1
|
Hu X, Du M, Tao C, Wang J, Zhang Y, Jin Y, Yang E. Species-specific circular RNA circDS-1 enhances adaptive evolution in Talaromyces marneffei through regulation of dimorphic transition. PLoS Genet 2025; 21:e1011482. [PMID: 40048447 PMCID: PMC11928065 DOI: 10.1371/journal.pgen.1011482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/21/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Thermal adaptability is a crucial characteristic for mammalian pathogenic fungi that originally inhabit natural ecosystems. Thermally dimorphic fungi have evolved a unique ability to respond to host body temperature by shifting from mycelia to yeast. The high similarity of protein-coding genes between these fungi and their relatives suggests the indispensable but often overlooked roles of non-coding elements in fungal thermal adaptation. Here, we systematically delineated the landscape of full-length circRNAs in both mycelial and yeast conditions of Talaromyces marneffei, a typical thermally dimorphic fungus causing fatal Talaromycosis, by optimizing an integrative pipeline for circRNA detection utilizing next- and third-generation sequencing. We found T. marneffei circRNA demonstrated features such as shorter length, lower abundance, and circularization-biased splicing. We then identified and validated that circDS-1, independent of its parental gene, promotes the hyphae-to-yeast transition, maintains yeast morphology, and is involved in virulence regulation. Further analysis and experiments among Talaromyces confirmed that the generation of circDS-1 is driven by a T. marneffei-specific region in the flanking intron of circDS-1. Together, our findings not only provide fresh insights into the role of circRNA in fungal thermal adaptation but also reveal a novel molecular mechanism for the adaptive evolution of functional circRNAs derived from intronic mutations.
Collapse
Affiliation(s)
- Xueyan Hu
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Minghao Du
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Changyu Tao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Juan Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yun Zhang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yueqi Jin
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ence Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
2
|
Dai X, Xue P, Bian L. Molecular recognition and interaction between human plasminogen Kringle 5 and A2M domain in human complement C5 by biospecific methods coupled with molecular dynamics simulation. Int J Biol Macromol 2024; 270:132356. [PMID: 38754659 DOI: 10.1016/j.ijbiomac.2024.132356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
The potent angiogenesis inhibitor known as human plasminogen Kringle 5 has shown promise in the treatment of vascular disorders and malignancies. The study aimed to investigate the recognition and interaction between Kringle 5 and the A2M domain of human complement component C5 using bio-specific methodologies and molecular dynamics (MD) simulation. Initially, the specific interaction between Kringle 5 and A2M was confirmed and characterized through Ligand Blot and ELISA, yielding the dissociation constant (Kd) of 1.70 × 10-7 mol/L. Then, Kringle 5 showcased a dose-dependent inhibition of the production of C5a in lung cancer A549 cells, consequently impeding their proliferation and migration. Following the utilization of frontal affinity chromatography (FAC), it was revealed that there exists a singular binding site with the binding constant (Ka) of 3.79 × 105 L/mol. Following the implementation of homology modeling and MD optimization, the detailed results indicate that only a specific segment of the N-terminal structure of the A2M molecule engages in interaction with Kringle 5 throughout the binding process and the principal driving forces encompass electrostatic force, hydrogen bonding, and van der Waals force. In conclusion, the A2M domain of human complement C5 emerges as a plausible binding target for Kringle 5 in vivo.
Collapse
Affiliation(s)
- Xufen Dai
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Pengli Xue
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Ding JL, Hou J, Li XH, Feng MG, Ying SH. Transcription Activator Swi6 Interacts with Mbp1 in MluI Cell Cycle Box-Binding Complex and Regulates Hyphal Differentiation and Virulence in Beauveria bassiana. J Fungi (Basel) 2021; 7:jof7060411. [PMID: 34070348 PMCID: PMC8273693 DOI: 10.3390/jof7060411] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Mbp1 protein acts as a DNA-binding protein in MluI cell cycle box-binding complex (MBF) and plays an essential role in filamentous myco-pathogen Beauveria bassiana.In the current study, BbSwi6 (a homologue of yeast Swi6) was functionally characterized in B.bassiana. Both BbSwi6 and BbMbp1 localize in the nucleus and display a direct interaction relationship which is indicated by a yeast two-hybrid assay. BbSwi6 significantly contributes to hyphal growth, asexual sporulation and virulence. On the aerial surface, ΔBbSwi6 grew slower on various nutrients and displayed abnormal conidia-producing structures, which hardly produced conidia. In liquid media, BbSwi6 loss led to 90% reduction in blastospore yield. Finally, the virulence of the ΔBbSwi6 mutant was modestly weakened with a reduction of 20% in median lethal time. Comparative transcriptomics revealed that BbSwi6 mediated different transcriptomes during fungal development into conidia and blastospores. Notably, under the indicated condition, the BbSwi6-mediated transcriptome significantly differed to that mediated by BbMbp1. Our results demonstrate that, in addition to their roles as the interactive components in MBF, BbSwi6 and BbMbp1 mediate divergent genetic pathways during morphological transitions in B. bassiana.
Collapse
|