1
|
Ahn JH, da Silva Pedrosa M, Lopez LR, Tibbs TN, Jeyachandran JN, Vignieri EE, Rothemich A, Cumming I, Irmscher AD, Haswell CJ, Zamboni WC, Yu YRA, Ellermann M, Denson LA, Arthur JC. Intestinal E. coli-produced yersiniabactin promotes profibrotic macrophages in Crohn's disease. Cell Host Microbe 2025; 33:71-88.e9. [PMID: 39701098 DOI: 10.1016/j.chom.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Inflammatory bowel disease (IBD)-associated fibrosis causes significant morbidity. Mechanisms are poorly understood but implicate the microbiota, especially adherent-invasive Escherichia coli (AIEC). We previously demonstrated that AIEC producing the metallophore yersiniabactin (Ybt) promotes intestinal fibrosis in an IBD mouse model. Since macrophages interpret microbial signals and influence inflammation/tissue remodeling, we hypothesized that Ybt metal sequestration disrupts this process. Here, we show that macrophages are abundant in human IBD-fibrosis tissue and mouse fibrotic lesions, where they co-localize with AIEC. Ybt induces profibrotic gene expression in macrophages via stabilization and nuclear translocation of hypoxia-inducible factor 1-alpha (HIF-1α), a metal-dependent immune regulator. Importantly, Ybt-producing AIEC deplete macrophage intracellular zinc and stabilize HIF-1α through inhibition of zinc-dependent HIF-1α hydroxylation. HIF-1α+ macrophages localize to sites of disease activity in human IBD-fibrosis strictures and mouse fibrotic lesions, highlighting their physiological relevance. Our findings reveal microbiota-mediated metal sequestration as a profibrotic trigger targeting macrophages in the inflamed intestine.
Collapse
Affiliation(s)
- Ju-Hyun Ahn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marlus da Silva Pedrosa
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lacey R Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Taylor N Tibbs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joanna N Jeyachandran
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emily E Vignieri
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Aaron Rothemich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian Cumming
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA
| | - Alexander D Irmscher
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Corey J Haswell
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C Zamboni
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yen-Rei A Yu
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melissa Ellermann
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Lee A Denson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Bartels JL, Fernandez SR, Arnold JS, Parker CC, Tekin V, O'Malley G, Ralph DA, Lapi SE. In vivo Assessment of the Impact of Molecular Weight on Constructs of 68Ga-DOTA-Manocept in a Syngeneic Mouse Tumor Model. Mol Imaging Biol 2023; 25:867-874. [PMID: 36882605 PMCID: PMC10598080 DOI: 10.1007/s11307-023-01809-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE Manocept™ constructs are mannosylated amine dextrans (MADs) that bind with high affinity to the mannose receptor, CD206. Tumor-associated macrophages (TAMs) are the most numerous immune cells in the tumor microenvironment and a recognized target for tumor imaging and cancer immunotherapies. Most TAMs express CD206, suggesting utility of MADs to deliver imaging moieties or therapeutics to TAMs. The liver Kupffer cells also express CD206, making them an off-target localization site when targeting CD206 on TAMs. We evaluated TAM targeting strategies using two novel MADs differing in molecular weight in a syngeneic mouse tumor model to determine how varying MAD molecular weights would impact tumor localization. Increased mass dose of the non-labeled construct or a higher molecular weight (HMW) construct were also used to block liver localization and enhance tumor to liver ratios. PROCEDURES Two MADs, 8.7 kDa and 22.6 kDa modified with DOTA chelators, were synthesized and radiolabeled with 68Ga. A HMW MAD (300 kDa) was also synthesized as a competitive blocking agent for Kupffer cell localization. Balb/c mice, with and without CT26 tumors, underwent dynamic PET imaging for 90 min followed by biodistribution analyses in selected tissues. RESULTS The new constructs were readily synthesized and labeled with 68Ga with ≥ 95% radiochemical purity in 15 min at 65 °C. When injected at doses of 0.57 nmol, the 8.7 kDa MAD provided 7-fold higher 68Ga tumor uptake compared to the 22.6 kDa MAD (2.87 ± 0.73%ID/g vs. 0.41 ± 0.02%ID/g). Studies with increased mass of unlabeled competitors showed reduced liver localization of the [68Ga]MAD-8.7 to varying degrees without significant reductions in tumor localization, resulting in enhanced tumor to liver signal ratios. CONCLUSION Novel [68Ga]Manocept constructs were synthesized and studied in in vivo applications, showing that the smaller MAD localized to CT26 tumors more effectively than the larger MAD and that the unlabeled HMW construct could selectively block liver binding of [68Ga]MAD-8.7 without diminishing the localization to tumors. Promising results using the [68Ga]MAD-8.7 show a potential path to clinical applications.
Collapse
Affiliation(s)
- Jennifer L Bartels
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Solana R Fernandez
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jeffrey S Arnold
- Navidea Biopharmaceuticals, 4995 Bradenton Ave, Dublin, OH, 43017, USA
| | - Candace C Parker
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Volkan Tekin
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Grace O'Malley
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David A Ralph
- Navidea Biopharmaceuticals, 4995 Bradenton Ave, Dublin, OH, 43017, USA
| | - Suzanne E Lapi
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
3
|
Ge S, Yang Y, Zuo L, Song X, Wen H, Geng Z, He Y, Xu Z, Wu H, Shen M, Ge Y, Sun X. Sotetsuflavone ameliorates Crohn's disease-like colitis by inhibiting M1 macrophage-induced intestinal barrier damage via JNK and MAPK signalling. Eur J Pharmacol 2023; 940:175464. [PMID: 36566007 DOI: 10.1016/j.ejphar.2022.175464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Intestinal inflammation and intestinal barrier dysfunction are two important pathological changes in Crohn's disease (CD). Sotetsuflavone (SF) is a natural monomeric herbal compound with anti-inflammatory and cytoprotective effects that is mostly nontoxic. The effect of SF on CD-like spontaneous colitis was investigated in this study. METHODS Il-10-/- mice were used as a CD model and were administered different doses of SF. Lipopolysaccharide (LPS) plus IFN-γ-induced macrophages (RAW264.7) and a coculture system (RAW264.7 and organoids) were used in vitro. The protective effects of SF against CD-like colitis and macrophage differentiation and the mechanisms were evaluated. RESULTS SF treatment markedly improved spontaneous colitis in the CD model, as shown by the following evidence: reductions in the DAI, macroscopic scores (3.63 ± 1.30), colonic tissue inflammatory scores (2 ± 0.76) and proinflammatory factor levels and the attenuation of colon shortening (8 ± 0.93 cm) and weight loss (1.75 ± 1.83 g). Decreased intestinal permeability and intestinal bacterial translocation rates provided evidence of the protective effect of SF on intestinal barrier function. We also found that SF suppressed M1 macrophage-induced inflammatory responses. In the coculture system of mouse colonic organoids and RAW264.7 cells, SF significantly ameliorated M1 macrophage-induced intestinal epithelial damage. In addition, SF inhibited JNK and MAPK (p38) signalling in both Il-10-/- mice and LPS plus IFN-γ-induced macrophages (RAW264.7). CONCLUSIONS The protective effects of SF against CD-like colitis may be achieved partially by inhibiting M1 macrophage-induced intestinal barrier damage via JNK and p38 signalling. SF may have therapeutic potential for treating CD, especially considering its safety.
Collapse
Affiliation(s)
- Sitang Ge
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yating Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Xue Song
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hexin Wen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yifan He
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Zilong Xu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Huatao Wu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Mengdi Shen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yuanyuan Ge
- Department of Colorectal Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China.
| |
Collapse
|
4
|
Douadi C, Vazeille E, Chambon C, Hébraud M, Fargeas M, Dodel M, Coban D, Pereira B, Birer A, Sauvanet P, Buisson A, Barnich N. Anti-TNF Agents Restrict Adherent-invasive Escherichia coli Replication Within Macrophages Through Modulation of Chitinase 3-like 1 in Patients with Crohn's Disease. J Crohns Colitis 2022; 16:1140-1150. [PMID: 35022663 DOI: 10.1093/ecco-jcc/jjab236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/01/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The mechanism of action of anti-tumour necrosis factor [anti-TNF] agents could implicate macrophage modulation in Crohn's disease [CD]. As CD macrophages are defective in controlling CD-associated adherent-invasive Escherichia coli [AIEC], anti-TNF agents could limit AIEC replication within macrophages. We assessed the effect of anti-TNF agents on AIEC survival within monocyte-derived macrophages [MDMs] from CD patients and attempted to identify the proteins involved. METHODS Peripheral blood MDMs were obtained from 44 CD patients [22 with and 22 without anti-TNF agents]. MDMs were infected with reference strain AIEC-LF82. Proteomic analysis was performed before and 6 h after AIEC-LF82 infection. RESULTS AIEC-LF82 survival was lower in MDMs from CD patients receiving anti-TNF agents compared to those who did not [-73%, p = 0.006]. After AIEC-LF82 infection, the levels of CD82 [p = 0.007], ILF3 [Interleukin enhancer-binding factor 3; p = 0.001], FLOT-1 [Flotillin-1; p = 0.007] and CHI3L1 [Chitinase 3-like 1; p = 0.035] proteins were different within CD-MDMs depending on anti-TNF exposure. FLOT-1 [ϱ = -0.44; p = 0.038] and CHI3L1 [ϱ = 0.57, p = 0.006] levels were inversely and positively correlated with AIEC survival within MDMs from CD patients with or without anti-TNF, respectively. We observed a dose-dependent decrease of AIEC-LF82 survival after adjunction of anti-TNF within MDMs, inducing an increase of FLOT-1 and decrease of CHI3L1 mRNA levels. Neutralization of intra-macrophagic CHI3L1 protein using anti-CHI3L1 antibodies reduced AIEC survival within macrophages 6 h after infection [p < 0.05]. CONCLUSION Anti-TNF agents are able to restrict replication of pathobionts, such as AIEC, within macrophages by modulating FLOT-1 and CHI3L1 expression in CD patients.
Collapse
Affiliation(s)
- Clara Douadi
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France
| | - Emilie Vazeille
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France.,Gastroenterology Department, CHU Estaing, Clermont-Ferrand, France
| | - Christophe Chambon
- INRAE, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), Saint-Genès-Champanelle, France
| | - Michel Hébraud
- INRAE, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), Saint-Genès-Champanelle, France.,Université Clermont Auvergne, INRAE, UMR Microbiologie Environnement digestif Santé (MEDiS), Saint-Genès-Champanelle, France
| | - Margot Fargeas
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France
| | - Marie Dodel
- Gastroenterology Department, CHU Estaing, Clermont-Ferrand, France
| | - Dilek Coban
- Gastroenterology Department, CHU Estaing, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistic Unit, CHU Estaing, Clermont-Ferrand, France
| | - Aurélien Birer
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France.,Centre National de Référence de la Résisitance aux antibiotiques, service de Bactériologie, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Pierre Sauvanet
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France.,Surgery and Oncology Digestive Department, CHU Estaing, Clermont-Ferrand, France
| | - Anthony Buisson
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France.,Gastroenterology Department, CHU Estaing, Clermont-Ferrand, France
| | - Nicolas Barnich
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France
| |
Collapse
|
5
|
Petersen AM. Gastrointestinal dysbiosis and Escherichia coli pathobionts in inflammatory bowel diseases. APMIS 2022; 130 Suppl 144:1-38. [PMID: 35899316 PMCID: PMC9546507 DOI: 10.1111/apm.13256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Munk Petersen
- Department of Gastroenterology and Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
6
|
Reinisch W, Hébuterne X, Buisson A, Schreiber S, Desreumaux P, Primas C, Paillarse JM, Chevalier G, Bonny C. Safety, pharmacokinetic, and pharmacodynamic study of sibofimloc, a novel FimH blocker in patients with active Crohn's disease. J Gastroenterol Hepatol 2022; 37:832-840. [PMID: 35266174 DOI: 10.1111/jgh.15828] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/30/2021] [Accepted: 02/27/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Expression of FimH adhesin by invasive Escherichia coli in the gastrointestinal tract of patients with Crohn's disease (CD) facilitates binding to epithelial glycoproteins and release of pro-inflammatory cytokines. Sibofimloc is a first-in-class FimH blocker that showed little systemic absorption in healthy volunteers. The current study evaluated systemic absorption, safety, and effect on inflammatory biomarkers of sibofimloc in patients with CD. METHODS This was an open-label, multicenter phase 1b study in adults with active CD. In part 1, two patients received a single oral dose of 3000-mg sibofimloc followed by 1500 mg b.i.d. for 13 days. In part 2, six patients received 1500-mg sibofimloc b.i.d. for 13 days. Blood was drawn for pharmacokinetic and biomarker analysis, and stool was collected for biomarker and microbiome analysis. RESULTS Eight patients with active ileal or ileocolonic CD were enrolled into the study. Systemic sibofimloc exposure was low. Sibofimloc was well tolerated with only grade 1-2 events observed. Several pro-inflammatory biomarkers, including IL-1β, IL-6, IL-8, TNF-α, IFN-γ, and calprotectin, were decreased in stool by end of study. CONCLUSIONS This first study of the novel FimH blocker, sibofimloc, in patients with active CD demonstrated minimal systemic exposure with good tolerance, while decreasing several inflammatory biomarkers. EudraCT number: 2017-003279-70.
Collapse
Affiliation(s)
| | - Xavier Hébuterne
- Department of Gastroenterology and Clinical Nutrition, CHU of Nice and University Côte d'Azur, Nice, France
| | - Anthony Buisson
- Université Clermont Auvergne, 3iHP, CHU Clermont-Ferrand, Service d'Hépato-Gastroentérologie, Inserm U1071, M2iSH, USC-INRA 2018, Clermont-Ferrand, France
| | - Stefan Schreiber
- University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Tai SL, Mortha A. Macrophage control of Crohn's disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:29-64. [PMID: 35461659 DOI: 10.1016/bs.ircmb.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The intestinal tract is the body's largest mucosal surface and permanently exposed to microbial and environmental signals. Maintaining a healthy intestine requires the presence of sentinel grounds keeper cells, capable of controlling immunity and tissue homeostasis through specialized functions. Intestinal macrophages are such cells and important players in steady-state functions and during acute and chronic inflammation. Crohn's disease, a chronic inflammatory condition of the intestinal tract is proposed to be the consequence of an altered immune system through microbial and environmental stimulation. This hypothesis suggests an involvement of macrophages in the regulation of this pathology. Within this chapter, we will discuss intestinal macrophage development and highlight data suggesting their implication in chronic intestinal pathologies like Crohn's disease.
Collapse
Affiliation(s)
- Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Chevalier G, Laveissière A, Desachy G, Barnich N, Sivignon A, Maresca M, Nicoletti C, Di Pasquale E, Martinez-Medina M, Simpson KW, Yajnik V, Sokol H, Plassais J, Strozzi F, Cervino A, Morra R, Bonny C. Blockage of bacterial FimH prevents mucosal inflammation associated with Crohn's disease. MICROBIOME 2021; 9:176. [PMID: 34425887 PMCID: PMC8383459 DOI: 10.1186/s40168-021-01135-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/01/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND An Escherichia coli (E. coli) pathotype with invasive properties, first reported by Darfeuille-Michaud and termed adherent-invasive E. coli (AIEC), was shown to be prevalent in up to half the individuals with Crohn's Disease (CD), suggesting that these bacteria could be involved in the pathophysiology of CD. Among the genes related to AIEC pathogenicity, fim has the potential to generate an inflammatory reaction from the intestinal epithelial cells and macrophages, as it interacts with TLR4, inducing the production of inflammatory cytokines independently of LPS. Therefore, targeting the bacterial adhesion of FimH-expressing bacteria seems a promising therapeutic approach, consisting of disarming bacteria without killing them, representing a selective strategy to suppress a potentially critical trigger of intestinal inflammation, without disturbing the intestinal microbiota. RESULTS We analyzed the metagenomic composition of the gut microbiome of 358 patients with CD from two different cohorts and characterized the presence of FimH-expressing bacteria. To assess the pathogenic role of FimH, we used human intestinal explants and tested a specific FimH blocker to prevent bacterial adhesion and associated inflammation. We observed a significant and disease activity-dependent enrichment of Enterobacteriaceae in the gut microbiome of patients with CD. Bacterial FimH expression was functionally confirmed in ileal biopsies from 65% of the patients with CD. Using human intestinal explants, we further show that FimH is essential for adhesion and to trigger inflammation. Finally, a specific FimH-blocker, TAK-018, inhibits bacterial adhesion to the intestinal epithelium and prevents inflammation, thus preserving mucosal integrity. CONCLUSIONS We propose that TAK-018, which is safe and well tolerated in humans, is a promising candidate for the treatment of CD and in particular in preventing its recurrence. Video abstract.
Collapse
Affiliation(s)
| | | | | | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000, Clermont-Ferrand, France
| | - Adeline Sivignon
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000, Clermont-Ferrand, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Cendrine Nicoletti
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Eric Di Pasquale
- Aix-Marseille Université, CNRS, INP, Institut de Neurophysiopathologie, Marseille, France
| | | | | | - Vijay Yajnik
- GI Therapeutic Area Unit, Takeda Pharmaceuticals, Cambridge, MA, 02139, USA
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, 75012, Paris, France
- INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, France
| | | | | | | | - Rachel Morra
- Enterome, 94-96 Avenue Ledru-Rollin, 75011, Paris, France
| | | |
Collapse
|
9
|
Song S, Xia H, Guo M, Wang S, Zhang S, Ma P, Jin Y. Role of macrophage in nanomedicine-based disease treatment. Drug Deliv 2021; 28:752-766. [PMID: 33860719 PMCID: PMC8079019 DOI: 10.1080/10717544.2021.1909175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Macrophages are a major component of the immunoresponse. Diversity and plasticity are two of the hallmarks of macrophages, which allow them to act as proinflammatory, anti-inflammatory, and homeostatic agents. Research has found that cancer and many inflammatory or autoimmune disorders are correlated with activation and tissue infiltration of macrophages. Recent developments in macrophage nanomedicine-based disease treatment are proving to be timely owing to the increasing inadequacy of traditional treatment. Here, we review the role of macrophages in nanomedicine-based disease treatment. First, we present a brief background on macrophages and nanomedicine. Then, we delve into applications of macrophages as a target for disease treatment and delivery systems and summarize the applications of macrophage-derived extracellular vesicles. Finally, we provide an outlook on the clinical utility of macrophages in nanomedicine-based disease treatment.
Collapse
Affiliation(s)
- Siwei Song
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujing Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Abstract
BACKGROUND Simkania negevensis is an obligate intracellular Gram-negative bacterium (family Simkaniaceae, order Chlamydiales) that has been isolated from domestic and mains water supplies, is able to infect human macrophages, and can induce an inflammatory response in the host. METHODS From June to December 2016, in a single-center observational study, colonic Crohn's disease patients and controls (subjects undergoing screening for colorectal cancer) underwent blood tests to identify serum-specific immunoglobulin G (IgG) and immunoglobulin A (IgA) to S. negevensis and a colonoscopy with biopsies for detection of S. negevensis DNA by polymerase chain reaction (PCR). RESULTS Forty-three Crohn's disease patients and 18 controls were enrolled. Crohn's disease patients had higher prevalence of IgA antibodies to S. negevensis compared with controls (20.9% versus 0%, p = 0.04). Simkaniaceae negevensis DNA was detected in 34.9% and 5.6% of intestinal biopsies in Crohn's disease patients and controls, respectively (p = 0.02). All Crohn's disease patients with PCR-positive biopsies for S. negevensis were IgG seropositive, with specific IgA in 60% of them (p < 0.001). Immunosuppressive therapies, extraintestinal manifestations, or disease activity did not influence the presence of S. negevensis in the Crohn's disease population. CONCLUSIONS We identified S. negevensis in Crohn's disease patients by demonstrating the presence of S. negevensis mucosal DNA and seropositivity to the bacterium. These results could support the presence of an acute or persistent S. negevensis infection and suggest a possible role in the pathogenesis of Crohn's disease.
Collapse
|