1
|
Lu X, Luo Y, Huang Y, Zhu Z, Yin H, Xu S. Cellular Senescence in Hepatocellular Carcinoma: Immune Microenvironment Insights via Machine Learning and In Vitro Experiments. Int J Mol Sci 2025; 26:773. [PMID: 39859485 PMCID: PMC11765518 DOI: 10.3390/ijms26020773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Hepatocellular carcinoma (HCC), a leading liver tumor globally, is influenced by diverse risk factors. Cellular senescence, marked by permanent cell cycle arrest, plays a crucial role in cancer biology, but its markers and roles in the HCC immune microenvironment remain unclear. Three machine learning methods, namely k nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), are utilized to identify eight key HCC cell senescence markers (HCC-CSMs). Consensus clustering revealed molecular subtypes. The single-cell analysis explored the tumor microenvironment, immune checkpoints, and immunotherapy responses. In vitro, RNA interference mediated BIRC5 knockdown, and co-culture experiments assessed its impact. Cellular senescence-related genes predicted HCC survival information better than differential expression genes (DEGs). Eight key HCC-CSMs were identified, which revealed two distinct clusters with different clinical characteristics and mutation patterns. By single-cell RNA-seq data, we investigated the immunological microenvironment and observed that increasing immune cells allow hepatocytes to regain population dominance. This phenomenon may be associated with the HCC-CSMs identified in our study. By combining bulk RNA sequencing and single-cell RNA sequencing data, we identified the key gene BIRC5 and the natural killer (NK) cells that express BIRC5 at the highest levels. BIRC5 knockdown increased NK cell proliferation but reduced function, potentially aiding tumor survival. These findings provide insights into senescence-driven HCC progression and potential therapeutic targets.
Collapse
Affiliation(s)
- Xinhe Lu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yuhang Luo
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yun Huang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiqiang Zhu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongyan Yin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Manivannan HP, Veeraraghavan VP, Francis AP. Prediction of Multi-targeting Pharmacological Activity of Bioactive Compounds from Medicinal Plants Against Hepatocellular Carcinoma Through Advanced Network Pharmacology and Bioinformatics-Based Investigation. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05150-8. [PMID: 39820926 DOI: 10.1007/s12010-024-05150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
The primary objective of this study was to identify bioactive compounds from four medicinal plants with multi-targeting activity against hepatocellular carcinoma (HCC). A comprehensive analysis led to the identification of a subset of compounds possessing favorable drug-likeness, pharmacokinetics, and absence of toxicity profiles. Target analysis for 42 phytochemicals revealed 210 potential targets associated with HCC. Protein-protein interaction (PPI) analysis of these targets uncovered five critical hub genes, STAT3, SRC, AKT1, MAPK3, and EGFR, in our study. Correlation analysis of these hub genes indicated a strong positive correlation between EGFR, MAPK3, and SRC expression highlighting their interconnected roles in HCC. Survival analysis underscored the significant prognostic role of these hub genes in HCC underscoring their potential as biomarkers. The co-expression analysis unveiled an intricate network of interactions among the hub genes, while the enrichment analysis demonstrated their enrichment in diverse biological and signaling pathways related to HCC. Molecular docking analysis between the seven phytochemicals and five identified targets revealed that bauerenol exhibited good affinity towards all the targets. Subsequent molecular dynamics (MD) simulations demonstrated that bauerenol formed stable complexes with STAT3, AKT1, EGFR, and MAPK3, suggesting its potential as a multi-targeted inhibitor. Our research suggests that bauerenol shows promise as an inhibitor for HCC targets and stands out as a notable lead compound. However, further experimental studies are necessary to confirm its activity and to evaluate its potential as a therapeutic agent for HCC.
Collapse
Affiliation(s)
- Hema Priya Manivannan
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| |
Collapse
|
3
|
Kanwal A, Zhang Z. Exploring common pathogenic association between Epstein Barr virus infection and long-COVID by integrating RNA-Seq and molecular dynamics simulations. Front Immunol 2024; 15:1435170. [PMID: 39391317 PMCID: PMC11464307 DOI: 10.3389/fimmu.2024.1435170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The term "Long-COVID" (LC) is characterized by the aftereffects of COVID-19 infection. Various studies have suggested that Epstein-Barr virus (EBV) reactivation is among the significant reported causes of LC. However, there is a lack of in-depth research that could largely explore the pathogenic mechanism and pinpoint the key genes in the EBV and LC context. This study mainly aimed to predict the potential disease-associated common genes between EBV reactivation and LC condition using next-generation sequencing (NGS) data and reported naturally occurring biomolecules as inhibitors. We applied the bulk RNA-Seq from LC and EBV-infected peripheral blood mononuclear cells (PBMCs), identified the differentially expressed genes (DEGs) and the Protein-Protein interaction (PPI) network using the STRING database, identified hub genes using the cytoscape plugins CytoHubba and MCODE, and performed enrichment analysis using ClueGO. The interaction analysis of a hub gene was performed against naturally occurring bioflavonoid molecules using molecular docking and the molecular dynamics (MD) simulation method. Out of 357 common genes, 22 genes (CCL2, CCL20, CDCA2, CEP55, CHI3L1, CKAP2L, DEPDC1, DIAPH3, DLGAP5, E2F8, FGF1, NEK2, PBK, TOP2A, CCL3, CXCL8, DEPDC1, IL6, RETN, MMP2, LCN2, and OLR1) were classified as hub genes, and the remaining ones were classified as neighboring genes. Enrichment analysis showed the role of hub genes in various pathways such as immune-signaling pathways, including JAK-STAT signaling, interleukin signaling, protein kinase signaling, and toll-like receptor pathways associated with the symptoms reported in the LC condition. ZNF and MYBL TF-family were predicted as abundant TFs controlling hub genes' transcriptional machinery. Furthermore, OLR1 (PDB: 7XMP) showed stable interactions with the five shortlisted refined naturally occurring bioflavonoids, i.e., apigenin, amentoflavone, ilexgenin A, myricetin, and orientin compounds. The total binding energy pattern was observed, with amentoflavone being the top docked molecule (with a binding affinity of -8.3 kcal/mol) with the lowest total binding energy of -18.48 kcal/mol. In conclusion, our research has predicted the hub genes, their molecular pathways, and the potential inhibitors between EBV and LC potential pathogenic association. The in vivo or in vitro experimental methods could be utilized to functionally validate our findings, which would be helpful to cure LC or to prevent EBV reactivation.
Collapse
Affiliation(s)
- Ayesha Kanwal
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhiyong Zhang
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
4
|
Mestareehi A. Global Gene Expression Profiling and Bioinformatics Analysis Reveal Downregulated Biomarkers as Potential Indicators for Hepatocellular Carcinoma. ACS OMEGA 2024; 9:26075-26096. [PMID: 38911766 PMCID: PMC11191119 DOI: 10.1021/acsomega.4c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Objective: The study aimed to elucidate the significance of CLEC4G, CAMK2β, SLC22A1, CBFA2T3, and STAB2 in the prognosis of hepatocellular carcinoma (HCC) patients and their associated molecular biological characteristics. Additionally, the research sought to identify new potential biomarkers with therapeutic and diagnostic relevance for clinical applications. Methods and Materials: We utilized a publicly available high throughput phosphoproteomics and proteomics data set of HCC to focus on the analysis of 12 downregulated phosphoproteins in HCC. Our approach integrates bioinformatic analysis with pathway analysis, encompassing gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and the construction of a protein-protein interaction (PPI) network. Results: In total, we quantified 11547 phosphorylation sites associated with 4043 phosphoproteins from a cohort of 159 HCC patients. Within this extensive data set, our specific focus was on 19 phosphorylation sites displaying significant downregulation (log2 FC ≤ -2 with p-values < 0.0001). Remarkably, our investigation revealed distinct pathways exhibiting differential regulation across multiple dimensions, including the genomic, transcriptomic, proteomic, and phosphoproteomic levels. These pathways encompass a wide range of critical cellular processes, including cellular component organization, cell cycle control, signaling pathways, transcriptional and translational control, and metabolism. Furthermore, our bioinformatics analysis unveiled noteworthy insights into the subcellular localizations, biological processes, and molecular functions associated with these proteins and phosphoproteins. Within the context of the PPI network, we identified 12 key genes CLEC4G, STAB2, ADH1A, ADH1B, CAMK2B, ADH4, CHGB, PYGL, ADH1C, AKAP12, CBFA2T3, and SLC22A1 as the top highly interconnected hub genes. Conclusions: The findings related to CLEC4G, ADH1B, SLC22A1, CAMK2β, CBFA2T3, and STAB2 indicate their reduced expression in HCC, which is associated with an unfavorable prognosis. Furthermore, the results of KEGG and GO pathway analyses suggest that these genes may impact liver cancer by engaging various targets and pathways, ultimately promoting the progression of hepatocellular carcinoma. These results underscore the significant potential of CLEC4G, ADH1B, SLC22A1, CAMK2β, CBFA2T3, and STAB2 as key contributors to HCC development and advancement. This insight holds promise for identifying therapeutic targets and charting research avenues to enhance our understanding of the intricate molecular mechanisms underlying hepatocellular carcinoma.
Collapse
Affiliation(s)
- Aktham Mestareehi
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, P.O. Box 22, Amman 11622, Jordan
- School
of Medicine, The Ohio State University, Columbus, Ohio 43202, United States
- Department
of Pharmaceutical Sciences, School of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| |
Collapse
|
5
|
Zargar S, Wani TA, Alamery S, Yaseen F. Olmutinib Reverses Thioacetamide-Induced Cell Cycle Gene Alterations in Mice Liver and Kidney Tissues, While Wheat Germ Treatment Exhibits Limited Efficacy at Gene Level. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:639. [PMID: 38674285 PMCID: PMC11052166 DOI: 10.3390/medicina60040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: TAA is potent hepatic/renal toxicant. Conversely, WGO is a potent dietary supplement with impressive antioxidant properties. Olmutinib is an apoptotic chemotherapy drug that does not harm the liver or kidney. This study investigated the impact of olmutinib and wheat germ oil (WGO) on Thioacetamide (TAA)-induced gene alterations in mice liver and kidney tissues. Materials and Methods: Adult male C57BL/6 mice were exposed to 0.3% TAA in drinking water for 14 days, followed by the oral administration of olmutinib (30 mg/kg) and WGO (1400 mg/kg) for 5 consecutive days. Treatment groups included the following: groups I (control), II (TAA-exposed), III (TAA + olmutinib), IV (TAA + WGO), and V (TAA + olmutinib + WGO). Results: The findings revealed that TAA exposure increased MKi67 and CDKN3 gene expression in liver and kidney tissues. Olmutinib treatment effectively reversed these TAA-induced effects, significantly restoring MKi67 and CDKN3 gene expression. WGO also reversed MKi67 effects in the liver but exhibited limited efficacy in reversing CDKN3 gene alterations induced by TAA exposures in both the liver and kidney. TAA exposure showed the tissue-specific expression of TP53, with decreased expression in the liver and increased expression in the kidney. Olmutinib effectively reversed these tissue-specific alterations in TP53 expression. While WGO treatment alone could not reverse the gene alterations induced by TAA exposure, the co-administration of olmutinib and WGO exhibited a remarkable potentiation of therapeutic effects in both the liver and kidney. The gene interaction analysis revealed 77.4% of physical interactions and co-localization between MKi67, CDKN3, and TP53 expressions. Protein-protein interaction networks also demonstrated physical interactions between MKi67, TP53, and CDKN3, forming complexes or signaling cascades. Conclusions: It was predicted that the increased expression of the MKi67 gene by TAA leads to the increase in TP53, which negatively regulates the cell cycle via increased CDKN3 expression in kidneys and the restoration of TP53 levels in the liver. These findings contribute to our understanding of the effects of olmutinib and WGO on TAA-induced gene expression changes and highlight their contrasting effects based on cell cycle alterations.
Collapse
Affiliation(s)
- Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia; (S.A.); (F.Y.)
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Salman Alamery
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia; (S.A.); (F.Y.)
| | - Fatimah Yaseen
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia; (S.A.); (F.Y.)
| |
Collapse
|
6
|
Chen Q, Liu L, Ni S. Screening of ferroptosis-related genes in sepsis-induced liver failure and analysis of immune correlation. PeerJ 2022; 10:e13757. [PMID: 35923893 PMCID: PMC9341447 DOI: 10.7717/peerj.13757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/29/2022] [Indexed: 01/17/2023] Open
Abstract
Purpose Sepsis-induced liver failure is a kind of liver injury with a high mortality, and ferroptosis plays a key role in this disease. Our research aims to screen ferroptosis-related genes in sepsis-induced liver failure as targeted therapy for patients with liver failure. Methods Using the limma software, we analyzed the differentially expressed genes (DEGs) in the GSE60088 dataset downloaded from the Gene Expression Omnibus (GEO) database. Clusterprofiler was applied for enrichment analysis of DEGs enrichment function. Then, the ferroptosis-related genes of the mice in the FerrDb database were crossed with DEGs. Sepsis mice model were prepared by cecal ligation and perforation (CLP). ALT and AST in the serum of mice were measured using detection kit. The pathological changes of the liver tissues in mice were observed by hematoxylin-eosin (H & E) staining. We detected the apoptosis of mice liver tissues using TUNEL. The expression of Hmox1, Epas1, Sirt1, Slc3a2, Jun, Plin2 and Zfp36 were detected by qRT-PCR. Results DEGs analysis showed 136 up-regulated and 45 down-regulated DEGs. Meanwhile, we found that the up-regulated DEGs were enriched in pathways including the cytokine biosynthesis process while the down-regulated DEGs were enriched in pathways such as organic hydroxy compound metabolic process. In this study, seven genes (Hmox1, Epas1, Sirt1, Slc3a2, Jun, Plin2 and Zfp36) were obtained through the intersection of FerrDb database and DEGs. However, immune infiltration analysis revealed that ferroptosis-related genes may promote the development of liver failure through B cells and natural killer (NK) cells. Finally, it was confirmed by the construction of septic liver failure mice model that ferroptosis-related genes of Hmox1, Slc3a2, Jun and Zfp36 were significantly correlated with liver failure and were highly expressed. Conclusion The identification of ferroptosis-related genes Hmox1, Slc3a2, Jun and Zfp36 in the present study contribute to our understanding of the molecular mechanism of sepsis-induced liver failure, and provide candidate targets for the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Qingli Chen
- Department of Emergency Medicine, Lishui City People’s Hospital, Lishui, Zhejiang Province, China
| | - Luxiang Liu
- Department of Infectious Disease, Lishui City People’s Hospital, Lishui, Zhejiang Province, China
| | - Shuangling Ni
- Department of Infectious Disease, Lishui City People’s Hospital, Lishui, Zhejiang Province, China
| |
Collapse
|
7
|
Nayak C, Singh SK. Integrated Transcriptome Profiling Identifies Prognostic Hub Genes as Therapeutic Targets of Glioblastoma: Evidenced by Bioinformatics Analysis. ACS OMEGA 2022; 7:22531-22550. [PMID: 35811900 PMCID: PMC9260928 DOI: 10.1021/acsomega.2c01820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM) is the most devastating and frequent type of primary brain tumor with high morbidity and mortality. Despite the use of surgical resection followed by radio- and chemotherapy as standard therapy, the progression of GBM remains dismal with a median overall survival of <15 months. GBM embodies a populace of cancer stem cells (GSCs) that is associated with tumor initiation, invasion, therapeutic resistance, and post-treatment reoccurrence. However, understanding the potential mechanisms of stemness and their candidate biomarkers remains limited. Hence in this investigation, we aimed to illuminate potential candidate hub genes and key pathways associated with the pathogenesis of GSC in the development of GBM. The integrated analysis discovered differentially expressed genes (DEGs) between the brain cancer tissues (GBM and GSC) and normal brain tissues. Multiple approaches, including gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were employed to functionally annotate the DEGs and visualize them through the R program. The significant hub genes were identified through the protein-protein interaction network, Venn diagram analysis, and survival analysis. We observed that the upregulated DEGs were prominently involved in the ECM-receptor interaction pathway. The downregulated genes were mainly associated with the axon guidance pathway. Five significant hub genes (CTNNB1, ITGB1, TNC, EGFR, and SHOX2) were screened out through multiple analyses. GO and KEGG analyses of hub genes uncovered that these genes were primarily enriched in disease-associated pathways such as the inhibition of apoptosis and the DNA damage repair mechanism, activation of the cell cycle, EMT (epithelial-mesenchymal transition), hormone AR (androgen receptor), hormone ER (estrogen receptor), PI3K/AKT (phosphatidylinositol 3-kinase and AKT), RTK (receptor tyrosine kinase), and TSC/mTOR (tuberous sclerosis complex and mammalian target of rapamycin). Consequently, the epigenetic regulatory network disclosed that hub genes played a vital role in the progression of GBM. Finally, candidate drugs were predicted that can be used as possible drugs to treat GBM patients. Overall, our investigation offered five hub genes (CTNNB1, ITGB1, TNC, EGFR, and SHOX2) that could be used as precise diagnostic and prognostic candidate biomarkers of GBM and might be used as personalized therapeutic targets to obstruct gliomagenesis.
Collapse
|