1
|
Torshin IY, Gromova OA, Bogacheva TE. Systematic analysis of the relationship between non-alcoholic fatty liver disease and tissue iron overload: promising areas for the use of polypeptide therapy. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2024:139-152. [DOI: 10.31146/1682-8658-ecg-218-10-139-152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Iron overload in non-alcoholic fatty liver disease (NAFLD) is a fairly common phenomenon that receives very little attention in clinical practice. However, iron overload, leading to hemosiderosis (deposition of “indigestible” nanodispersed iron oxides in various tissues) significantly aggravates NAFLD, stimulating increased chronic inflammation, insulin resistance and hemosiderosis of other organs. As a result, ferroptosis of hepatocytes occurs (apoptosis caused by iron overload and hemosiderosis), which accelerates the transformation of non-alcoholic steatosis into non-alcoholic steatohepatitis (NASH) and, subsequently, into liver cirrhosis. Iron overload is aggravated by micronutrient deficiencies and pathogenic intestinal microbiota. The paper presents the results of a systematic analysis of this issue, describes the prospects for therapy using micronutrients and human placenta hydrolysates (HPP), which contribute not only to the regeneration of liver tissue, but also to the normalization of iron homeostasis.
Collapse
Affiliation(s)
- I. Yu. Torshin
- Federal Research Center “Computer Science and Control” of Russian Academy of Sciences
| | - O. A. Gromova
- Federal Research Center “Computer Science and Control” of Russian Academy of Sciences
| | | |
Collapse
|
2
|
Vinke JS, Eisenga MF, Sanders JSF, Berger SP, Spikman JM, Abdulahad WH, Bakker SJ, Gaillard CAJM, van Zuilen AD, van der Meer P, de Borst MH. Effect of Intravenous Ferric Carboxymaltose on Exercise Capacity After Kidney Transplantation (EFFECT-KTx): rationale and study protocol for a double-blind, randomised, placebo-controlled trial. BMJ Open 2023; 13:e065423. [PMID: 36948568 PMCID: PMC10040026 DOI: 10.1136/bmjopen-2022-065423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
INTRODUCTION Iron deficiency (ID) is common and has been associated with an excess mortality risk in kidney transplant recipients (KTRs). In patients with chronic heart failure and ID, intravenous iron improves exercise capacity and quality of life. Whether these beneficial effects also occur in KTRs is unknown. The main objective of this trial is to address whether intravenous iron improves exercise tolerance in iron-deficient KTRs. METHODS AND ANALYSIS The Effect of Ferric Carboxymaltose on Exercise Capacity after Kidney Transplantation study is a multicentre, double-blind, randomised, placebo-controlled clinical trial that will include 158 iron-deficient KTRs. ID is defined as plasma ferritin <100 µg/L or plasma ferritin 100-299 µg/L with transferrin saturation <20%. Patients are randomised to receive 10 mL of ferric carboxymaltose (50 mg Fe3+/mL, intravenously) or placebo (0.9% sodium chloride solution) every 6 weeks, four dosages in total. The primary endpoint is change in exercise capacity, as quantified by the 6 min walk test, between the first study visit and the end of follow-up, 24 weeks later. Secondary endpoints include changes in haemoglobin levels and iron status, quality of life, systolic and diastolic heart function, skeletal muscle strength, bone and mineral parameters, neurocognitive function and safety endpoints. Tertiary (explorative) outcomes are changes in gut microbiota and lymphocyte proliferation and function. ETHICS AND DISSEMINATION The protocol of this study has been approved by the medical ethical committee of the University Medical Centre Groningen (METc 2018/482;) and is being conducted in accordance with the principles of the Declaration of Helsinki, the Standard Protocol Items: Recommendations for Interventional Trials checklist and the Good Clinical Practice guidelines provided by the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use. Study results will be disseminated through publications in peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER NCT03769441.
Collapse
Affiliation(s)
- Joanna Sj Vinke
- Department of Nephrology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Michele F Eisenga
- Department of Nephrology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Jan-Stephan F Sanders
- Department of Nephrology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Stefan P Berger
- Department of Nephrology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Jacoba M Spikman
- Department of Neuropsychology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Wayel H Abdulahad
- Department of Immunology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Stephan Jl Bakker
- Department of Nephrology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Carlo A J M Gaillard
- Department of Nephrology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Arjan D van Zuilen
- Department of Nephrology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - P van der Meer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin H de Borst
- Department of Nephrology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Polysaccharides from Ostrea rivularis rebuild the balance of gut microbiota to ameliorate non-alcoholic fatty liver disease in ApoE -/- mice. Int J Biol Macromol 2023; 235:123853. [PMID: 36863676 DOI: 10.1016/j.ijbiomac.2023.123853] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
The purpose of this study was to investigate the preventive effects of polysaccharide from Ostrea rivularis (ORP) on high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) in mice and the underlying mechanism. The results showed that NAFLD model group mice had significant fatty liver lesions. ORP could significantly reduce TC, TG and LDL level, and increase HDL level in serum of HFD mice. Besides, it could also reduce the contents of serum AST and ALT and alleviate pathological changes of fatty liver disease. ORP could also enhance the intestinal barrier function. 16sRNA analysis showed that ORP could reduce the abundance of Firmicutes and Proteobacteria and the ratio of Firmicutes/ Bacteroidetes at the phylum level. These results suggested that ORP could regulate the composition of gut microbiota in NAFLD mice, enhance intestinal barrier function, reduce intestinal permeability, and finally delay the progress and reduce the occurrence of NAFLD. In brief, ORP is an ideal polysaccharide for prevention and treatment of NAFLD, which can be developed as functional food or candidate drugs.
Collapse
|
4
|
Chen H, Zhao W, Yan X, Huang T, Yang A. Overexpression of Hepcidin Alleviates Steatohepatitis and Fibrosis in a Diet-induced Nonalcoholic Steatohepatitis. J Clin Transl Hepatol 2022; 10:577-588. [PMID: 36062292 PMCID: PMC9396326 DOI: 10.14218/jcth.2021.00289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Iron overload can contribute to the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH). Hepcidin (Hamp), which is primarily synthesized in hepatocytes, is a key regulator of iron metabolism. However, the role of Hamp in NASH remains unclear. Therefore, we aimed to elucidate the role of Hamp in the pathophysiology of NASH. METHODS Male mice were fed a choline-deficient L-amino acid-defined (CDAA) diet for 16 weeks to establish the mouse NASH model. A choline-supplemented amino acid-defined (CSAA) diet was used as the control diet. Recombinant adeno-associated virus genome 2 serotype 8 vector expressing Hamp (rAAV2/8-Hamp) or its negative control (rAAV2/8-NC) was administered intravenously at week 8 of either the CDAA or CSAA diet. RESULTS rAAV2/8-Hamp treatment markedly decreased liver weight and improved hepatic steatosis in the CDAA-fed mice, accompanied by changes in lipogenesis-related genes and adiponectin expression. Compared with the control group, rAAV2/8-Hamp therapy attenuated liver damage, with mice exhibiting reduced histological NAFLD inflammation and fibrosis, as well as lower levels of liver enzymes. Moreover, α-smooth muscle actin-positive activated hepatic stellate cells (HSCs) and CD68-postive macrophages increased in number in the CDAA-fed mice, which was reversed by rAAV2/8-Hamp treatment. Consistent with the in vivo findings, overexpression of Hamp increased adiponectin expression in hepatocytes and Hamp treatment inhibited HSC activation. CONCLUSIONS Overexpression of Hamp using rAAV2/8-Hamp robustly attenuated liver steatohepatitis, inflammation, and fibrosis in an animal model of NASH, suggesting a potential therapeutic role for Hamp.
Collapse
Affiliation(s)
- Hui Chen
- Digestive Department, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Correspondence to: Hui Chen, Digestive Department, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan Road, Shijingshan District, Beijing 100043, China. Tel: +86-10-51718484, Fax: +86-10-83165944, E-mail: . Aiting Yang, Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China. ORCID: https://orcid.org/0000-0002-5671-696X. Tel: +86-10-63139311, Fax: +86-10-83165944, E-mail:
| | - Wenshan Zhao
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xuzhen Yan
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tao Huang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
- Beijing Clinical Medicine Institute, Beijing, China
- Correspondence to: Hui Chen, Digestive Department, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan Road, Shijingshan District, Beijing 100043, China. Tel: +86-10-51718484, Fax: +86-10-83165944, E-mail: . Aiting Yang, Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China. ORCID: https://orcid.org/0000-0002-5671-696X. Tel: +86-10-63139311, Fax: +86-10-83165944, E-mail:
| |
Collapse
|
5
|
Fitri FI, Darman WR, Ritarwan K. Higher Inflammatory Markers are correlated with Worse Cognitive Function in Coronavirus Disease-2019 Patients. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM: This study aimed to determine the correlation between inflammation with cognitive function in COVID-19 patients.
METHODS: We recruited COVID-19 patients using consecutive sampling methods in Adam Malik General Hospital Medan, Indonesia. The neutrophil-to-lymphocyte ratio (NLR,) C-reactive protein (CRP), D-dimer, and ferritin serum levels were measured as inflammatory markers . Cognitive function was assessed in several cognitive domains using Forward Digit Span for attention, Bacward Digit Span for working memory, and Trail Making Test parts A and B for executive function. The correlation between inflammatory markers and cognitive function was analyzed using Spearman correlation test.
RESULTS: This study involved 40 COVID-19 patients consisting of 13 (32.5%) males and 27 (67.5%) females; the median age of the patients was 39.5 (19–65) years. We found that higher D-dimer and ferritin levels were significantly correlated with worse BDS scores (r = −0.369 p = 0.019 and r = −0.408 p = 0.009, respectively) and higher ferritin level was also correlated with worse FDS score (r = −0.365 p = 0.020 and). Higher D-dimer and ferritin levels were also significantly correlated with a longer time of completion of TMT-B (r = 0.363 p = 0.022 and r = 0.433 p = 0.005) and higher ferritin level was also correlated with a longer time of completion of TMT-A (r = 0.438 P=0.005). There were no significant correlations between NLR and CRP levels with cognitive function.
CONCLUSION: Higher inflammatory markers are correlated with worse attention, working memory, and executive function in COVID-19 patients.
Collapse
|
6
|
Shao M, Ye Z, Qin Y, Wu T. Abnormal metabolic processes involved in the pathogenesis of non-alcoholic fatty liver disease (Review). Exp Ther Med 2020; 20:26. [PMID: 32934691 PMCID: PMC7471863 DOI: 10.3892/etm.2020.9154] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and can lead to liver cirrhosis or liver cancer in severe cases. In recent years, the incidence of NAFLD has increased substantially. The trend has continued to increase and has become a key point of concern for health systems. NAFLD is often associated with metabolic abnormalities caused by increased visceral obesity, including insulin resistance, diabetes mellitus, hypertension, dyslipidemia, atherosclerosis and systemic microinflammation. Therefore, the pathophysiological mechanisms of NAFLD must be clarified to develop new drug treatment strategies. Recently, researchers have conducted numerous studies on the pathogenesis of NAFLD and have identified various important regulatory factors and potential molecular mechanisms, providing new targets and a theoretical basis for the treatment of NAFLD. However, the pathogenesis of NAFLD is extremely complex and involves the interrelationship and influence of multiple organs and systems. Therefore, the condition must be explored further. In the present review, the abnormal metabolic process, including glucose, lipid, amino acid, bile acid and iron metabolism are reviewed. It was concluded that NAFLD is associated with an imbalanced metabolic network that involves glucose, lipids, amino acids, bile acids and iron, and lipid metabolism is the core metabolic process. The current study aimed to provide evidence and hypotheses for research and clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Mingmei Shao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zixiang Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yanhong Qin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|