adults (15 men and eight women; mean [± SD] age, 56 ± 13 years [range, 25-78 years]) with renal cell carcinomas underwent consecutive PCT and triple-bolus DECT examinations. Triple-bolus DECT consisted of synchronous corticomedullary, nephrographic, and delayed phase scans acquired using a dual-source DECT scanner. Two readers independently analyzed blood flow, blood volume, and permeability, as measured by PCT, and iodine density and iodine ratio, as measured by triple-bolus DECT. Size-specific dose estimates were calculated for both groups. RESULTS. Interreader agreement was good for permeability (intraclass correlation coefficient [ICC] =.812) and blood flow (ICC = 0.849) and excellent for blood volume (ICC = 0.956), iodine density (ICC = 0.961), and iodine ratio (ICC = 0.956). Very strong positive correlations were found between blood volume and iodine density (p < 0.001) and between blood volume and iodine ratio (p < 0.001). Strong positive correlations were found between blood flow and iodine density (p < 0.001) and between blood flow and iodine ratio (p < 0.001). The correlations between permeability and iodine density (p = 0.01) and between permeability and iodine ratio (p = 0.02) were moderate. The mean size-specific dose estimate of triple-bolus DECT was approximately 15 times lower than that of PCT (p < 0.001). CONCLUSION. Quantitative iodine metrics derived from triple-bolus DECT showed significant correlation with CT parameters in renal cell carcinoma, with a significantly lower radiation dose.
Collapse
|
19
|
Wang T, Su H, Gu J, Chen Q, Xu Q, Chen BT. Evaluation of skeletal muscle perfusion in a canine hind limb ischemia model using CT perfusion imaging. Diagn Interv Radiol 2019; 26:28-33. [PMID: 31650969 DOI: 10.5152/dir.2019.18478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE To evaluate skeletal muscle perfusion in a canine hind limb ischemia model using CT perfusion imaging (CTPI). METHODS Twelve beagles underwent embolization at the branch of the left deep femoral artery. The right hind limbs were used as controls. CTPI was performed immediately after embolization. The perfusion parameters of the regions of interest (ROI), including blood volume (BV), blood flow (BF), mean transit time (MTT) and permeability (PMB), were obtained in both the lateral and posterior hind limb muscle groups. RESULTS After embolization, the BV, BF and PMB values in the lateral muscles of the left hind limbs were significantly lower than those in the right hind limbs (P > 0.05), and the MTT was significantly prolonged (P > 0.05). The values for BV, BF, MTT and PMB in the posterior muscles of the left hind limbs were not significantly different from those in the right hind limbs (P > 0.05). The values for BV, BF and PMB in the lateral muscles of the left hind limbs were significantly lower than those in the posterior muscles of the left hind limbs (P > 0.05). CONCLUSION CTPI could be used to evaluate skeletal muscle perfusion in a canine model, which may have clinical relevance in lower limb ischemia and vascular reconstruction.
Collapse
Affiliation(s)
- Tao Wang
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China;Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| | - Haobo Su
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianping Gu
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Quan Xu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
20
|
Fehrenbach U, Feldhaus F, Kahn J, Böning G, Maurer MH, Renz D, Frost N, Streitparth F. Tumour response in non-small-cell lung cancer patients treated with chemoradiotherapy - Can spectral CT predict recurrence? J Med Imaging Radiat Oncol 2019; 63:641-649. [PMID: 31282130 DOI: 10.1111/1754-9485.12926] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/06/2019] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Tumour response in lung cancer treatment is monitored by measuring lesion size in computed tomography (CT). Spectral CT (SCT) offers additional information on tumour tissue besides morphology. We evaluated SCT iodine content (IC) and performed spectral slope analysis to assess the response of non-small-cell lung cancer (NSCLC) to chemoradiotherapy (CRT). METHODS Eighty-three patients with advanced NSCLC treated by CRT prospectively underwent single-phase, contrast-enhanced SCT. Evaluation of all patients included treatment response (RECIST 1.1), quantitative measurements as well as SCT IC determination and spectral slope analysis in NSCLC primaries. Measurements were performed at the maximum cross-diameter of tumours and in areas with high iodine values (hotspot analysis). Iodine difference (ΔIC) was calculated. Secondary outcome parameters were IC and spectral slopes in mediastinal lymph nodes (n = 61). RESULTS Twenty-four patients (29%) showed complete remission after CRT. Thirty-four patients (41%) had stable disease (SDSCT ) or partial regression (PRSCT ). Progressive disease (PDSCT ) was seen in 25 patients (30%). Hotspot analysis showed significantly higher iodine values in PDSCT than in SDSCT /PRSCT (P < 0.001). Ten patients (12%) with initially stable disease in SCT showed progressive disease during follow-up for up to 18 months (PDFU ). These patients also had significantly higher hotspot iodine values and ΔIC in the initial scan compared to patients with SD throughout the follow-up period (SDFU ) (29%) (P < 0.001). Enlarged lymph nodes showed significantly lower iodine content and a lower spectral slope pitch than normal-sized nodes (P = 0.003 to 0.029). CONCLUSION Spectral CT-derived iodine content of NSCLC following CRT may help in predicting recurrence. Hotspot analysis and iodine heterogeneity allow the identification of residual vascularisation as an indicator of vital tumour tissue, indicating that IC might be a suitable imaging biomarker for predicting tumour progression. Iodine content and spectral slope analysis might also help in identifying metastatic lymph nodes.
Collapse
Affiliation(s)
- Uli Fehrenbach
- Radiology, Charité University Medicine Berlin, Berlin, Germany
| | - Felix Feldhaus
- Radiology, Charité University Medicine Berlin, Berlin, Germany
| | - Johannes Kahn
- Radiology, Charité University Medicine Berlin, Berlin, Germany
| | - Georg Böning
- Radiology, Charité University Medicine Berlin, Berlin, Germany
| | - Martin H Maurer
- Radiology, University Hospital/Inselspital Bern, Bern, Switzerland
| | - Diane Renz
- Radiology, University Hospital Jena, Jena, Germany
| | - Nikolaj Frost
- Internal Medicine - Pulmonology, Charité University Medicine Berlin, Berlin, Germany
| | - Florian Streitparth
- Radiology, Charité University Medicine Berlin, Berlin, Germany.,Radiology, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
| |
Collapse
|
21
|
Kawaguchi K, Fukui T, Goto M, Nakamura S, Hakiri S, Ozeki N, Kato T, Mori S, Hashimoto K, Iwano S, Yokoi K. Evaluation of intra-tumoral blood feeding to predict the effect of induction therapy in patients with locally advanced lung cancer. NAGOYA JOURNAL OF MEDICAL SCIENCE 2019; 81:291-301. [PMID: 31239597 PMCID: PMC6556454 DOI: 10.18999/nagjms.81.2.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is little known about predictors of the effects of induction therapy in locally advanced lung cancer, including superior sulcus tumors. We analyzed whether intra-tumoral blood feeding could predict a pathologic complete response (pCR). Patients who underwent induction therapy followed by surgery for locally advanced lung cancer were retrospectively reviewed. The intra-tumoral blood feeding was defined by the CT value (HU, Hounsfield unit), which was calculated by subtracting the non-enhanced value from the contrast-enhanced value (divided into the early and delayed phase) at the maximum diameter of the tumor on dynamic CT. The cases were classified, according to the efficacy of induction therapy, into the pCR and residual tumor (pRT) group. There were 38 cases of T3 and 12 of T4; the induction therapy consisted of chemoradiotherapy in 39 patients, chemotherapy in 6, and radiotherapy in 5. A pCR was obtained in 15 (30%) patients. The mean CT values of the early and delayed phases in the pCR group were 14.8 and 30.7 HU, while those in the pRT were 15.3 and 32.2 HU, respectively. A logistic regression analysis revealed that a smaller tumor size (< 42 mm) was a non-significant predictor of a pCR (p = 0.09); the maximum standardized uptake value on FDG-PET and the CT values on the early and delayed phases of dynamic CT were not associated with the achievement of a pCR. In conclusion, intra-tumoral blood feeding of the locally advanced lung cancer did not predict the effects of induction therapy, whereas smaller sized tumors tended to show a better response.
Collapse
Affiliation(s)
- Koji Kawaguchi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaki Goto
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shota Nakamura
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuhei Hakiri
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ozeki
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taketo Kato
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunsuke Mori
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kumiko Hashimoto
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Iwano
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
Comparison of Radiation Dose and Image Quality of Contrast-Enhanced Dual-Source CT of the Chest: Single-Versus Dual-Energy and Second-Versus Third-Generation Technology. AJR Am J Roentgenol 2019; 212:741-747. [PMID: 30699006 DOI: 10.2214/ajr.18.20065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Spectral CT and its specific values in the staging of patients with non-small cell lung cancer: technical possibilities and clinical impact. Clin Radiol 2019; 74:456-466. [PMID: 30905380 DOI: 10.1016/j.crad.2019.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 02/12/2019] [Indexed: 12/25/2022]
Abstract
AIM To investigate how spectral computed tomography (SCT) values impact the staging of non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS One hundred and thirteen patients with confirmed NSCLC were included in a prospective cohort study. All patients underwent single-phase contrast-enhanced SCT (using the fast tube voltage switching technique, 80-140 kV). SCT values (iodine content [IC], spectral slope pitch, and radiodensity increase) of malignant tissue (primary and metastases) and lymph nodes (LNs) were measured. Adrenal masses were evaluated in a virtual non-contrast series (VNS). If pulmonary embolism was present, pulmonary perfusion was analysed as an additional finding. RESULTS Fifty-two untreated primary NSCLC lesions were evaluable. Lung adenocarcinoma had significantly higher normalised IC (NIC: 19.37) than squamous cell carcinoma (NIC: 12.03; p=0.035). Pulmonary metastases were not significantly different from benign lung nodules. A total of 126 LNs were analysed and histologically proven metastatic LNs (2.08 mg/ml) had significantly lower IC than benign LNs (2.58 mg/ml; p=0.023). Among 34 adrenal masses, VNS identified adenomas with high sensitivity (91%) and specificity (100%). In two patients, a perfusion defect due to pulmonary embolism was detected in the iodine images. CONCLUSION SCT may contribute to the differentiation of histological NSCLC subtypes and improve the identification of LN metastases. VNS differentiates adrenal adenoma from metastasis. In case of pulmonary embolism, iodine imaging can visualise associated pulmonary perfusion defects.
Collapse
|
24
|
Deniffel D, Sauter A, Dangelmaier J, Fingerle A, Rummeny EJ, Pfeiffer D. Differentiating intrapulmonary metastases from different primary tumors via quantitative dual-energy CT based iodine concentration and conventional CT attenuation. Eur J Radiol 2019; 111:6-13. [DOI: 10.1016/j.ejrad.2018.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 11/27/2022]
|
25
|
Ge X, Yu J, Wang Z, Xu Y, Pan C, Jiang L, Yang Y, Yuan K, Liu W. Comparative study of dual energy CT iodine imaging and standardized concentrations before and after chemoradiotherapy for esophageal cancer. BMC Cancer 2018; 18:1120. [PMID: 30445955 PMCID: PMC6240303 DOI: 10.1186/s12885-018-5058-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022] Open
Abstract
Background To compare dual energy CT iodine imaging and standardized iodine concentration before and after chemoradiotherapy (CRT) for esophageal cancer and evaluate the efficacy of CRT for EC by examining DECT iodine maps and standard CT values. Methods The clinical data of 45 patients confirmed by pathology with newly diagnosed esophageal cancer who underwent concurrent CRT from February 2012 to January 2017 in our department of radiology were collected. All patients underwent dual-source dual-energy CT (DECT) before and after CRT. Normalized iodine concentration (NIC) and normalized CT (NCT) corresponding to the overall cancer lesion and its maximum cross-sectional area were observed and compared. Additionally, 30 healthy individuals were compared as control group. After treatment, the patients were divided into two groups according to RECIST1.1: treatment effective group and ineffective group. Results There were 33 patients (CR 9, PR 24) in the effective group and 12 patients (SD 12, PD 0) in the ineffective group. There was no significant difference in the NIC-A, NIC-V, NCT-A and NCT-A indexes between the effective group (B group) and the ineffective group (C group) before treatment (P > 0.05). After the treatment, the above-mentioned indexes in the effective group of patients were significantly lower than before treatment, and compared with the ineffective group, the NIC-A, NIC-V, NCT-A and NCT-V values of the effective group were significantly lower than those of ineffective group (P < 0.05). After treatment, the NIC-V and NCT-V in the ineffective group were lower than before treatment, and the difference was statistically significant (P < 0.05). However, their NIC-A and NCT-A were not statistically different from those before treatment (P > 0.05). Conclusion Using DECT iodine map, the changes of NIC and NIC before and after CRT in patients with esophageal cancer can evaluate the effect of CRT, and does not increase the radiation dose, so it is suitable for clinical use.
Collapse
Affiliation(s)
- Xiaomin Ge
- Department of Radiology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, No. 29 Xinglong Road, Tianning District, Changzhou, Jiangsu, China
| | - Jingping Yu
- Department of Radiotherapy, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, China
| | - Zhongling Wang
- Department of Radiology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yiqun Xu
- Department of Radiology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, No. 29 Xinglong Road, Tianning District, Changzhou, Jiangsu, China
| | - Changjie Pan
- Department of Radiology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, No. 29 Xinglong Road, Tianning District, Changzhou, Jiangsu, China
| | - Lu Jiang
- Department of Radiology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, No. 29 Xinglong Road, Tianning District, Changzhou, Jiangsu, China
| | - Yanling Yang
- Department of Radiology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, No. 29 Xinglong Road, Tianning District, Changzhou, Jiangsu, China
| | - Kai Yuan
- Thoracic Surgery Department, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, China
| | - Wei Liu
- Department of Radiology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, No. 29 Xinglong Road, Tianning District, Changzhou, Jiangsu, China.
| |
Collapse
|
26
|
Morgan DE. The Role of Dual-Energy Computed Tomography in Assessment of Abdominal Oncology and Beyond. Radiol Clin North Am 2018; 56:565-585. [PMID: 29936948 DOI: 10.1016/j.rcl.2018.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The added value and strength of dual energy computed tomography for the evaluation of oncologic patients revolve around the use of lower energy reconstructed images and iodine material density images. Lower keV simulated monoenergetic images optimize soft tissue tumor to nontumoral attenuation differences and increase contrast to noise ratios to improve lesion detection. Iodine material density images or maps are helpful from a qualitative standpoint for image interpretation because they result in improved detection and characterization of tumors and lymph node involvement, and from a quantitative assessment by enabling interrogation of specific properties of tissues to predict and assess therapeutic response.
Collapse
Affiliation(s)
- Desiree E Morgan
- Department of Radiology University of Alabama at Birmingham, 619 19th Street South, JTN 456, Birmingham, AL 35249-6830, USA.
| |
Collapse
|
27
|
Megibow AJ, Kambadakone A, Ananthakrishnan L. Dual-Energy Computed Tomography. Radiol Clin North Am 2018; 56:507-520. [DOI: 10.1016/j.rcl.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Chen XR, Dong JN, Zhang F, Yao TL. Efficacy and safety of image-guidance radiotherapy by helical tomotherapy in patients with lung cancer. Medicine (Baltimore) 2018; 97:e9243. [PMID: 29505510 PMCID: PMC5943132 DOI: 10.1097/md.0000000000009243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study aimed to explore the efficacy and toxicity of image-guided stereotactic body radiotherapy (IGSBR) by helical tomotherapy in patients with lung cancer among Chinese Han population.A total of 21 patients with stage I lung cancer were included. They received a total of 60 Gy factions IGSBR. The outcomes included complete response (CR), partial response (PR), stable disease (SD), progress disease (PD), overall response rate (ORR), and overall survival (OS). In addition, toxicities were also recorded in this study.Three-year CR, PR, SD, PD, ORR, and OS were 47.6%, 38.1%, 9.5%, 4.8%, 85.7%, and 48.0 months, respectively. Additionally, mild toxicities were found in this study.This study demonstrated that IGSBR is efficacious for patients with stage I lung cancer with mild toxicities among Chinese Han population.
Collapse
Affiliation(s)
- Xiang-ru Chen
- Department of Ultrasound, The Second Affiliated Hospital of Mudanjiang Medical University
| | - Jia-nan Dong
- Department of Rehabilitation Comprehensive Laboratory
| | - Fan Zhang
- School of Image, Mudanjiang Medical University
| | | |
Collapse
|