1
|
Xie D, Yan T, Zhang X, Liu X. Progressed Atrioventricular Block in Immune Checkpoint Inhibitor Induced Myocarditis: A Case Report. Pacing Clin Electrophysiol 2025; 48:414-417. [PMID: 39913087 DOI: 10.1111/pace.15155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/08/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
Immune checkpoint inhibitor (ICI) has demonstrated promising results in treating various cancers, but its associated cardiotoxicity, especially ICI-associated myocarditis, presents a serious concern. We reported a case of a 63-year-old male who complained of progressive dyspnea after tislelizumab, a novel humanized anti-PD-1 monoclonal antibody, for hepatocellular carcinoma. Upon diagnosing ICI-related myocarditis, corticosteroid therapy was initiated immediately. The elevated biomarkers quickly decreased, but the atrioventricular block progressed from first-degree to third-degree, necessitating pacemaker implantation. This is the first report of complete AVB consecutive to tislelizumab-induced myocarditis, highlighting the importance of early corticosteroid therapy and continuous electrocardiography monitoring.
Collapse
Affiliation(s)
- Dongmei Xie
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Ting Yan
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xingbin Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Tan S, Qi C, Zeng H, Wei Q, Huang Q, Pu X, Li W, Li Y, Tian P. Steroid-Refractory Myocarditis Induced by Immune Checkpoint Inhibitor Responded to Infliximab: Report of Two Cases and Literature Review. Cardiovasc Toxicol 2024; 24:1174-1191. [PMID: 39256296 PMCID: PMC11445312 DOI: 10.1007/s12012-024-09918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Immune checkpoint inhibitors (ICIs), including anti-programmed cell death protein 1 and its ligand (PD-1/PD-L1) as well as anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4), have been widely used for treating solid tumors. Myocarditis is a potentially lethal immune-related adverse events (irAEs) caused by ICIs therapy. The treatment of steroid-refractory myocarditis is challenging. We reported two non-small-cell lung cancer patients with steroid-refractory myocarditis induced by ICI. The symptoms were not resolved after pulse corticosteroid therapy and subsequent treatment including intravenous immunoglobulin and mycophenolate mofetil. Considering the level of serum interleukin (IL)-6 decreased by > 50% and level of serum tumor necrosis factor-α (TNF-α) increased during the course of the disease, infliximab was used. Myocarditis gradually alleviated after infliximab treatment. The cases revealed that specific cytokine inhibitors have promising roles in the treatment of steroid-refractory myocarditis. Infliximab could be considered for patients with low level of IL-6 and elevated level of TNF-α.
Collapse
Affiliation(s)
- Sihan Tan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Chang Qi
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Hao Zeng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Qi Wei
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Qin Huang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Xin Pu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yalun Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China.
| | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Savvidis S, Ragazzini R, de Rafael VC, Hutchinson JC, Massimi L, Vittoria FA, Campinoti S, Partridge T, Ogunbiyi OK, Atzeni A, Sebire NJ, De Coppi P, Mittone A, Bravin A, Bonfanti P, Olivo A. Advanced three-dimensional X-ray imaging unravels structural development of the human thymus compartments. COMMUNICATIONS MEDICINE 2024; 4:204. [PMID: 39438572 PMCID: PMC11496816 DOI: 10.1038/s43856-024-00623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The thymus, responsible for T cell-mediated adaptive immune system, has a structural and functional complexity that is not yet fully understood. Until now, thymic anatomy has been studied using histological thin sections or confocal microscopy 3D reconstruction, necessarily for limited volumes. METHODS We used Phase Contrast X-Ray Computed Tomography to address the lack of whole-organ volumetric information on the microarchitecture of its structural components. We scanned 15 human thymi (9 foetal and 6 postnatal) with synchrotron radiation, and repeated scans using a conventional laboratory x-ray system. We used histology, immunofluorescence and flow cytometry to validate the x-ray findings. RESULTS Application to human thymi at pre- and post-natal stages allowed reliable tracking and quantification of the evolution of parameters such as size and distribution of Hassall's Bodies and medulla-to-cortex ratio, whose changes reflect adaptation of thymic activity. We show that Hassall's bodies can occupy 25% of the medulla volume, indicating they should be considered a third thymic compartment with possible implications on their role. Moreover, we demonstrate compatible results can be obtained with standard laboratory-based x-ray equipment, making this research tool accessible to a wider community. CONCLUSIONS Our study allows overcoming the resolution and/or volumetric limitations of existing approaches for the study of thymic disfunction in congenital and acquired disorders affecting the adaptive immune system.
Collapse
Affiliation(s)
- Savvas Savvidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Roberta Ragazzini
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, London, NW3 2PP, UK
| | - Valeria Conde de Rafael
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, London, NW3 2PP, UK
| | - J Ciaran Hutchinson
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 1EH, UK
| | - Lorenzo Massimi
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Fabio A Vittoria
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- ENEA - Radiation Protection Institute, Via Martiri di Monte Sole 4, 40129, Bologna, Italy
| | - Sara Campinoti
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, London, NW3 2PP, UK
- The Roger Williams Institute of Hepatology, 111 Coldharbour Lane, SE5 9NT, London, UK
| | - Tom Partridge
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Olumide K Ogunbiyi
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 1EH, UK
| | - Alessia Atzeni
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Neil J Sebire
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 1EH, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
- Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital NHS Trust, London, UK
| | - Alberto Mittone
- European Synchrotron Radiation Facility, Grenoble, 38043, France
- Advanced Photon Source, Argonne National Labs, Lemont, IL, USA
| | - Alberto Bravin
- European Synchrotron Radiation Facility, Grenoble, 38043, France
- Dept. of Physics "G. Occhialini", University Milano Bicocca, Milano, Italy
| | - Paola Bonfanti
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, London, NW3 2PP, UK.
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
4
|
Zhou Q, Qin Z, Wu G, Yan P, Wang Q, Qu J, Jiang J, Ye D. Sintilimab-induced myocarditis suspected in a patient with esophageal cancer and followed septic shock: case report and literature review. Front Oncol 2024; 14:1465395. [PMID: 39351355 PMCID: PMC11439622 DOI: 10.3389/fonc.2024.1465395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have become a prevalent tool in anti-tumor therapy in recent years. They may cause immune-related adverse events (irAEs) including potentially life-threatening cardiovascular toxicities such as myocarditis. Case presentation In this report, we describe a 69-year-old man with recurrent esophageal cancer who developed myocarditis after receiving three cycles of sintilimab combined with nab-paclitaxel. Despite a rising cardiac troponin I (cTnI), he initially reported no discomfort. He was later suspected of having with sintilimab-induced myocarditis. Although treatment with methylprednisolone reduced his cTnI levels, he still experienced significant discomfort. Moreover, he developed pneumonia and septic shock. Conclusion In our literature search to identify all reported cases of sintilimab-associated adverse events involving myocarditis, we found 14 patients, including those with esophageal cancer, thymoma, lung cancer, gastric cancer, hepatobiliary carcinoma, and chordoma. The primary treatment for ICI-induced cardiotoxicity is methylprednisolone. However, the long-term or high-dose use of steroids can also induce side effects, which have not been the focus of these case reports. This is the first reported case of asymptomatic immune-mediated myocarditis occurring during the treatment of esophageal cancer with sintilimab. It is also the first to address the side effects of methylprednisolone used in the treatment of sintilimab-related myocarditis. To facilitate an early diagnosis, regular monitoring is required during sintilimab treatment. We should also focus on the prevention and management of adverse effects related to steroid use.
Collapse
Affiliation(s)
- Qihao Zhou
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhiquan Qin
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guoqing Wu
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peiyuan Yan
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qunjiang Wang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Qu
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiahong Jiang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Da Ye
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Wang Y, Li S, Shi H, Guan X, Wei Q, Chen D. Therapeutic agents for steroid-refractory immune checkpoint inhibitor-related myocarditis: a narrative review. Cardiovasc Diagn Ther 2024; 14:679-697. [PMID: 39263485 PMCID: PMC11384453 DOI: 10.21037/cdt-24-114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/03/2024] [Indexed: 09/13/2024]
Abstract
Background and Objective Immune checkpoint inhibitors (ICIs) have become one of the cornerstones of current oncology treatment, and immune checkpoint inhibitor-related myocarditis (IRM) is the most fatal of all immune checkpoint inhibitor-related adverse events (irAEs). Methylprednisolone pulse therapy (500-1,000 mg/day) is the initial treatment for IRM recommended by almost all relevant guidelines. However, subsequent treatment regimens remain unclear for patients who do not respond to methylprednisolone pulse therapy (who are defined as steroid-refractory patients). We propose a potential treatment approach for steroid-refractory IRM. Methods The PubMed and the Cochrane Library databases were searched using keywords related to IRM. Relevant English-language articles published from January 2000 to February 2024 were included in this narrative review. Key Content and Findings Abatacept is the preferred choice for the treatment of isolated steroid-refractory IRM. For rapidly progressive or interleukin-6 abnormally elevated steroid-refractory IRM, alemtuzumab or tocilizumab/tofacitinib are the preferred therapeutic agents, respectively. For steroid-refractory IRM comorbid with myositis or comorbid with myasthenia gravis, abatacept + ruxolitinib/mycophenolate mofetil (MMF)/intravenous immunoglobulin (IVIG), or MMF + pyridostigmine/IVIG are the preferred therapeutic agents, respectively. Conclusions The pathogenesis of steroid-refractory IRM and the treatment regimen remain unclear. A large number of studies need to be conducted to validate or update our proposed treatment approach.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, China
| | - Shouchao Li
- Department of Manufacturing Laboratory, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - He Shi
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue Guan
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Wei
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, China
| | - Dazhong Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Heemelaar JC, Louisa M, Neilan TG. Treatment of Immune Checkpoint Inhibitor-associated Myocarditis. J Cardiovasc Pharmacol 2024; 83:384-391. [PMID: 37506676 PMCID: PMC10830893 DOI: 10.1097/fjc.0000000000001456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
ABSTRACT Immune checkpoint inhibitors (ICIs) are a form immunotherapy where the negative regulators of host immunity are targeted, thereby leveraging the own immune system. ICIs have significantly improved cancer survival in several advanced malignancies, and there are currently more than 90 different cancer indications for ICIs. Most patients develop immune-related adverse events during ICI therapy. Most are mild, but a small subset of patients will develop severe and potentially fatal immune-related adverse events. A serious cardiovascular complication of ICI therapy is myocarditis. Although the incidence of myocarditis is low, mortality rates of up to 50% have been reported. The mainstay of ICI-associated myocarditis treatment is high-dose corticosteroids. Unfortunately, half of patients with myocarditis do not show clinical improvement after corticosteroid treatment. Also, high doses of corticosteroids may adversely impact cancer outcomes. There is an evidence gap in the optimal second-line treatment strategy. Currently, there is a paradigm shift in second-line treatment taking place from empirical corticosteroid-only strategies to either intensified initial immunosuppression where corticosteroids are combined with another immunosuppressant or targeted therapies directed at the pathophysiology of ICI myocarditis. However, the available evidence to support these novel strategies is limited to observational studies and case reports. The aim of this review is to summarize the literature, guidelines, and future directions on the pharmacological treatment of ICI myocarditis.
Collapse
Affiliation(s)
- Julius C Heemelaar
- Cardiovascular Imaging Research Center (CIRC), Department of Cardiology and Radiology, Massachusetts General Hospital, Boston, MA; and
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Louisa
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tomas G Neilan
- Cardiovascular Imaging Research Center (CIRC), Department of Cardiology and Radiology, Massachusetts General Hospital, Boston, MA; and
| |
Collapse
|
7
|
Tartarone A, Lerose R, Lettini AR, Tartarone M. Current Treatment Approaches for Thymic Epithelial Tumors. Life (Basel) 2023; 13:life13051170. [PMID: 37240815 DOI: 10.3390/life13051170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Thymic epithelial tumors (TETs), including thymoma, thymic carcinoma and neuroendocrine tumors, are uncommon tumors that originate from the epithelial cells of the thymus. Nevertheless, despite their rarity, they represent the most common tumor type located in the anterior mediastinum. Therapeutic choices based on staging and histology may include surgery with or without neoadjuvant or adjuvant therapy represented by chemotherapy, radiotherapy or chemo-radiotherapy. For patients with advanced or metastatic TETs, platinum-based chemotherapy remains the standard first-line treatment; however, some new drugs and combinations are currently under evaluation. In any case, proper management of patients with TETs requires a multidisciplinary team approach to personalize care for each patient.
Collapse
Affiliation(s)
- Alfredo Tartarone
- Department of Onco-Hematology, Division of Medical Oncology, IRCCS-CROB Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Rosa Lerose
- Hospital Pharmacy, IRCCS-CROB Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Alessandro Rocco Lettini
- Unit of Clinical Psychology, IRCCS-CROB Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | | |
Collapse
|