1
|
Wang M, Pugh SM, Daboul J, Miller D, Xu Y, Hill JW. IGF-1 Acts through Kiss1-expressing Cells to Influence Metabolism and Reproduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601722. [PMID: 39005405 PMCID: PMC11244982 DOI: 10.1101/2024.07.02.601722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Objective Kisspeptin, encoded by the Kiss1 gene, ties puberty and fertility to energy status; however, the metabolic factors that control Kiss1-expressing cells need to be clarified. Methods To evaluate the impact of IGF-1 on the metabolic and reproductive functions of kisspeptin producing cells, we created mice with IGF-1 receptor deletion driven by the Kiss1 promoter (IGF1RKiss1 mice). Previous studies have shown IGF-1 and insulin can bind to each other's receptor, permitting IGF-1 signaling in the absence of IGF1R. Therefore, we also generated mice with simultaneous deletion of the IGF1R and insulin receptor (IR) in Kiss1-expressing cells (IGF1R/IRKiss1 mice). Results Loss of IGF1R in Kiss1 cells caused stunted body length. In addition, female IGF1RKiss1 mice displayed lower body weight and food intake plus higher energy expenditure and physical activity. This phenotype was linked to higher proopiomelanocortin (POMC) expression and heightened brown adipose tissue (BAT) thermogenesis. Male IGF1RKiss1 mice had mild changes in metabolic functions. Moreover, IGF1RKiss1 mice of both sexes experienced delayed puberty. Notably, male IGF1RKiss1 mice had impaired adulthood fertility accompanied by lower gonadotropin and testosterone levels. Thus, IGF1R in Kiss1-expressing cells impacts metabolism and reproduction in a sex-specific manner. IGF1R/IRKiss1 mice had higher fat mass and glucose intolerance, suggesting IGF1R and IR in Kiss1-expressing cells together regulate body composition and glucose homeostasis. Conclusions Overall, our study shows that IGF1R and IR in Kiss1 have cooperative roles in body length, metabolism, and reproduction.
Collapse
Affiliation(s)
- Mengjie Wang
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Seamus M. Pugh
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Judy Daboul
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - David Miller
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Yong Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer W. Hill
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, USA
- Department of Obstetrics and Gynecology, University of Toledo College of Medicine, Toledo, Ohio, USA
| |
Collapse
|
2
|
Li X, Tang J, Lin S, Liu X, Li Y. Mendelian randomization analysis demonstrates the causal effects of IGF family members in diabetes. Front Med (Lausanne) 2024; 11:1332162. [PMID: 38375323 PMCID: PMC10875044 DOI: 10.3389/fmed.2024.1332162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Background Observational studies have consistently shown significant associations between the IGF family and metabolic diseases, including diabetes. However, these associations can be influenced by confounding factors and reverse causation. This study aimed to assess the causal relationship between the IGF family and diabetes using Mendelian randomization (MR). Methods We conducted a two-sample MR analysis to investigate the causal effects of the IGF family on diabetes. Instrumental variables for the IGF family and diabetes were derived from summary-level statistics obtained from genome-wide association studies. Horizontal pleiotropy was assessed using MR-Egger regression and the weighted median method. We applied the inverse-variance weighted method as part of the conventional MR analysis to evaluate the causal impact of the IGF family on diabetes risk. To test the robustness of the results, we also employed MR-Egger regression, the weighted median method, and a leave-one-out analysis. Results Our study revealed that IGF-1 causally increases the risk of Type 2 Diabetes (T2D), while IGFBP-6, adiponectin and INSR decreases the risk (IGF-1, OR 1.02 [95% CI 1-1.03], p = 0.01; IGFBP-6, OR 0.92 [95% CI 0.87-0.98], p = 0.01; Adiponectin, OR 0.837 [95% CI 0.721-0.970], p = 0.018; INSR, OR 0.910 [95% CI 0.872-0.950], p = 1.52 × 10-5). Additionally, genetically lower levels of IGF-1 and IGFBP-5, along with higher levels of IGFBP-7, were associated with an increased risk of Type 1 Diabetes (T1D) (IGF-1, OR 0.981 [95% CI 0.963-0.999], p = 0.037; IGFBP-5, OR 0.882 [95% CI 0.778-0.999], p = 0.049; IGFBP-7, OR 1.103 [95% CI 1.008-1.206], p = 0.033). Conclusion In summary, our investigation has unveiled causal relationships between specific IGF family members and T1D and T2D through MR analysis. Generally, the IGF family appears to reduce the risk of T1D, but it presents a more complex and controversial role in the context of T2D. These findings provide compelling evidence that T2D is intricately linked with developmental impairment. Our study results offer fresh insights into the pathogenesis and the significance of serum IGF family member concentrations in assessing diabetes risk.
Collapse
Affiliation(s)
| | | | | | - Xuwei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Shapiro MR, Peters LD, Brown ME, Cabello-Kindelan C, Posgai AL, Bayer AL, Brusko TM. Insulin-like Growth Factor-1 Synergizes with IL-2 to Induce Homeostatic Proliferation of Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1108-1122. [PMID: 37594278 PMCID: PMC10511790 DOI: 10.4049/jimmunol.2200651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
IL-2 has been proposed to restore tolerance via regulatory T cell (Treg) expansion in autoimmunity, yet off-target effects necessitate identification of a combinatorial approach allowing for lower IL-2 dosing. We recently reported reduced levels of immunoregulatory insulin-like growth factor-1 (IGF1) during type 1 diabetes progression. Thus, we hypothesized that IGF1 would synergize with IL-2 to expand Tregs. We observed IGF1 receptor was elevated on murine memory and human naive Treg subsets. IL-2 and IGF1 promoted PI3K/Akt signaling in Tregs, inducing thymically-derived Treg expansion beyond either agent alone in NOD mice. Increased populations of murine Tregs of naive or memory, as well as CD5lo polyclonal or CD5hi likely self-reactive, status were also observed. Expansion was attributed to increased IL-2Rγ subunit expression on murine Tregs exposed to IL-2 and IGF1 as compared with IL-2 or IGF1 alone. Assessing translational capacity, incubation of naive human CD4+ T cells with IL-2 and IGF1 enhanced thymically-derived Treg proliferation in vitro, without the need for TCR ligation. We then demonstrated that IGF1 and IL-2 or IL-7, which is also IL-2Rγ-chain dependent, can be used to induce proliferation of genetically engineered naive human Tregs or T conventional cells, respectively. These data support the potential use of IGF1 in combination with common γ-chain cytokines to drive homeostatic T cell expansion, both in vitro and in vivo, for cellular therapeutics and ex vivo gene editing.
Collapse
Affiliation(s)
- Melanie R. Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Leeana D. Peters
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Matthew E. Brown
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | | | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Allison L. Bayer
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| |
Collapse
|
4
|
Wang X, Tewari N, Sato F, Tanimoto K, Thangavelu L, Makishima M, Bhawal UK. Biphasic Functions of Sodium Fluoride (NaF) in Soft and in Hard Periodontal Tissues. Int J Mol Sci 2022; 23:ijms23020962. [PMID: 35055148 PMCID: PMC8780524 DOI: 10.3390/ijms23020962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Sodium fluoride (NaF) is widely used in clinical dentistry. However, the administration of high or low concentrations of NaF has various functions in different tissues. Understanding the mechanisms of the different effects of NaF will help to optimize its use in clinical applications. Studies of NaF and epithelial cells, osteoblasts, osteoclasts, and periodontal cells have suggested the significant roles of fluoride treatment. In this review, we summarize recent studies on the biphasic functions of NaF that are related to both soft and hard periodontal tissues, multiple diseases, and clinical dentistry.
Collapse
Affiliation(s)
- Xingzhi Wang
- Department of Biochemistry, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Nitesh Tewari
- Centre for Dental Education and Research, Division of Pedodontics and Preventive Dentistry, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Fuyuki Sato
- Shizuoka Cancer Center, Pathology Division, Shizuoka 411-8777, Japan;
| | - Keiji Tanimoto
- Department of Translational Cancer Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Lakshmi Thangavelu
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
| | - Makoto Makishima
- Department of Biochemistry, Nihon University School of Medicine, Tokyo 173-8610, Japan;
- Correspondence: (M.M.); (U.K.B.)
| | - Ujjal K. Bhawal
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
- Correspondence: (M.M.); (U.K.B.)
| |
Collapse
|
5
|
Wang X, Zheng X, Yan J, Xu R, Xu M, Zheng L, Xu L, Lin Z. The Clinical Values of Afamin, Triglyceride and PLR in Predicting Risk of Gestational Diabetes During Early Pregnancy. Front Endocrinol (Lausanne) 2021; 12:723650. [PMID: 34803906 PMCID: PMC8597949 DOI: 10.3389/fendo.2021.723650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023] Open
Abstract
Objective To establish a model to predict gestational diabetes mellitus (GDM) based on the clinical characteristics, early pregnancy (10-12 weeks gestation) peripheral blood routine, and biochemical indicators, and to explore its predictive efficiencies. Methods Data from 607 pregnant women with GDM were compared to the data from 833 pregnant women without GDM admitted to the Obstetrics Department of Fujian Maternity and Child Health Hospital (affiliated to Fujian Medical University) from May 2018 to December 2018 were retrospectively included. The ages of the pregnant women, paternal ages, number of pregnancies, number of deliveries, pre-pregnancy heights/weights, and the calculated body mass indexes (BMI) were recorded. In all participants, 10-12 weeks of pregnancy, afamin concentration, routine blood work, prenatal aneuploidy screening, and biochemical testing were performed. At weeks 24-28 of gestation, patients underwent oral glucose tolerance test (OGTT) for GDM screening. Results Multivariate logistic regression analysis showed that maternal age, early pregnancy afamin level, triglycerides, and platelet/lymphocyte ratio (PLR) were independent risk factors for gestational diabetes. The formula for predicting GDM probability was as follows: P = 1/1 + exp( - 6.054 + 0.774 × triglycerides + 0.002 × afamin + 0.155 × age - 0.012 × PLR)]. From the established ROC curve, the area under the curve (AUC) was 0.748, indicating that the model has a good degree of discrimination. When the predictive probability cut-off value was set on 0.358, sensitivity, specificity, positive predictive value, and negative predictive value were 69.2%, 68.3%, 42.5%, and 86.2%, respectively, and the accuracy rate was 70.2%. The Hosmer-Lemeshow test results showed that the goodness of the model fit has a good calibration ability (χ2 = 12.269, df=8, P=0.140). Conclusions Maternal age, early pregnancy afamin level, triglycerides, and PLR are independent risk factors for gestational diabetes. When combined, the above indicators are helpful for prediction, early diagnosis, and intervention of gestational diabetes.
Collapse
Affiliation(s)
- Xuechun Wang
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiuqiong Zheng
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jianying Yan
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Rongli Xu
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Mu Xu
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lin Zheng
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liangpu Xu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhi Lin
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Gui W, Liang J, Lin X, Shi N, Zhu Y, Tan B, Li H. Association of Genetic Variants in IGF2-Related Genes With Risk of Metabolic Syndrome in the Chinese Han Population. Front Endocrinol (Lausanne) 2021; 12:654747. [PMID: 34093434 PMCID: PMC8173176 DOI: 10.3389/fendo.2021.654747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS To explore associations between polymorphisms of IGF2-related genes including H19, IGF2, IGF2BP2 and IGF2R and Metabolic syndrome (MetS) susceptibility in the Chinese Han population. METHODS 66 subjects with MetS and 257 control subjects were collected for inclusion in a case-control study. PCR-RFLP was used to investigate polymorphisms in the H19, IGF2, IGF2BP2 and IGF2R genes. Elisa was used to detect the serum IGF2 concentrations. RESULTS Females carrying the GG and AG genotypes of rs680 (IGF2) exhibited a lower risk of MetS, compared with those harboring AA (adjusted OR = 0.388, p = 0.027), while GG and AG genotypes were associated with lower fasting glucose and HbA1c. In males, the Waist-to-Hip Ratio (WHR) and the level of TG were significantly higher in GG and AG genotypes than in the AA genotype of rs680 in IGF2. Levels of HDL-c were lower in men with GG and AG genotypes compared with those carrying the AA genotype. Serum IGF2 concentrations did not change among different genotypes. Finally, multifactor dimensionality reduction (MDR) analysis identified interactions between four polymorphisms: rs3741279 (H19), rs680 (IGF2), rs1470579 (IGF2BP2) and rs629849 (IGF2R). CONCLUSIONS Our study suggests that IGF2-related genes including H19, IGF2, IGF2BP2 and IGF2R genes may play pivotal roles in the development of MetS.
Collapse
|
7
|
Shapiro MR, Wasserfall CH, McGrail SM, Posgai AL, Bacher R, Muir A, Haller MJ, Schatz DA, Wesley JD, von Herrath M, Hagopian WA, Speake C, Atkinson MA, Brusko TM. Insulin-Like Growth Factor Dysregulation Both Preceding and Following Type 1 Diabetes Diagnosis. Diabetes 2020; 69:413-423. [PMID: 31826866 PMCID: PMC7034187 DOI: 10.2337/db19-0942] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factors (IGFs), specifically IGF1 and IGF2, promote glucose metabolism, with their availability regulated by IGF-binding proteins (IGFBPs). We hypothesized that IGF1 and IGF2 levels, or their bioavailability, are reduced during type 1 diabetes development. Total serum IGF1, IGF2, and IGFBP1-7 levels were measured in an age-matched, cross-sectional cohort at varying stages of progression to type 1 diabetes. IGF1 and IGF2 levels were significantly lower in autoantibody (AAb)+ compared with AAb- relatives of subjects with type 1 diabetes. Most high-affinity IGFBPs were unchanged in individuals with pre-type 1 diabetes, suggesting that total IGF levels may reflect bioactivity. We also measured serum IGFs from a cohort of fasted subjects with type 1 diabetes. IGF1 levels significantly decreased with disease duration, in parallel with declining β-cell function. Additionally, plasma IGF levels were assessed in an AAb+ cohort monthly for a year. IGF1 and IGF2 showed longitudinal stability in single AAb+ subjects, but IGF1 levels decreased over time in subjects with multiple AAb and those who progressed to type 1 diabetes, particularly postdiagnosis. In sum, IGFs are dysregulated both before and after the clinical diagnosis of type 1 diabetes and may serve as novel biomarkers to improve disease prediction.
Collapse
Affiliation(s)
- Melanie R Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Sean M McGrail
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL
| | - Andrew Muir
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Michael J Haller
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
| | | | | | | | - Cate Speake
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| |
Collapse
|