1
|
Hung SW, Gaetani M, Li Y, Tan Z, Zheng X, Zhang R, Ding Y, Man GCW, Zhang T, Song Y, Wang Y, Chung JPW, Chan TH, Zubarev RA, Wang CC. Distinct molecular targets of ProEGCG from EGCG and superior inhibition of angiogenesis signaling pathways for treatment of endometriosis. J Pharm Anal 2024; 14:100-114. [PMID: 38352946 PMCID: PMC10859541 DOI: 10.1016/j.jpha.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus. Angiogenesis is a major pathophysiology in endometriosis. Our previous studies have demonstrated that the prodrug of epigallocatechin gallate (ProEGCG) exhibits superior anti-endometriotic and anti-angiogenic effects compared to epigallocatechin gallate (EGCG). However, their direct binding targets and underlying mechanisms for the differential effects remain unknown. In this study, we demonstrated that oral ProEGCG can be effective in preventing and treating endometriosis. Additionally, 1D and 2D Proteome Integral Solubility Alteration assay-based chemical proteomics identified metadherin (MTDH) and PX domain containing serine/threonine kinase-like (PXK) as novel binding targets of EGCG and ProEGCG, respectively. Computational simulation and BioLayer interferometry were used to confirm their binding affinity. Our results showed that MTDH-EGCG inhibited protein kinase B (Akt)-mediated angiogenesis, while PXK-ProEGCG inhibited epidermal growth factor (EGF)-mediated angiogenesis via the EGF/hypoxia-inducible factor (HIF-1a)/vascular endothelial growth factor (VEGF) pathway. In vitro and in vivo knockdown assays and microvascular network imaging further confirmed the involvement of these signaling pathways. Moreover, our study demonstrated that ProEGCG has superior therapeutic effects than EGCG by targeting distinct signal transduction pathways and may act as a novel antiangiogenic therapy for endometriosis.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Massimiliano Gaetani
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE 17177, Sweden
- Chemical Proteomics Core Facility, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE 17177, Sweden
- Unit of Chemical Proteomics, Science for Life Laboratory (SciLifeLab), Stockholm, SE 17177, Sweden
| | - Yiran Li
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhouyurong Tan
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xu Zheng
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ruizhe Zhang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yang Ding
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Gene Chi Wai Man
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Zhang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Song
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yao Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Tak Hang Chan
- Department of Chemistry, McGill University, Montreal, H3A2K6, Canada
| | - Roman A. Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE 17177, Sweden
- Unit of Chemical Proteomics, Science for Life Laboratory (SciLifeLab), Stockholm, SE 17177, Sweden
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Chi Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Guo R, Yi Z, Wang Y, Wang L. Network pharmacology and experimental validation to explore the potential mechanism of Sanjie Zhentong Capsule in endometriosis treatment. Front Endocrinol (Lausanne) 2023; 14:1110995. [PMID: 36817586 PMCID: PMC9935822 DOI: 10.3389/fendo.2023.1110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Sanjie Zhentong Capsule (SZC) is gradually becoming widely used in the treatment of endometriosis (EMs) and has demonstrated an excellent curative effect in the clinic. However, the active components and mechanisms of Sanjie Zhentong Capsule (SZC) in the treatment of endometriosis (EMs) remain unclear, and further research is needed to explore the effects of Sanjie Zhentong Capsule (SZC). MATERIALS AND METHODS First, a drug target database of Sanjie Zhentong capsule (SZC) was established by consulting the TCMSP database and related literature. An endometriosis (EMs) disease target database was then established by consulting the GeneCards, OMIM and Drug Bank databases. The overlapping genes of SZC and EMs were determined, and protein-protein interactions (PPIs), gene ontology (GO) and Kyoto Gene and Genome Encyclopedia (KEGG) analyses were performed to predict the potential therapeutic mechanisms. Molecular docking was used to observe whether the key active ingredients and targets predicted by network pharmacology had good binding energy. Finally, in vitro experiments such as CCK-8, flow cytometry and RT-PCR assays were carried out to preliminarily verify the potential mechanisms. RESULTS Through the construction of a pharmacological network, we identified a total of 28 active components in SZC and 52 potential therapeutic targets. According to GO and KEGG enrichment analyses, the effects of SZC treatment may be related to oxidative stress, steroid metabolism, apoptosis and proliferation. We also experimentally confirmed that SZC can regulate the expression of steroid hormone biosynthesis-related genes, inhibit ectopic endometrial stromal cell (EESC) proliferation and oxidative stress, and promote apoptosis. CONCLUSION This study explored the potential mechanism of SZC in the treatment of EMs through network pharmacology and experiments, providing a basis for further future research on SZC in the treatment of EMs.
Collapse
|
3
|
Integrating Network Pharmacology and Experimental Validation Deciphers the Mechanism of Guizhi Fuling Wan against Adenomyosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6034147. [PMID: 34737779 PMCID: PMC8563128 DOI: 10.1155/2021/6034147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Aim This study aimed to predict the key targets and endocrine mechanisms of Guizhi Fuling Wan (GZFLW) in treating adenomyosis (AM) through network pharmacology, molecular docking, and animal experiment verification. Methods The related ingredients and targets of GZFLW in treating AM were screened out using TCMSP, BATMAN-TCM, SwissTargetPrediction, and PubChem Database. Then, the protein-protein interaction (PPI) analysis and the network of compound-hub targets were constructed. At the same time, the key targets were uploaded to the Metascape Database for KEGG pathway enrichment analysis. After that, the molecular docking technology of the main active components and hub targets was performed. Furthermore, animal experiments were used to verify the results of network pharmacology analysis. Results A total of 55 active ingredients of GZFLW and 44 overlapping targets of GZFLW in treating AM were obtained. After screening, 25 hub targets were collected, including ESR1, EGF, and EGFR. Then, the KEGG pathway enrichment analysis results indicated that the endocrine therapeutic mechanism of GZFLW against AM is mainly associated with the estrogen signaling pathway, endocrine resistance, and an EGFR tyrosine kinase signaling pathway. Then, molecular docking showed that the significant compounds of GZFLW had a strong binding ability with ERα and EGFR. More importantly, the animal experiments confirmed that the GZFLW could downregulate the abnormal infiltration of the endometrial epithelium into the myometrium and had no interference with the normal sexual cycle. This effect may be directly related to intervening the local estrogen signaling pathway of the endometrial myometrial interface (EMI). It may also be associated with the myometrium cells' estrogen resistance via GPER/EGFR signaling pathway. Conclusion The endocrine mechanism of GZFLW in treating AM was explored based on network pharmacology, molecular docking, and animal experiments, which provided a theoretical basis for the clinical application of GZFLW.
Collapse
|
4
|
The Relationship between Metabolic Syndrome and Plasma Metals Modified by EGFR and TNF-α Gene Polymorphisms. TOXICS 2021; 9:toxics9090225. [PMID: 34564376 PMCID: PMC8473312 DOI: 10.3390/toxics9090225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
With the escalating global prevalence of metabolic syndrome (MetS), it is crucial to detect the high-risk population early and to prevent chronic diseases. Exposure to various metals has been indicated to promote MetS, but the findings were controversial, and the effect of genetic modification was not considered. Epidermal growth factor receptor (EGFR) was proposed to be involved in the pathway of metabolic disorders, and tumor necrotic factor-α (TNF-α) was regarded as an early inflammatory biomarker for MetS. This research aimed to analyze the impact of EGFR and TNF-α gene polymorphisms on the prevalence of MetS under environmental or occupational exposure to metals. We gathered data from 376 metal industrial workers and 639 non-metal workers, including physical parameters, biochemical data, and plasma concentrations of six metals. According to the genomic database of Taiwan Biobank, 23 single nucleotide polymorphisms (SNPs) on EGFR gene and 6 SNPs on TNF-α gene were incorporated in our research. We applied multivariable logistic regression to analyze the probability of MetS with various SNPs and metals. Our study revealed some susceptible and protective EGFR and TNF-α genotypes under excessive exposure to cobalt, zinc, selenium, and lead. Thus, we remind the high-risk population of taking measures to prevent MetS.
Collapse
|