1
|
Abd El-Hamid MI, El-Azzouny MM, El-Malt RMS, Elkenawy ME, Abdelwarith AA, Younis EM, Youssef W, Dawod RE, Elged DWAH, Habaka MAM, El Oksh ASA, Mekawy S, Davies SJ, Ibrahim D. Future impact of thymoquinone-loaded nanoemulsion in rabbits: prospects for enhancing growth, immunity, antioxidant potential and resistance against Pasteurella multocida. Front Vet Sci 2024; 10:1340964. [PMID: 38292130 PMCID: PMC10824920 DOI: 10.3389/fvets.2023.1340964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Phytochemical nanoemulsions, such as thymoquinone nanoemulsions (TQN), are regarded as innovative alternatives to antimicrobials that significantly improve the performance, digestion, antioxidant potential and immunity of rabbits. Thus, the potential effects of TQN on growth, digestibility, antioxidant potential, immunity and resistance against Pasteurella multocida (P. multocida) in rabbits were assessed. Herein, 240 rabbits were offered either a basal diet or diets fortified with three TQN-graded concentrations. At 60 days of age, rabbits were challenged with multidrug-resistant (MDR) virulent P. multocida strain. Our outcomes described that dietary inclusion of TQN, especially at higher concentrations, significantly enhanced the growth performance of rabbits, which was supported by increasing the levels of jejunal lipase, amylase and trypsin enzymes. Of note, the levels of muscle and jejunal antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and total antioxidant capacity (T-AOC)], serum immunological markers (IgG, IgG, IgM and total Igs) and blood phagocytic percentage were significantly provoked after TQN fortification; meanwhile, the levels of muscle and jejunal MDA, serum biochemical parameters (total cholesterol, TG and LDL), abdominal fat percentage, breast and thigh cholesterol were significantly decreased following TQN supplementations. Our findings showed that TQN protected rabbits against P. multocida experimental challenge as evidenced by reducing P. multocida counts in rabbits' lungs, downregulating the transcription levels of P. multocida virulence-related genes (ptfA, toxA and nanB) at 48 and 96 h post-infection and ameliorating the expression levels of cytokines-related genes (IL-1β, IL-10, IL-8, IL-6, DEFB1, TNF-α, TLR-4 and TLR-2) at 96 h post-infection. Our findings suggest the utilization of TQN in rabbits' diets due to their stimulating effects on digestibility as well as their growth-promoting, anti-inflammatory, antioxidant, antibacterial, anti-virulence and immunostimulant properties, which enhance the rabbits' P. multocida resistance.
Collapse
Affiliation(s)
- Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mona M. El-Azzouny
- Department of Bacteriology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Rania M. S. El-Malt
- Department of Bacteriology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Mona E. Elkenawy
- Department of Biochemistry, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Mansoura, Egypt
| | | | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Wessam Youssef
- Department of Biotechnology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza, Egypt
| | - Rehab E. Dawod
- Department of Bacteriology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Damietta, Egypt
| | - Dalia W. A. H. Elged
- Toxicology and Biochemical Department, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Manal A. M. Habaka
- Department of Poultry and Rabbits Diseases, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Amal S. A. El Oksh
- Department of Biotechnology, Reference Laboratory for Quality Control of Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Soad Mekawy
- Department of Clinical Pathology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Simon J. Davies
- Aquaculture Nutrition Research Unit (ANRU), Carna Research Station, College of Science and Engineering, Ryan Institute, University of Galway, Galway, Ireland
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Shaukat A, Zaidi A, Anwar H, Kizilbash N. Mechanism of the antidiabetic action of Nigella sativa and Thymoquinone: a review. Front Nutr 2023; 10:1126272. [PMID: 37818339 PMCID: PMC10561288 DOI: 10.3389/fnut.2023.1126272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/27/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Long used in traditional medicine, Nigella sativa (NS; Ranunculaceae) has shown significant efficacy as an adjuvant therapy for diabetes mellitus (DM) management by improving glucose tolerance, decreasing hepatic gluconeogenesis, normalizing blood sugar and lipid imbalance, and stimulating insulin secretion from pancreatic cells. In this review, the pharmacological and pharmacokinetic properties of NS as a herbal diabetes medication are examined in depth, demonstrating how it counteracts oxidative stress and the onset and progression of DM. Methods This literature review drew on databases such as Google Scholar and PubMed and various gray literature sources using search terms like the etiology of diabetes, conventional versus herbal therapy, subclinical pharmacology, pharmacokinetics, physiology, behavior, and clinical outcomes. Results The efficiency and safety of NS in diabetes, notably its thymoquinone (TQ) rich volatile oil, have drawn great attention from researchers in recent years; the specific therapeutic dose has eluded determination so far. TQ has anti-diabetic, anti-inflammatory, antioxidant, and immunomodulatory properties but has not proved druggable. DM's intimate link with oxidative stress, makes NS therapy relevant since it is a potent antioxidant that energizes the cell's endogenous arsenal of antioxidant enzymes. NS attenuates insulin resistance, enhances insulin signaling, suppresses cyclooxygenase-2, upregulates insulin-like growth factor-1, and prevents endothelial dysfunction in DM. Conclusion The interaction of NS with mainstream drugs, gut microbiota, and probiotics opens new possibilities for innovative therapies. Despite its strong potential to treat DM, NS and TQ must be examined in more inclusive clinical studies targeting underrepresented patient populations.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College - NIBGE-C, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences - PIEAS, Nilore, Islamabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Nadeem Kizilbash
- Department Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
3
|
Ashour H, Rashed LA, Hassanein RTM, Aboulhoda BE, Ebrahim HA, Elsayed MH, Elkordy MA, Abdelwahed OM. Thymoquinone and quercetin protect against hepatic steatosis in association with SIRT1/AMPK stimulation and regulation of autophagy, perilipin-2, and cytosolic lipases. Arch Physiol Biochem 2023; 129:268-281. [PMID: 36264662 DOI: 10.1080/13813455.2022.2134423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND We sought to investigate thymoquinone (TQ)/quercetin combination in preventing hepatic steatosis (HS). MATERIALS AND METHODS The included rat groups; (1) Control, (2) HS model, (3) HS treated with TQ 10 mg.kg-1.d-1, (4) HS treated with quercetin 50 mg.kg-1.d-1, and (5) HS treated with both compounds for 4 weeks. RESULTS TQ/quercetin co-treatment augmented the anti-steatosis potential of each ingredient. The results revealed more (p < 0.001) sirtuin (SIRT1)/AMP-activated protein kinase (p-AMPK) upregulation compared to each treatment in line with autophagy protein Atg7 enhancement, and suppressed pro-inflammatory and oxidation markers. They diminished the hepatic lipogenic enzymes and perilipin-2 and activated the cytosolic lipases adipose triglyceride lipase (ATGL). Histological and Biochemical analysis revealed diminished lipid deposition and improved liver enzymes (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) compared to the data of separate treatments. CONCLUSION TQ and quercitin effectively upregulated SIRT1/p-AMPK and regulated hepatic perilipin-2/ATGL, inflammation and oxidative stress, preserved liver structure and function. TQ/quercetin combination additively prevents HS.
Collapse
Affiliation(s)
- Hend Ashour
- Department of Physiology, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Radwa T M Hassanein
- Department of Biochemistry, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Basma E Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hasnaa A Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed H Elsayed
- Department of Pediatrics ICU, Al-Ahrar Teaching Hospital, Zagazig, Egypt
- Department of Pediatrics ICU, King Fahd Armed Forces Hospital, Khamis Mushait, Saudi Arabia
| | - Miran A Elkordy
- Department of Pathology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Omaima M Abdelwahed
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Tiwari A, G S, Meka S, Varghese B, Vishwakarma G, Adela R. The effect of Nigella sativa on non-alcoholic fatty liver disease: A systematic review and meta-analysis. HUMAN NUTRITION & METABOLISM 2022; 28:200146. [DOI: 10.1016/j.hnm.2022.200146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Bimonte S, Albino V, Barbieri A, Tamma ML, Nasto A, Palaia R, Molino C, Bianco P, Vitale A, Schiano R, Giudice A, Cascella M. Dissecting the roles of thymoquinone on the prevention and the treatment of hepatocellular carcinoma: an overview on the current state of knowledge. Infect Agent Cancer 2019; 14:10. [PMID: 31015860 PMCID: PMC6469080 DOI: 10.1186/s13027-019-0226-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Thymoquinone (TQ) is the principal active monomer isolated from the seed of the medicinal plant Nigella sativa. This compound has antitumor effects against various types of cancer including hepatocellular carcinoma (HCC), mainly due to its anti-inflammatory and anti-oxidant properties. Several pre-clinical studies showed that TQ, through the modulation of different molecular pathways, is able to induce anti-apoptotic and anti-proliferative effects in HCC, without signs of toxicity. Moreover, it has been suggested that TQ has hepatoprotective effects by enhancing the tolerability and effectivity of neoadjuvant therapy prior to liver surgery, although the underlying mechanisms are not completely understood. Based on these findings, is assumable that TQ could represent a valuable therapeutic option for patients suffering from HCC. In this review, we summarize the potential roles of TQ in the prevention and treatment of HCC, by revising the preclinical studies and by highlighting the potential applications of TQ as a therapeutic choice for HCC treatment into clinical practices.
Collapse
Affiliation(s)
- Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS - Fondazione G Pascale, Naples, Italy, Naples, Italy
| | - Vittorio Albino
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale Tumori, IRCCS - Fondazione G Pascale, Naples, Italy, Naples, Italy
| | - Antonio Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Maria Luisa Tamma
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS - Fondazione G Pascale, Naples, Italy, Naples, Italy
| | - Aurelio Nasto
- U. O. C. di Chirurgia Generale ad indirizzo Oncologico P.O. “A. Tortora”, Pagani, Salerno, Italy
| | - Raffaele Palaia
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale Tumori, IRCCS - Fondazione G Pascale, Naples, Italy, Naples, Italy
| | - Carlo Molino
- Chirurgia Generale AORN A, Cardarelli, Naples, Italy
| | | | | | | | - Aldo Giudice
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, 80131 Naples, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS - Fondazione G Pascale, Naples, Italy, Naples, Italy
| |
Collapse
|
6
|
Mabrouk A. Thymoquinone attenuates lead-induced nephropathy in rats. J Biochem Mol Toxicol 2018; 33:e22238. [PMID: 30290066 DOI: 10.1002/jbt.22238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/04/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022]
Abstract
Kidney hazards from lead (Pb) exposure are one of the fastest growing areas of concern in toxicology today. The thymoquinone (TQ) renoprotective effect against Pb-induced nephropathy has not previously been studied. Therefore, adult male Wistar rats were treated with Pb (2000 ppm of Pb acetate in drinking water) and/or TQ (5 mg/kg/day, per os). All treatments were applied for 5 weeks. The results indicated that Pb exposure produced metal deposition, histopathological changes, functional impairment (significant elevation in plasma urea, uric acid, and creatinine levels), total antioxidant status decrease, and lipid peroxidation stimulation in the kidneys. Interestingly, TQ supplementation remarkably improved the Pb-induced renal adverse effects without significantly reducing the tissue metal accumulation. In conclusion, our data indicate for the first time a protective effect of TQ against Pb-induced nephropathy, most likely through an antioxidant mechanism. On this basis, TQ deserves more consideration and further examination as a potential therapeutic option.
Collapse
Affiliation(s)
- Aymen Mabrouk
- Laboratory of Histology and Cytogenetic, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
7
|
Cobourne-Duval MK, Taka E, Mendonca P, Soliman KFA. Thymoquinone increases the expression of neuroprotective proteins while decreasing the expression of pro-inflammatory cytokines and the gene expression NFκB pathway signaling targets in LPS/IFNγ -activated BV-2 microglia cells. J Neuroimmunol 2018; 320:87-97. [PMID: 29759145 PMCID: PMC5967628 DOI: 10.1016/j.jneuroim.2018.04.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
Abstract
Neuroinflammation and microglial activation are pathological markers of a number of central nervous system (CNS) diseases. Chronic activation of microglia induces the release of excessive amounts of reactive oxygen species (ROS) and pro-inflammatory cytokines. Additionally, chronic microglial activation has been implicated in several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Thymoquinone (TQ) has been identified as one of the major active components of the natural product Nigella sativa seed oil. TQ has been shown to exhibit anti-inflammatory, anti-oxidative, and neuroprotective effects. In this study, lipopolysaccharide (LPS) and interferon gamma (IFNγ) activated BV-2 microglial cells were treated with TQ (12.5 μM for 24 h). We performed quantitative proteomic analysis using Orbitrap/Q-Exactive Proteomic LC-MS/MS (Liquid chromatography-mass spectrometry) to globally assess changes in protein expression between the treatment groups. Furthermore, we evaluated the ability of TQ to suppress the inflammatory response using ELISArray™ for Inflammatory Cytokines. We also assessed TQ's effect on the gene expression of NFκB signaling targets by profiling 84 key genes via real-time reverse transcription (RT2) PCR array. Our results indicated that TQ treatment of LPS/IFNγ-activated microglial cells significantly increased the expression of 4 antioxidant, neuroprotective proteins: glutaredoxin-3 (21 fold; p < 0.001), biliverdin reductase A (15 fold; p < 0.0001), 3-mercaptopyruvate sulfurtransferase (11 fold; p < 0.01), and mitochondrial lon protease (>8 fold; p < 0.001) compared to the untreated, activated cells. Furthermore, TQ treatment significantly (P < 0.0001) reduced the expression of inflammatory cytokines, IL-2 = 38%, IL-4 = 19%, IL-6 = 83%, IL-10 = 237%, and IL-17a = 29%, in the activated microglia compared to the untreated, activated which expression levels were significantly elevated compared to the control microglia: IL-2 = 127%, IL-4 = 151%, IL-6 = 670%, IL-10 = 133%, IL-17a = 127%. Upon assessing the gene expression of NFκB signaling targets, this study also demonstrated that TQ treatment of activated microglia resulted in >7 fold down-regulation of several NFκB signaling targets genes, including interleukin 6 (IL6), complement factor B (CFB), chemokine (CC motif) ligand 3 (CXCL3), chemokine (CC) motif ligand 5 (CCL5) compared to the untreated, activated microglia. This modulation in gene expression counteracts the >10-fold upregulation of these same genes observed in the activated microglia compared to the controls. Our results show that TQ treatment of LPS/IFNγ-activated BV-2 microglial cells induce a significant increase in expression of neuroprotective proteins, a significant decrease in expression inflammatory cytokines, and a decrease in the expression of signaling target genes of the NFκB pathway. Our findings are the first to show that TQ treatment increased the expression of these neuroprotective proteins (biliverdin reductase-A, 3-mercaptopyruvate sulfurtransferase, glutaredoxin-3, and mitochondrial lon protease) in the activated BV-2 microglial cells. Additionally, our results indicate that TQ treatment decreased the activation of the NFκB signaling pathway, which plays a key role in neuroinflammation. In conclusion, our results demonstrate that TQ treatment reduces the inflammatory response and modulates the expression of specific proteins and genes and hence potentially reduce neuroinflammation and neurodegeneration driven by microglial activation.
Collapse
Affiliation(s)
- Makini K Cobourne-Duval
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Equar Taka
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Patricia Mendonca
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.
| |
Collapse
|
8
|
Tekbas A, Huebner J, Settmacher U, Dahmen U. Plants and Surgery: The Protective Effects of Thymoquinone on Hepatic Injury-A Systematic Review of In Vivo Studies. Int J Mol Sci 2018; 19:ijms19041085. [PMID: 29621129 PMCID: PMC5979411 DOI: 10.3390/ijms19041085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022] Open
Abstract
Multimodal treatment concepts including liver transplantation for hepatocellular carcinoma (HCC), extended resection methods and neoadjuvant chemotherapy for colorectal liver metastasis significantly improve patients’ outcome. However, surgery-induced hepatic ischemia-reperfusion injury (IRI) and chemotherapy-associated hepatotoxicity result in hepatocellular damage and compromised liver function. Activation of common key pathways in ischemic liver and hepatotoxic injury results in oxidative stress, inflammatory responses and apoptosis causing organ damage. Controlling liver damage before and during surgery is essential for the postoperative outcome. Nigella sativa has a long tradition as a natural remedy. In the essential oil, Thymoquinone (TQ) was identified as the main component and responsible for most of the therapeutic effects. Therefore, this systematic review aimed to summarize the hepatoprotective effects of TQ and its potential suitability to improve surgical outcome by reducing surgical ischemic injury and hepatotoxicity of neoadjuvant chemotherapy. The key findings can be summarized as TQ having strong antioxidant, anti-inflammatory, antifibrotic, anti-/proapoptotic and anticarcinogenic effects. Almost no side effects were reported irrespective of a large dose range, suggesting a wide therapeutic window. These results give rise to the expectation that TQ could evolve to a novel powerful drug to reduce hepatic injury.
Collapse
Affiliation(s)
- Aysun Tekbas
- Department of General, Visceral and Vascular Surgery, University of Jena, 07743 Jena, Germany.
| | - Jutta Huebner
- Clinic for Internal Medicine II, Department of Hematology and Internal Oncology, University of Jena, 07743 Jena, Germany.
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, University of Jena, 07743 Jena, Germany.
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, University of Jena, 07743 Jena, Germany.
| |
Collapse
|
9
|
Goyal SN, Prajapati CP, Gore PR, Patil CR, Mahajan UB, Sharma C, Talla SP, Ojha SK. Therapeutic Potential and Pharmaceutical Development of Thymoquinone: A Multitargeted Molecule of Natural Origin. Front Pharmacol 2017; 8:656. [PMID: 28983249 PMCID: PMC5613109 DOI: 10.3389/fphar.2017.00656] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022] Open
Abstract
Thymoquinone, a monoterpene molecule is chemically known as 2-methyl-5-isopropyl-1, 4-benzoquinone. It is abundantly present in seeds of Nigella sativa L. that is popularly known as black cumin or black seed and belongs to the family Ranunculaceae. A large number of studies have revealed that thymoquinone is the major active constituent in N. sativa oil this constituent is responsible for the majority of the pharmacological properties. The beneficial organoprotective activities of thymoquinone in experimental animal models of different human diseases are attributed to the potent anti-oxidant and anti-inflammatory properties. Thymoquinone has also been shown to alter numerous molecular and signaling pathways in many inflammatory and degenerative diseases including cancer. Thymoquinone has been reported to possess potent lipophilicity and limited bioavailability and exhibits light and heat sensitivity. Altogether, these physiochemical properties encumber the successful formulation for the delivery of drug in oral dosages form and restrict the pharmaceutical development. In recent past, many efforts were undertaken to improve the bioavailability for clinical usage by manipulating the physiochemical parameters. The present review aimed to provide insights regarding the physicochemical characteristics, pharmacokinetics and the methods to promote pharmaceutical development and endorse the clinical usage of TQ in future by overcoming the associated physiochemical obstacles. It also enumerates briefly the pharmacological and molecular targets of thymoquinone as well as the pharmacological properties in various diseases and the underlying molecular mechanism. Though, a convincing number of experimental studies are available but human studies are not available with thymoquinone despite of the long history of use of black cumin in different diseases. Thus, the clinical studies including pharmacokinetic studies and regulatory toxicity studies are required to encourage the clinical development of thymoquinone.
Collapse
Affiliation(s)
- Sameer N. Goyal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
- SVKM Institute of PharmacyDhule, India
| | - Chaitali P. Prajapati
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
| | - Prashant R. Gore
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
| | - Umesh B. Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Sandhya P. Talla
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|
10
|
Huang W, Mehta D, Sif S, Kent LN, Jacob ST, Ghoshal K, Mehta KD. Dietary fat/cholesterol-sensitive PKCβ-RB signaling: Potential role in NASH/HCC axis. Oncotarget 2017; 8:73757-73765. [PMID: 29088742 PMCID: PMC5650297 DOI: 10.18632/oncotarget.17890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/30/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a frequent form of cancer with a poor prognosis, and environmental factors significantly contribute to the risk. Despite knowledge that a Western-style diet is a risk factor in the development of nonalcoholic steatohepatitis (NASH) and subsequent progression to HCC, diet-induced signaling changes are not well understood. Understanding molecular mechanisms altered by diet is crucial for developing preventive and therapeutic strategies. We have previously shown that diets enriched with high-fat and high-cholesterol, shown to produce NASH and HCC, induce hepatic protein kinase C beta (PKCβ) expression in mice, and a systemic loss of PKCβ promotes hepatic cholesterol accumulation in response to this diet. Here, we sought to determine how PKCβ and diet functionally interact during the pathogenesis of NASH and how it may promote hepatic carcinogenesis. We found that diet-induced hepatic PKCβ expression is accompanied by an increase in phosphorylation of Ser780 of retinoblastoma (RB) protein. Intriguingly, PKCβ-/- livers exhibited reduced RB protein levels despite increased transcription of the RB gene. It is also accompanied by reduced RBL-1 with no significant effect on RBL-2 protein levels. We also found reduced expression of the PKCβ in HCC compared to non-tumorous liver in human patients. These results raise an interesting possibility that diet-induced PKCβ activation represents an important mediator in the functional wiring of cholesterol metabolism and tumorigenesis through modulating stability of cell cycle-associated proteins. The potential role of PKCβ in the suppression of tumorigenesis is discussed.
Collapse
Affiliation(s)
- Wei Huang
- Department of Biological Chemistry and Pharmacology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Devina Mehta
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Said Sif
- Department of Biological Chemistry and Pharmacology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lindsey N Kent
- Department of Cancer Genetics, OSU Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Samson T Jacob
- Department of Cancer Genetics, OSU Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kalpana Ghoshal
- Department of Cancer Genetics, OSU Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kamal D Mehta
- Department of Biological Chemistry and Pharmacology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
11
|
Mabrouk A, Bel Hadj Salah I, Chaieb W, Ben Cheikh H. Protective effect of thymoquinone against lead-induced hepatic toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:12206-12215. [PMID: 26971798 DOI: 10.1007/s11356-016-6419-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
Lead (Pb) intoxication is a worldwide health problem which frequently affects the liver. This study was carried out to investigate the potential protective effect of thymoquinone (TQ), the major active ingredient of volatile oil of Nigella sativa seeds, against Pb-induced liver damage. Adult male rats were randomized into four groups: Control group received no treatment, Pb group was exposed to 2000 ppm Pb acetate in drinking water, Pb-TQ group was cotreated with Pb plus TQ (5 mg/kg/day, per orally), and TQ group receiving only TQ. All treatments were applied for 5 weeks. Results indicated that Pb exposure increased hepatic Pb content, damaged hepatic histological structure (necrotic foci, hepatic strands disorganization, hypertrophied hepatocytes, cytoplasmic vacuolization, cytoplasmic loss, chromatin condensation, mononuclear cell infiltration, congestion, centrilobular swelling), and changed liver function investigated by plasma biochemical parameters (AST, ALT, ALP, γ-GT, LDH). Pb treatment also decreased total antioxidant status level and increased lipid peroxidation in the liver. Supplementation with TQ remarkably improved the Pb-induced adverse effects without significantly reducing the metal accumulation in the liver. In conclusion, our results indicate, for the first time, a protective effect of TQ against Pb-induced hepatotoxicity and suggest that this component might be clinically useful in Pb intoxication.
Collapse
Affiliation(s)
- Aymen Mabrouk
- Laboratory of Histology and Cytogenetic (Research Unit of Genetic, Genotoxicity and Child Disease UR 12 ES 10), Faculty of Medicine, University of Monastir, Street Avicenna, Monastir, 5019, Tunisia.
| | - Imen Bel Hadj Salah
- Laboratory of Histology and Cytogenetic (Research Unit of Genetic, Genotoxicity and Child Disease UR 12 ES 10), Faculty of Medicine, University of Monastir, Street Avicenna, Monastir, 5019, Tunisia
| | - Wafa Chaieb
- Laboratory of Histology and Cytogenetic (Research Unit of Genetic, Genotoxicity and Child Disease UR 12 ES 10), Faculty of Medicine, University of Monastir, Street Avicenna, Monastir, 5019, Tunisia
| | - Hassen Ben Cheikh
- Laboratory of Histology and Cytogenetic (Research Unit of Genetic, Genotoxicity and Child Disease UR 12 ES 10), Faculty of Medicine, University of Monastir, Street Avicenna, Monastir, 5019, Tunisia
| |
Collapse
|
12
|
Alkharfy KM, Ahmad A, Raish M, Vanhoutte PM. Thymoquinone modulates nitric oxide production and improves organ dysfunction of sepsis. Life Sci 2015; 143:131-8. [PMID: 26285172 DOI: 10.1016/j.lfs.2015.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/30/2015] [Accepted: 08/05/2015] [Indexed: 12/23/2022]
Abstract
AIMS The present investigation was designed to evaluate the effect of thymoquinone in a septic animal model and to explore the role of nitric oxide (NO) in the process. MAIN METHODS To achieve this, mice (n=12 per group) were treated in parallel with thymoquinone (0.75mg/kg/day) and/or NG-nitro-l-arginine methyl ester (L-NAME; 400μg/g/day) prior to sepsis induction with live Escherichia coli. KEY FINDINGS Thymoquinone significantly improved renal and hepatic functions alone and in combination with L-NAME. This was associated with less NO production and lower oxidative stress in treated animals. Tumor necrosis factor-α concentration with thymoquinone and L-NAME were 36.27±3.41pg/ml and 56.55±5.85pg/ml, respectively, as opposed to 141.11±6.46pg/ml in septic controls. Similarly, Interleukin-1α, 2, 6 and 10 levels decreased significantly upon treatment with thymoquinone and L-NAME as compared with untreated septic animals. NF-κB and NF-κB-DNA binding activity in nuclear proteins were also significantly down-regulated. Vascular responsiveness studies in isolated mouse aortae demonstrated a reduced relaxation to acetylcholine exposure in septic mice treated with thymoquinone. SIGNIFICANCE These findings suggest that thymoquinone prevents sequels of the multiple organ failure syndrome of sepsis by modulating the production of NO and its inflammatory sequela, and adjusting vascular responsiveness.
Collapse
Affiliation(s)
- Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Biomarkers Research Program, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Paul M Vanhoutte
- State Key Laboratory for Pharmaceutical Biotechnologies, Faculty of Medicine, the University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Thymoquinone and its therapeutic potentials. Pharmacol Res 2015; 95-96:138-58. [DOI: 10.1016/j.phrs.2015.03.011] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 12/11/2022]
|
14
|
Roman Junior WA, Piato AL, Conterato GMM, Wildner SM, Marcon M, Mocelin R, Emanuelli MP, Emanuelli T, Nepel A, Barison A, Santos CAM. Hypolipidemic effects of Solidago chilensis hydroalcoholic extract and its major isolated constituent quercetrin in cholesterol-fed rats. PHARMACEUTICAL BIOLOGY 2015; 53:1488-1495. [PMID: 25898223 DOI: 10.3109/13880209.2014.989622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Despite several studies on the effects of Solidago chilensis Meyen (Asteraceae), the phytochemical and hypolipidemic properties remain underappreciated. OBJECTIVE This study evaluates the hypolipidemic and antioxidant effects of hydroalcoholic extract (HE) and quercetrin from S. chilensis aerial parts in cholesterol-fed rats. MATERIALS AND METHODS The HE was analyzed by high-performance liquid chromatography, followed by quercetrin isolation. Hypercholesterolemic rats (1% cholesterol and 0.5% cholic acid for 15 d) were treated with HE (150, 300, and 600 mg/kg p.o.; n = 6), simvastatin (4 mg/kg p.o.; n = 6), or quercetrin (10 mg/kg p.o.; n = 6) once a day for 30 d. During this period, a high-cholesterol diet was maintained until the 30th day of treatment. RESULTS Rats treated with HE (150, 300, and 600 mg/kg) and quercetrin showed decreased serum levels of total cholesterol (-19.9, -27.5, -31.0, and -39.4%), lipoprotein-cholesterol (-36.0, -37.5, -43.3, and -59.4%), and triacylglycerides (-15.6, -23.5, -29.8, and -27.2%) when compared with the control group similar to simvastatin. Moreover, treatment with HE and quercetrin decreased hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity (35.1% on average) and increased fecal cholesterol levels (38.2% on average). DISCUSSION AND CONCLUSIONS Our results suggest that hypolipidemic effects of HE are associated with it modulating the activity of HMG-CoA reductase and its interference in the reabsorption and/or excretion of intestinal lipids. Solidago chilensis and its main constituent, quercetrin, may thus be effective as cholesterol-lowering agents and in preventing atherosclerosis.
Collapse
Affiliation(s)
- Walter A Roman Junior
- Laboratório de Farmacognosia, Departamento de Farmácia, Universidade Federal do Paraná , Curitiba, PR , Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats. ACTA ACUST UNITED AC 2013; 66:13-7. [PMID: 23910425 DOI: 10.1016/j.etp.2013.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/30/2013] [Accepted: 07/05/2013] [Indexed: 11/20/2022]
Abstract
The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats.
Collapse
|
16
|
Idris-Khodja N, Schini-Kerth V. Thymoquinone improves aging-related endothelial dysfunction in the rat mesenteric artery. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:749-58. [PMID: 22526469 DOI: 10.1007/s00210-012-0749-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 03/22/2012] [Indexed: 12/15/2022]
Abstract
Aging-related endothelial dysfunction is characterized by blunted nitric oxide (NO)- and endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxations in arteries, which may be due, at least in part, to increased oxidative stress. Endothelial dysfunction will promote the initiation and development of major cardiovascular diseases such as atherosclerosis and hypertension. Thymoquinone (TQ) is the most active constituent of the volatile oil of Nigella sativa seeds with well-documented antioxidative properties and vasodilator effects. This study determined whether TQ improves the endothelial function in middle-aged rats. Control young rats (16 weeks) received solvent (ethanol, 3% v/v), and middle-aged rats (46 weeks) either solvent or TQ (10 mg/kg/day) in the drinking water. Mesenteric artery reactivity was determined in organ chambers, vascular oxidative stress by dihydroethidine and MitoSOX staining, and expression of target proteins by immunohistochemical staining. Aging-related blunted NO- and EDHF-mediated responses were associated with downregulation of endothelial NO synthase (eNOS) and calcium-activated potassium channels (SK(Ca) and IK(Ca)) expression. Endothelial dysfunction was also associated with oxidative stress and an upregulation of angiotensin II and AT1 receptor expressions. Intake of TQ for 14 days restored NO- and EDHF-mediated relaxations, normalized oxidative stress, the expression level of eNOS, SK(Ca), IK(Ca), and the components of the angiotensin system in the mesenteric artery of middle-aged rats. Thus, TQ improves endothelial function in aging, at least in part, through inhibition of oxidative stress and normalization of the angiotensin system. TQ may represent a novel therapeutic approach for aging-associated vascular diseases.
Collapse
Affiliation(s)
- Noureddine Idris-Khodja
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Faculty of Pharmacy, University of Strasbourg, 74, route du Rhin, BP 60024, 67401 Illkirch, France.
| | | |
Collapse
|
17
|
Cyclic voltammetry, spectroelectrochemistry and electron spin resonance as combined tools to study thymoquinone in aprotic medium. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2011.11.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Rosa DP, Martinez D, Picada JN, Semedo JG, Marroni NP. Hepatic oxidative stress in an animal model of sleep apnoea: effects of different duration of exposure. COMPARATIVE HEPATOLOGY 2011; 10:1. [PMID: 21729291 PMCID: PMC3144443 DOI: 10.1186/1476-5926-10-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 07/05/2011] [Indexed: 01/12/2023]
Abstract
BACKGROUND Repeated apnoea events cause intermittent hypoxia (IH), which alters the function of various systems and produces free radicals and oxidative stress. METHODS We investigated hepatic oxidative stress in adult mice subjected to intermittent hypoxia, simulating sleep apnoea. Three groups were submitted to 21 days of IH (IH-21), 35 days of IH (IH-35), or 35 days of sham IH. We assessed the oxidative damage to lipids by TBARS and to DNA by comet assay; hepatic tissue inflammation was assessed in HE-stained slides. Antioxidants were gauged by catalase, superoxide dismutase, glutathione peroxidase activity and by total glutathione. RESULTS After IH-21, no significant change was observed in hepatic oxidative stress. After IH-35, significant oxidative stress, lipid peroxidation, DNA damage and reduction of endogenous antioxidants were detected. CONCLUSIONS In an animal model of sleep apnoea, intermittent hypoxia causes liver damage due to oxidative stress after 35 days, but not after 21 days.
Collapse
Affiliation(s)
- Darlan P Rosa
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brasil
| | - Denis Martinez
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brasil
| | - Jaqueline N Picada
- Programa de Pós-Graduação em Genética e Toxicologia, Universidade Luterana do Brasil, Rio Grande do Sul, Brasil
| | - Juliane G Semedo
- Programa de Pós-Graduação em Genética e Toxicologia, Universidade Luterana do Brasil, Rio Grande do Sul, Brasil
| | - Norma P Marroni
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brasil
- Programa de Pós-Graduação em Genética e Toxicologia, Universidade Luterana do Brasil, Rio Grande do Sul, Brasil
| |
Collapse
|