1
|
Baraka K, Abozahra R, Khalaf E, Bennaya ME, Abdelhamid SM. Repurposing of paroxetine and fluoxetine for their antibacterial effects against clinical Pseudomonas aeruginosa isolates in Egypt. AIMS Microbiol 2025; 11:126-149. [PMID: 40161243 PMCID: PMC11950684 DOI: 10.3934/microbiol.2025007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 04/02/2025] Open
Abstract
Background Drug repositioning has emerged as a promising strategy for assessing its antimicrobial efficacy in treating infectious diseases. Methods Seventy-five samples were collected and investigated for the presence of Pseudomonas aeruginosa. Antibiotic resistance, hemolytic activity, twitching motility, and biofilm formation were assessed. lasI and lasR genes were detected using conventional PCR. Minimum inhibitory concentrations of paroxetine, fluoxetine, and levofloxacin were determined by broth micro-dilution. The fractional inhibitory concentration index was calculated to assess the interaction between fluoxetine/levofloxacin and paroxetine/levofloxacin combinations. Half the MIC values of the drugs were selected for inhibitory effect assessment for virulence factors. Antibacterial and healing effects of fluoxetine were investigated on 30 male albino rats using a digital camera, bacterial count, and histological examination. Results Our 25 P. aeruginosa isolates were highly drug-resistant. 80%, 92%, and 80% of isolates were positive for twitching motility, hemolysis, and biofilm formation, respectively. 92% of isolates were positive for lasI gene and 96% for lasR gene. MICs of fluoxetine and paroxetine ranged from 32 to 512 µg/mL and MICs of levofloxacin ranged from 1 to 256 µg/mL. A synergistic outcome was observed in both combinations. Biofilm formation, twitching motility, and hemolysis were inhibited by paroxetine and fluoxetine in the majority of isolates. Fluoxetine/levofloxacin and paroxetine/levofloxacin combinations inhibited twitching motility, hemolysis, and biofilm formation in all isolates. Enhanced wound healing was observed in rats treated with fluoxetine and levofloxacin, with the fluoxetine/levofloxacin combination group demonstrating the most significant wound-healing effect. Bacterial count decreased in rats treated with levofloxacin, fluoxetine, and the levofloxacin/fluoxetine combination. Histological examination revealed higher wound healing in the levofloxacin-treated group than the fluoxetine group, and the combination treatment group displayed the fastest rate of wound healing. Conclusions Paroxetine and fluoxetine showed considerable antibacterial inhibitory effects against multi-drug resistant P. aeruginosa isolates. Fluoxetine showed significant improvement in anti-inflammatory effects and wound healing. To the best of our knowledge, this is the first Egyptian study to investigate the repurposing of paroxetine and fluoxetine as antibacterial agents. Further studies are needed to investigate their applicability as antibacterial agents as single agents or in combination with other antibiotics.
Collapse
Affiliation(s)
- Kholoud Baraka
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Rania Abozahra
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Eman Khalaf
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | | | - Sarah M. Abdelhamid
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Mestre-Bach G, Potenza MN. Current Understanding of Compulsive Sexual Behavior Disorder and Co-occurring Conditions: What Clinicians Should Know about Pharmacological Options. CNS Drugs 2024; 38:255-265. [PMID: 38485889 DOI: 10.1007/s40263-024-01075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 04/02/2024]
Abstract
Compulsive sexual behavior disorder (CSBD) has recently been recognized as a psychiatric disorder. Pharmacological treatments for CSBD have received little study and thus have limited empirical support. The main objective of the present work is to review existing literature on the efficacy of different drugs on the symptomatology of CSBD, including the subtype of problematic pornography use (PPU). The main pharmacological approaches to treating CSBD have included opioid antagonists (naltrexone and nalmefene), selective serotonin reuptake inhibitors (paroxetine, citalopram, fluoxetine, and sertraline), mood stabilizers (topiramate), tricyclic antidepressants (clomipramine), serotonin antagonist and reuptake inhibitors (nefazodone), and N-acetylcysteine. Since people with CSBD may experience different co-occurring disorders, these should be considered when choosing the best pharmacological treatment. Pharmacological therapy for CSBD/PPU has been suggested as an adjunct to psychological therapies, which, for the moment, have the most empirical evidence. However, to evaluate the efficacy of most of the drugs presented in this narrative review, data to date have only been available from case studies. Thus, empirical support is scant and generalizability of results is limited, highlighting the need for more research in this area.
Collapse
Affiliation(s)
- Gemma Mestre-Bach
- Instituto de Investigación, Transferencia e Innovación, Universidad Internacional de La Rioja, La Rioja, Spain
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, One Church Street, Rm 726, New Haven, CT, 06510, USA.
- Connecticut Mental Health Center, New Haven, CT, USA.
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Tóth KF, Ádám D, Arany J, Ramirez YA, Bíró T, Drake JI, O'Mahony A, Szöllősi AG, Póliska S, Kilić A, Soeberdt M, Abels C, Oláh A. Fluoxetine exerts anti-inflammatory effects on human epidermal keratinocytes and suppresses their endothelin release. Exp Dermatol 2024; 33:e14988. [PMID: 38284184 DOI: 10.1111/exd.14988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 01/30/2024]
Abstract
Fluoxetine is a safe antidepressant with remarkable anti-inflammatory actions; therefore, we aimed to investigate its effects on immortalized (HaCaT) as well as primary human epidermal keratinocytes in a polyinosinic-polycytidylic acid (p(I:C))-induced inflammatory model. We found that a non-cytotoxic concentration (MTT-assay, CyQUANT-assay) of fluoxetine significantly suppressed p(I:C)-induced expression and release of several pro-inflammatory cytokines (Q-PCR, cytokine array, ELISA), and it decreased the release of the itch mediator endothelins (ELISA). These effects were not mediated by the inhibition of the NF-κB or p38 MAPK pathways (western blot), or by the suppression of the p(I:C)-induced elevation of mitochondrial ROS production (MitoSOX Red labeling). Instead, unbiased activity profiling revealed that they were most likely mediated via the inhibition of the phosphoinositide 3-kinase (PI3K) pathway. Importantly, the PI3K-inhibitor GDC0941 fully mimicked the effects of fluoxetine (Q-PCR, ELISA). Although fluoxetine was able to occupy the binding site of GDC0941 (in silico molecular docking), and exerted direct inhibitory effect on PI3K (cell-free PI3K activity assay), it exhibited much lower potency and efficacy as compared to GDC0941. Finally, RNA-Seq analysis revealed that fluoxetine deeply influenced the transcriptional alterations induced by p(I:C)-treatment, and exerted an overall anti-inflammatory activity. Collectively, our findings demonstrate that fluoxetine exerts potent anti-inflammatory effects, and suppresses the release of the endogenous itch mediator endothelins in human keratinocytes, most likely via interfering with the PI3K pathway. Thus, clinical studies are encouraged to explore whether the currently reported beneficial effects translate in vivo following its topical administration in inflammatory and pruritic dermatoses.
Collapse
Affiliation(s)
- Kinga Fanni Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- University of Debrecen, Doctoral School of Molecular Medicine, Debrecen, Hungary
| | - Dorottya Ádám
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- University of Debrecen, Doctoral School of Molecular Medicine, Debrecen, Hungary
| | - József Arany
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- University of Debrecen, Doctoral School of Molecular Medicine, Debrecen, Hungary
| | - Yesid A Ramirez
- Design and Applied Sciences, School of Applied Sciences and Sustainable Industry, Department of Pharmaceutical and Chemical Sciences, Faculty of Engineering, Universidad Icesi, Cali, Valle del Cauca, Colombia
- Cannaflos-Gesellschaft für medizinisches Cannabis mbH, Köln, Germany
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Alison O'Mahony
- Eurofins Discovery, St. Charles, Missouri, USA
- Recursion, Salt Lake City, Utah, USA
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ana Kilić
- Dr. August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
| | - Michael Soeberdt
- Dr. August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
- Bionorica SE, Neumarkt, Germany
| | - Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
- Bionorica SE, Neumarkt, Germany
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
do Nascimento FB, Valente Sá LG, de Andrade Neto JB, Cabral VP, Rodrigues DS, Barbosa AD, Moreira LE, Oliveira LC, Silva A, Lima IS, Silva J, Marinho ES, Santos HS, Cavalcanti BC, Morais MO, Júnior HV, Silva CR. Antifungal activity of cisatracurium against fluconazole-resistant Candida isolates and its antibiofilm effects. Future Microbiol 2023; 18:649-660. [PMID: 37522164 DOI: 10.2217/fmb-2022-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Aim: To evaluate the antifungal activity of cisatracurium against Candida spp. resistant to fluconazole strains in planktonic and biofilm forms, in addition to determining its mechanism of action. Materials & methods: Antifungal activity and pharmacological interactions were determined using broth microdilution methods and the mechanism of action was evaluated by flow cytometry and molecular docking. Results: Cisatracurium presented antifungal activity against Candida spp. planktonic cells due to alterations of mitochondrial transmembrane potential leading to cellular apoptosis in addition to interacting with important targets related to cellular respiration, membrane and cell wall evidenced by molecular docking. Furthermore, the drug both prevented biofilm formation and impaired mature biofilms. Conclusion: Cisatracurium exhibits potential antifungal activity against Candida spp.
Collapse
Affiliation(s)
- Francisca Ba do Nascimento
- School of Pharmacy, Federal University of Ceará, Fortaleza, CEP, 60.430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil, CE, CEP, 60.430-275, Brasil
| | - Lívia Ga Valente Sá
- School of Pharmacy, Federal University of Ceará, Fortaleza, CEP, 60.430-372, Brazil
- Christus University Center, Fortaleza, CE, Brasil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil, CE, CEP, 60.430-275, Brasil
| | - João B de Andrade Neto
- School of Pharmacy, Federal University of Ceará, Fortaleza, CEP, 60.430-372, Brazil
- Christus University Center, Fortaleza, CE, Brasil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil, CE, CEP, 60.430-275, Brasil
| | - Vitória Pf Cabral
- School of Pharmacy, Federal University of Ceará, Fortaleza, CEP, 60.430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil, CE, CEP, 60.430-275, Brasil
| | - Daniel S Rodrigues
- School of Pharmacy, Federal University of Ceará, Fortaleza, CEP, 60.430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil, CE, CEP, 60.430-275, Brasil
| | - Amanda D Barbosa
- School of Pharmacy, Federal University of Ceará, Fortaleza, CEP, 60.430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil, CE, CEP, 60.430-275, Brasil
| | - Lara Ea Moreira
- School of Pharmacy, Federal University of Ceará, Fortaleza, CEP, 60.430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil, CE, CEP, 60.430-275, Brasil
| | - Leilson C Oliveira
- School of Pharmacy, Federal University of Ceará, Fortaleza, CEP, 60.430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil, CE, CEP, 60.430-275, Brasil
| | - Anderson Silva
- Institute of Advanced Chemistry, Higher Council for Scientific Research, Spain
| | - Iri Sp Lima
- Faculty of Medicine, Federal University of Ceará, Barbalha, 63048-080, CE, Brasil
| | - Jacilene Silva
- Theoretical Chemistry & Electrochemistry Group, State University of Ceará, Limoeiro do Norte, Ceará, 62.930-000, Brasil
| | - Emmanuel S Marinho
- Theoretical Chemistry & Electrochemistry Group, State University of Ceará, Limoeiro do Norte, Ceará, 62.930-000, Brasil
| | - Hélcio S Santos
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Bruno C Cavalcanti
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil, CE, CEP, 60.430-275, Brasil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil.CEP, 60.430-275, Brasil
| | - Manoel O Morais
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil, CE, CEP, 60.430-275, Brasil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil.CEP, 60.430-275, Brasil
| | - Hélio Vn Júnior
- School of Pharmacy, Federal University of Ceará, Fortaleza, CEP, 60.430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil, CE, CEP, 60.430-275, Brasil
| | - Cecília R Silva
- School of Pharmacy, Federal University of Ceará, Fortaleza, CEP, 60.430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil, CE, CEP, 60.430-275, Brasil
| |
Collapse
|
5
|
Abu-Elfotuh K, Al-Najjar AH, Mohammed AA, Aboutaleb AS, Badawi GA. Fluoxetine ameliorates Alzheimer's disease progression and prevents the exacerbation of cardiovascular dysfunction of socially isolated depressed rats through activation of Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome signaling pathway. Int Immunopharmacol 2022; 104:108488. [PMID: 35042170 DOI: 10.1016/j.intimp.2021.108488] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
Depression is a risk factor for Alzheimer's (AD) and cardiovascular diseases (CVD). Therefore, depression treatment restricts its deteriorating effects on mood, memory and CV system. Fluoxetine is the most widely used antidepressant drug, it has neuroprotective effect through its antioxidant/anti-inflammatory properties. The current study investigated for the first-time the cross link between depression, AD and CVD besides, role of fluoxetine in mitigating such disorders. Depression was induced in rats by social isolation (SI) for 12 weeks, AlCL3 (70 mg/kg/day, i.p.) was used to induce AD which was administered either in SI or normal control (NC) grouped rats starting at 8th week till the end of the experiment, fluoxetine (10 mg/kg/day, p.o) treatment also was started at 8th week. SI and AD showed a statistically significant deteriorated effect on behavioral, neurochemical and histopathological analysis which was exaggerated when two disorder combined than each alone. Fluoxetine treatment showed protective effect against SI, AD and prevents exacerbation of CVD. Fluoxetine improved animals' behavior, increased brain monoamines, BDNF besides increased antioxidant defense mechanism of SOD, TAC contents and increased protein expression of Nrf2/HO-1 with significant decrease of AChE activity, β-amyloid, Tau protein, MDA, TNF-α, IL1β contents as well as decreased protein expression of NF-kB, TLR4, NLRP3 and caspase1. It also showed cardioprotective effects as it improved lipid profile with pronounced decrease of cardiac enzymes of CK-MB, troponin and MEF2. In conclusion, fluoxetine represents as a promising drug against central and peripheral disorders through its anti-inflammatory/antioxidant effects via targeting antioxidant Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Aya H Al-Najjar
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Asmaa A Mohammed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Amany S Aboutaleb
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ghada A Badawi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University, El Arish, Egypt.
| |
Collapse
|
6
|
Foletto VS, da Rosa TF, Serafin MB, Bottega A, Franco LN, de Paula BR, Hörner R. Repositioning of antidepressant drugs and synergistic effect with ciprofloxacin against multidrug-resistant bacteria. World J Microbiol Biotechnol 2021; 37:53. [PMID: 33604693 DOI: 10.1007/s11274-021-03016-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
The repositioning of drugs has been shown to be an advantageous alternative for treating diseases caused by multidrug-resistant (MDR) microorganisms. The study aimed to investigate the in vitro antibacterial activity of the antidepressants fluoxetine and paroxetine alone and in combination with the antibacterial ciprofloxacin against standard strains and clinical isolates to explore the repositioning of these drugs in severe bacterial infections. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), tolerance level, fractional inhibitory concentration index (FICI) and interaction of antidepressants with the ciprofloxacin antibiotic were determined using the Checkerboard method against six American Type Culture Collection (ATCC) standard strains and seventy MDR clinical isolates. Both antidepressants showed better antibacterial activity than ciprofloxacin, in addition to being separately bactericidal against all tested Gram-negative and Gram-positive strains. When associated with ciprofloxacin, fluoxetine and paroxetine exhibited significant synergism compared to seventy ciprofloxacin-resistant clinical isolates, demonstrating that these antidepressants were able to increase the antibacterial activity of the antibiotic by eight times. The combination of antidepressants with ciprofloxacin showed relatively better activity against Acinetobacter baumannii, Enterococcus faecium and Klebsiella pneumoniae, strains in which the FICI value obtained was 0.008. The MDR isolates tested in this study ratify the antibacterial properties of the non-antibiotic fluoxetine and paroxetine. In addition, synergism when associated with ciprofloxacin is an alternative for treating serious infections in hospitalized patients. However, additional in vivo studies must be conducted to elucidate the mechanisms of action of these drugs.
Collapse
Affiliation(s)
- Vitória S Foletto
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Taciéli F da Rosa
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Marissa B Serafin
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Angelita Bottega
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Laísa N Franco
- Departamento de Análises Clínicas E Toxicológicas, Universidade Federal de Santa Maria (UFSM), Prédio 2626, Sala 1201, Santa Maria, Rio Grande Do Sul, 97015-900, Brazil
| | - Bruno R de Paula
- Departamento de Análises Clínicas E Toxicológicas, Universidade Federal de Santa Maria (UFSM), Prédio 2626, Sala 1201, Santa Maria, Rio Grande Do Sul, 97015-900, Brazil
| | - Rosmari Hörner
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.
- Departamento de Análises Clínicas E Toxicológicas, Universidade Federal de Santa Maria (UFSM), Prédio 2626, Sala 1201, Santa Maria, Rio Grande Do Sul, 97015-900, Brazil.
- Laboratório de Bacteriologia, Departamento de Análises Clinicas e Toxicológicas (DACT), Centro de Ciências da Saúde (CCS), Universidade Federal de Santa Maria (UFSM), Prédio 26, Sala 1201, Santa Maria, Rio Grande Do Sul, 97015-900, Brazil.
| |
Collapse
|