1
|
Xiang Z, Guan H, Xie Q, Hu X, Liu W, Zhang S, Chen Q, Lei J, Shen Q, Liu W, Li M, Wang C. Exploring the tissue distribution propensity of active alkaloids in normal and stomach heat syndrome rats following oral administration of Zuojin Pill based on pharmacokinetics and mass spectrometry imaging. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119627. [PMID: 40089197 DOI: 10.1016/j.jep.2025.119627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/02/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuojin Pill (ZJP) is a traditional Chinese medicine (TCM) formula composed of Coptidis Rhizoma and Euodiae Fructus in a ratio of 6:1 (w/w), which has been widely used for treating gastrointestinal disorders, especially stomach heat syndrome (SHS). However, the active alkaloids in ZJP showed low plasma exposure in rats following oral administration, which failed to explain their potent pharmacological effects, thereby limiting further mechanism studies. AIM OF THE STUDY This study aimed to investigate the in vivo exposure and tissue distribution propensities of the active alkaloids in normal and SHS rats following oral administration of ZJP. MATERIAL AND METHODS A rat model of SHS was induced by oral administration of chili pepper decoction and anhydrous ethanol. Then, the plasma and tissue pharmacokinetics of active alkaloids, including four protoberberine alkaloids (PBAs) and three indole alkaloids (IDAs), were investigated following oral administration of ZJP. Furthermore, desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was employed to characterize the spatial distribution of active alkaloids in the stomach and liver. Western blot and immunofluorescence were used to evaluate the gastric mucosal barrier integrity. RESULTS Based on the tissue-to-plasma partition coefficient (Kp) values, the in vivo exposure levels of berberine (BBR), palmatine (PAL), coptisine (COP), and dehydroevodiamine (DHE) were found to be higher in tissues than in plasma, indicating a distinct tissue distribution propensity. Each alkaloid displayed the highest exposure in the gastrointestinal tissues, due to local penetration facilitated by its direct contact with the mucosal lining. Pathological states reduced the overall exposure of PBAs in the gastric mucosa. In non-gastrointestinal tissues, most alkaloids, especially BBR and COP, exhibited a potent liver distribution propensity with minimal impact from pathological states. According to DESI-MSI results, PBAs showed high exposure in the damaged regions of gastric mucosa, which was attributed to mucosal barrier damage and enhanced permeability. In the liver, PBAs were primarily localized in the parenchyma surrounding the central vein and portal area. CONCLUSION This study demonstrated the stomach and liver distribution propensity of the active alkaloids in ZJP, providing a scientific basis for these alkaloids as the pharmacodynamic material basis of ZJP against SHS from the perspective of drug exposure.
Collapse
Affiliation(s)
- Zedong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Xianrun Hu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Wenkang Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Sitong Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Qianping Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Jinchun Lei
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Qin Shen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institude of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, PR China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institude of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, PR China
| | - Manlin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China.
| |
Collapse
|
2
|
Zhou Z, Zhou Y, Zhang Z, Zhao M, Hu C, Yang L, Zhou X, Zhang X, Liu L, Shen T. Progress on the effects and underlying mechanisms of evodiamine in digestive system diseases, and its toxicity: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155851. [PMID: 39018943 DOI: 10.1016/j.phymed.2024.155851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/15/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Evodiamine (EVO) is one of the primary components of Evodia rutaecarpa and has been found to have a positive therapeutic effect on various digestive system diseases. However, no systematic review has been conducted on the research progress and mechanisms of EVO in relation to digestive system diseases, and its toxicity. PURPOSE This study aimed to provide a reference for future research in this field. STUDY DESIGN A systematic review and meta-analysis of the research progress, mechanisms, and toxicity of EVO in the treatment of digestive system diseases. METHODS Five electronic databases were utilized to search for relevant experiments. We conducted a comprehensive review and meta-analysis of the pertinent literature following the guidelines of Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA). RESULTS EVO's animal experiments in digestive system diseases primarily focus on colorectal cancer, gastric ulcers, liver cancer, liver fibrosis, ulcerative colitis, colitis-associated cancer, and functional gastrointestinal disorders. EVO also has positive effects on pancreatic cancer, radiation enteritis, gastric cancer, tongue squamous cancer, hepatitis B, oral cancer, and esophageal cancer in vivo. EVO's in cellular experiments primarily focus on SGC7901, HT29, HCT-116, and HepG2 cells. EVO also exhibits positive effects on SW480, LoVo, BGC-823, AGS, COLO-205, MKN45, SMMC-7721, Bel-7402, QGY7-701, PANC-1, SW1990, BxPC-3, HSC4, MC3, HONE1, and CNE1 cells in vitro. The potential common pathways include TGF-β, PI3K-AKT, Wnt, ErbB, mTOR, MAPK, HIF-1, NOD-like receptor, NF-κB, VEGF, JAK-STAT, AMPK, Toll-like receptor, EGFR, Ras, TNF, AGE-RAGE, Relaxin, FoxO, IL-17, Hippo, and cAMP. The mechanisms of EVO on ulcerative colitis, gastric cancer, and HCT116 cells are still controversial in vivo. EVO may have a bidirectional regulatory effect on functional gastrointestinal disorders through calcium signaling. The mechanisms of EVO on HCT116, HT29, SW480, AGS, COLO-205, and SW1990 cells are still controversial in vitro. The question of whether EVO has obvious toxicity is controversial. CONCLUSION In both cellular and animal experiments, EVO has demonstrated positive impacts on digestive system diseases. Nevertheless, additional in vivo and in vitro research is required to confirm the beneficial effects and mechanisms of EVO on digestive system diseases, as well as its potential toxicity.
Collapse
Affiliation(s)
- Zubing Zhou
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Yan Zhou
- South Sichuan Preschool Education College, Neijiang, China
| | - Zhongyi Zhang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Mei Zhao
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Chao Hu
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Lele Yang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Xin Zhou
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Xiaobo Zhang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| | - Liyun Liu
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| | - Tao Shen
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China; Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
Zhang J, Yin Y, Xu Q, Che X, Yu C, Ren Y, Li D, Zhao J. Integrated serum pharmacochemistry and investigation of the anti-gastric ulcer effect of Zuojin pill in rats induced by ethanol. PHARMACEUTICAL BIOLOGY 2022; 60:1417-1435. [PMID: 35938492 PMCID: PMC9361771 DOI: 10.1080/13880209.2022.2098345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Zuojin Pill (ZJP) has been used to treat gastrointestinal problems in China for hundreds of years. OBJECTIVE To discover more potential active ingredients and evaluate the gastroprotective mechanisms of ZJP. MATERIALS AND METHODS An approach involving UPLC-Q-Orbitrap HRMS and serum pharmacochemistry was established to screen the multiple chemical constituents of ZJP. Male Sprague-Dawley (SD) rats were divided into six groups: normal control, ulcer control, omeprazole (30 mg/kg), and three ZJP groups (1.0, 2.0 and 4.0 g/kg). After oral treatment with ZJP or omeprazole for 7 days, all groups except the normal control group were orally administered 5 mL/kg ethanol to induce gastric ulceration. Histopathological assessment of gastric tissue was performed by haematoxylin and eosin staining. Antioxidant parameters and inflammatory mediators were determined using ELISA Kit and immunohistochemical analysis. RESULTS Ninety components were identified in ZJP. Among them, 23 prototypes were found in rat serum after oral administration of ZJP. The ulcer inhibition was over 90.0% for all the ZJP groups. Compared with the ulcer control rats, ZJP (4.0 g/kg) enhanced the antioxidant capacity of gastric tissue: superoxide dismutase (1.33-fold), catalase (2.61-fold), glutathione (2.14-fold), and reduced the malondialdehyde level (0.48-fold). Simultaneously, the ZJP meaningfully lowered the content of tumour necrosis factor-α (0.76-fold), interleukin-6 (0.66-fold), myeloperoxidase (0.21-fold), and nuclear factor kappa B (p65) (0.62-fold). DISCUSSION AND CONCLUSIONS This study showed ZJP could mitigate ethanol-induced rat gastric ulcers, which might benefit from the synergistic actions of multiple ingredients. The findings could support the quality control and clinical trials of ZJP.
Collapse
Affiliation(s)
- Jiaying Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yi Yin
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Qianqian Xu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaoqing Che
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chen Yu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Ren
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Dongsheng Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Juanjuan Zhao
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Xu T, Liu C, Zhang X, Geng L, Wang H, Li L, Zhu S. Network Pharmacology-Based Exploration of the Mechanism of Action of Shugan Hewei Recipe in the Treatment of Gastroesophageal Reflux Disease with Anxiety and Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3957084. [PMID: 39280954 PMCID: PMC11401718 DOI: 10.1155/2022/3957084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 09/18/2024]
Abstract
The Shugan Hewei recipe (SHR) is a well-recognized traditional Chinese medicine (TCM) prescription that has been shown to significantly improve chest pain, acid regurgitation, and the mood of GERD. Nonetheless, the underlying mechanisms remain unclear. In this study, the active compounds and targets of SHR were predicted using network pharmacology. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were utilized to explore the therapeutic mechanism of SHR. Combined with the drug target obtained from network pharmacology, the therapeutic effect and mechanism of SHR were observed. SHR's main active compounds included quercetin, kaempferol, and luteolin. The core targets of SHR and GERD were TGF-β1, IL-1β, IL-4, CXCL10, MAPK1, MAPK3, CXCL8, IL-10, IL-2, and FOS, involving virus infection, inflammatory response, and body immunity. The core targets of SHR during the treatment of mental disorders were GABRA1, GABRA2, GABRA3, GABRA5, and GABRA6, involving synaptic transmission and transmembrane movement. Animal experiments revealed that SHR could repair the lower esophageal mucosa, mediate inflammatory factors, and GABA receptors and improve the behavior of rats. Overall, our results substantiate that SHR has huge prospects for widespread application in treating GERD subjects with anxiety and depression.
Collapse
Affiliation(s)
- Tingting Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chunfang Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiulian Zhang
- Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| | - Lin Geng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hongwei Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Li Li
- Shanghai Guanghua Hospital of Integrated Chinese and Western Medicine, Shanghai 200050, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200050, China
| | - Shengliang Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
5
|
A Web-Based Pharmacological Approach to the Mechanism of Action of Rhizoma Phragmitis and Rhizoma Curcumae in the Treatment of Chronic Atrophic Gastritis. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3483774. [PMID: 36003993 PMCID: PMC9385286 DOI: 10.1155/2022/3483774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Objective. To analyze and test the effect of Rhizoma phragmitis and Rhizoma curcumae on the network pharmacology of MAPK (mitogen-activated protein kinase) and TNF (tumor necrosis factor) signaling channels and inflammatory factor target gene regulation in successful modeling of chronic atrophic gastritis rats. Methods. Rats with chronic atrophic gastritis that were modeled successfully were randomly divided into control and study groups and were treated with conventional western medicine or Rhizoma phragmitis and Rhizoma curcumae, respectively. The pharmacological mechanism of action and efficacy were evaluated. Results. The treatment efficiency was 76.32% and 97.37% in the control and study group, respectively. After treatment, the serum tumor necrosis factor-α (TNF-α) and serum malondialdehyde (MDA) levels in the study group were lower than those in the control group and the serum epidermal growth factor (EGF) and superoxide dismutase (SOD) levels in the study group were higher than those in the control group (P < 0.05); the pain behavioral scores in the study group were lower than those in the control group, and the free acid quantity and total acid quantity in the study group were higher than those in the control group (P < 0.05); the serum MTL index in the study group was higher than that in the control group, and the serum gastrin (GAS) and pepsinogen I (PG I) indices in the study group were lower than those in the control group (P < 0.05); the number of 24-hour reflux in the study group was less than that in the control group (P < 0.05), and the longest reflux time in the study group was lower than that in the control group (P < 0.05). Conclusion. Based on the network pharmacological results, Rhizoma phragmitis and Rhizoma curcumae will modulate MAPK, TNF signaling circuits, and inflammatory factor target genes in the chronic atrophic gastritis rat model. This treatment protocol is efficient and beneficial to enhance the gastric function of the chronic atrophic gastritis rat model, while it can alleviate the inflammatory response and significantly reduce the number and duration of reflux, which is a safe and reliable treatment modality.
Collapse
|
6
|
Yan D, Wu M, Hu W, Li Y, Jin J, Yan S, Zhu W, Ye C, Liu J, Liu G, Tan B. Effects of Zuojin Pill (Rhizoma Coptidis and Fructus Evodiae preparation) on the pharmacokinetics and side effects of venlafaxine in humans. Basic Clin Pharmacol Toxicol 2022; 130:522-530. [PMID: 35132786 DOI: 10.1111/bcpt.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/31/2021] [Accepted: 02/01/2022] [Indexed: 11/29/2022]
Abstract
Venlafaxine (VEN), a first-line antidepressant, and Zuojin Pill (ZJP), a common herbal medicine consisting of Rhizoma Coptidis and Fructus Evodiae, are high likely co-administered in China. ZJP could significantly inhibit VEN pharmacokinetics in vitro and in rats through suppression of CYP2D6 activity. To date, however, no clinical study has demonstrated the clinical relevance. Here, the VEN pharmacokinetics at a single dose of VEN with or without co-administration of ZJP was compared. ZJP had a weak HDI on the pharmacokinetics of VEN. The geometric means of Cmax and AUC0-∞ of VEN increased by 36.7% and 34.6%, respectively, and the corresponding 90% CIs of geometric mean ratios (GMRs) exceed outside bioequivalent range of 0.80-1.25. However, the corresponding 90% CIs of GMRs of these parameters for ODV were within the range. Since ODV exposure (AUC), approximately 3.4-fold higher than that of VEN, hardly changed, the systemic exposure of VEN active moiety (VEN + ODV) with ZJP increased slightly (≤ 8.5%) compared with that of VEN alone. In addition, the incidence of VEN-related side effects, especially gastrointestinal relevance, were significantly reduced with ZJP. Therefore, rational concomitant use of VEN and ZJP might have low risk of HDI and be promising in clinical practice.
Collapse
Affiliation(s)
- Dongmin Yan
- Laboratory of Clinical Pharmacokinetics, Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Wenjuan Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yue Li
- Laboratory of Clinical Pharmacokinetics, Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingyi Jin
- Laboratory of Clinical Pharmacokinetics, Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoqing Yan
- Peripheral vascular disease department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhu
- Wuxi Yike Traditional Chinese Medicine Hospital, Jiangsu, China
| | | | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Guobin Liu
- Peripheral vascular disease department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Tan
- Laboratory of Clinical Pharmacokinetics, Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Tong Y, Jing M, Zhao X, Liu H, Wei S, Li R, Liu X, Wang M, Song H, Zhao Y. Metabolomic Study of Zuojin Pill in Relieving 1-Methyl-3-nitro-1-nitrosoguanidine-Induced Chronic Atrophic Gastritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:7004798. [PMID: 34956382 PMCID: PMC8709764 DOI: 10.1155/2021/7004798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
The classic prescription Zuojin Pill (ZJP) shows a good therapeutic effect on chronic atrophic gastritis (CAG); it is of great significance to clarify its specific mechanism. Therefore, we explore the mechanism of ZJP on MNNG-induced CAG by integrating approaches. First of all, through the pathological changes of gastric tissue and the expression level of PGI and PGI/II in serum, the expression of inflammation-related factors was determined by RT-PCR to determine the efficacy. Then, UPLC-Q-TOF/MS was used for plasma and urine metabolomic analysis to screen the specific potential biomarkers and metabolic pathway of ZJP in ameliorating CAG and to explore its possible mechanism. ZJP significantly ameliorate the pathological injury of gastric tissue, increase levels of PGI and PGI/II, and reduce the expression level of proinflammatory factors. Through metabolomic analysis, 9 potential metabolic differences were identified and 6 related metabolic pathways were enriched. These findings indicate for the first time the potential mechanism of ZJP in improving CAG induced by MNNG and are of great significance to the clinical development and application of ZJP-related drugs.
Collapse
Affiliation(s)
- Yuling Tong
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Manyi Jing
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Honghong Liu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shizhang Wei
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of PLA General Hospital of Chinese, Beijing, China
| | - Xia Liu
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Min Wang
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Hongtao Song
- Department of Pharmacy, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|