1
|
Perwad F, Akwo EA, Vartanian N, Suva LJ, Friedman PA, Robinson-Cohen C. Multi-trait Analysis of GWAS for circulating FGF23 Identifies Novel Network Interactions Between HRG-HMGB1 and Cardiac Disease in CKD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.04.24303051. [PMID: 38496593 PMCID: PMC10942519 DOI: 10.1101/2024.03.04.24303051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Genome-wide association studies (GWAS) have identified numerous genetic loci associated with mineral metabolism (MM) markers but have exclusively focused on single-trait analysis. In this study, we performed a multi-trait analysis of GWAS (MTAG) of MM, exploring overlapping genetic architecture between traits, to identify novel genetic associations for fibroblast growth factor 23 (FGF23). Methods We applied MTAG to genetic variants common to GWAS of 5 genetically correlated MM markers (calcium, phosphorus, FGF23, 25-hydroxyvitamin D (25(OH)D) and parathyroid hormone (PTH)) in European-ancestry subjects. We integrated information from UKBioBank GWAS for blood levels for phosphate, 25(OH)D and calcium (n=366,484), and CHARGE GWAS for PTH (n=29,155) and FGF23 (n=16,624). We then used functional genomics to model interactive and dynamic networks to identify novel associations between genetic traits and circulating FGF23. Results MTAG increased the effective sample size for all MM markers to n=50,325 for FGF23. After clumping, MTAG identified independent genome-wide significant SNPs for all traits, including 62 loci for FGF23. Many of these loci have not been previously reported in single-trait analyses. Through functional genomics we identified Histidine-rich glycoprotein (HRG) and high mobility group box 1(HMGB1) genes as master regulators of downstream canonical pathways associated with FGF23. HRG-HMGB1 network interactions were also highly enriched in left ventricular heart tissue of a cohort of deceased hemodialysis patients. Conclusion Our findings highlight the importance of MTAG analysis of MM markers to boost the number of genome-wide significant loci for FGF23 to identify novel genetic traits. Functional genomics revealed novel networks that inform unique cellular functions and identified HRG-HMGB1 as key master regulators of FGF23 and cardiovascular disease in CKD. Future studies will provide a deeper understanding of genetic signatures associated with FGF23 and its role in health and disease.
Collapse
Affiliation(s)
- Farzana Perwad
- University of California San Francisco, San Francisco, CA
| | - Elvis A Akwo
- Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | | |
Collapse
|
2
|
Salzinger B, Lundwall K, Evans M, Mörtberg J, Wallén H, Jernberg T, Kahan T, Lundman P, Tornvall P, Erlinge D, Lindahl B, Baron T, Rezeli M, Spaak J, Jacobson SH. Associations between inflammatory and angiogenic proteomic biomarkers, and cardiovascular events and mortality in relation to kidney function. Clin Kidney J 2024; 17:sfae050. [PMID: 38524235 PMCID: PMC10959071 DOI: 10.1093/ckj/sfae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 03/26/2024] Open
Abstract
Background The links between chronic kidney disease (CKD) and the high burden of cardiovascular disease remain unclear. We aimed to explore the association between selected inflammatory and angiogenic biomarkers, kidney function and long-term outcome in patients with an acute coronary syndrome (ACS) and to test the hypothesis that CKD status modifies this association. Methods A total of 1293 ACS patients hospitalized between 2008 and 2015 were followed until 31 December 2017. Plasma was collected on days 1-3 after admission. A total of 13 biomarkers were a priori identified and analysed with two proteomic methods, proximity extension assay or multiple reaction monitoring mass spectrometry. Boxplots and multiple linear regression models were used to study associations between biomarkers and kidney function and adjusted standardized Cox regression with an interaction term for CKD was used to assess whether CKD modified the association between biomarkers and major adverse cardiovascular events and death (MACE+). Results The concentrations of nine biomarkers-endothelial cell-specific molecule-1 (ESM-1), fibroblast growth factor 23 (FGF-23), fractalkine (CX3CL1), interleukin-1 receptor antagonist (IL-1RA), interleukin-18 (IL-18), monocyte chemotactic protein-1 (MCP-1), placenta growth factor (PlGF), transmembrane immunoglobulin 1 (TIM-1) and vascular endothelial growth factor A (VEGFA)-were inversely associated with kidney function. ESM-1, FGF-23 and TIM-1 showed associations with MACE+. Only FGF23 remained independently associated after adjustment for the other biomarkers (hazard ratio per standard deviation increase 1.34; 95% Bonferroni corrected confidence interval 1.19-1.50). None of the biomarkers showed an interaction with CKD. Conclusions The concentrations of 9 of the 13 prespecified inflammatory and angiogenic proteomic biomarkers increased when kidney function declined. Only FGF-23 demonstrated an independent association with MACE+, and this association was not modified by CKD status. These findings further support FGF-23 as an independent prognostic marker in ACS patients with and without CKD.
Collapse
Affiliation(s)
- Barbara Salzinger
- Division of Nephrology, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - Kristina Lundwall
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - Marie Evans
- ME Renal Medicine, Department of Clinical Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Josefin Mörtberg
- Division of Nephrology, Department of Internal Medicine, Centre for Clinical Research, County of Vastmanland and Uppsala University, Uppsala, Sweden
| | - Håkan Wallén
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - Tomas Jernberg
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - Thomas Kahan
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - Pia Lundman
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - Per Tornvall
- Department of Clinical Science and Education, Sodersjukhuset, Karolinska Institute, Stockholm, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Bertil Lindahl
- Department of Medical Sciences, Cardiology, Uppsala Clinical Research Centre, Uppsala University, Uppsala, Sweden
| | - Tomasz Baron
- Department of Medical Sciences, Cardiology, Uppsala Clinical Research Centre, Uppsala University, Uppsala, Sweden
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Jonas Spaak
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - Stefan H Jacobson
- Division of Nephrology, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
3
|
Weber TJ, Imel EA, Carpenter TO, Peacock M, Portale AA, Hetzer J, Merritt JL, Insogna K. Long-term Burosumab Administration Is Safe and Effective in Adults With X-linked Hypophosphatemia. J Clin Endocrinol Metab 2022; 108:155-165. [PMID: 36072994 PMCID: PMC9759172 DOI: 10.1210/clinem/dgac518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/24/2022] [Indexed: 02/03/2023]
Abstract
CONTEXT Burosumab was developed as a treatment option for patients with the rare, lifelong, chronically debilitating, genetic bone disease X-linked hypophosphatemia (XLH). OBJECTIVE Collect additional information on the safety, immunogenicity, and clinical response to long-term administration of burosumab. METHODS UX023-CL203 (NCT02312687) was a Phase 2b, open-label, single-arm, long-term extension study of adult subjects with XLH who participated in KRN23-INT-001 or KRN23-INT-002 studies. The long-term UX023-CL203 study (January 5, 2015 through November 30, 2018) provided data up to 184 weeks. Participants in UX023-CL203 received burosumab based on the last dose in the prior KRN23-INT-001 or KRN23-INT-002 studies (0.3, 0.6, or 1.0 mg/kg given by subcutaneous injection every 4 weeks). At Week 12, burosumab could be titrated upward/downward to achieve fasting serum phosphate levels within the normal range. Primary objectives included long-term safety, the proportion of subjects achieving fasting serum phosphate in the normal range, changes in bone turnover markers, patient-reported outcomes for pain and stiffness, and measures of mobility. RESULTS Fasting serum phosphate levels at the midpoint of the dosing interval (2 weeks postdose, the time of peak effect) were within the normal range in 85% to 100% of subjects. Measures of phosphate metabolism and bone biomarkers generally improved with burosumab therapy, approaching or reaching their respective normal ranges by study end. Improvements in patient-reported outcomes and mobility were sustained throughout the observation period. No new safety findings emerged with longer-term burosumab treatment. CONCLUSION These data support the conclusion that burosumab therapy may be a safe and effective long-term treatment option for adult patients with XLH.
Collapse
Affiliation(s)
- Thomas J Weber
- Correspondence: Thomas J. Weber, MD, Division of Endocrinology, Metabolism and Nutrition, 303 Baker House, DUMC 3470, Duke University Medical Center, Durham, NC 27710, USA.
| | - Erik A Imel
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Munro Peacock
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Joel Hetzer
- Ultragenyx Pharmaceutical Inc., Novato, CA 94949, USA
| | | | - Karl Insogna
- Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Cipriani C, Minisola S, Colangelo L, DE Martino V, Ferrone F, Biamonte F, Danese V, Sonato C, Santori R, Occhiuto M, Pepe J. FGF23 functions and disease. Minerva Endocrinol (Torino) 2022; 47:437-448. [PMID: 33792238 DOI: 10.23736/s2724-6507.21.03378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The main function of fibroblast growth factor 23 (FGF23) is the regulation of phosphate metabolism through its action on the sodium-dependent phosphate cotransporters in the proximal renal tubules. Additionally, FGF23 interacts with vitamin D and parathyroid hormone in a complex metabolic pathway whose detailed mechanisms are still not clear in human physiology and disease. More recently, research has also focused on the understanding of mechanisms of FGF23 action on organs and system other than the kidneys and bone, as well as on its interaction with other metabolic pathways. Collectively, the new evidence are successfully used for the clinical evaluation and management of FGF23-related disorders, for which new therapies with many potential applications are now available.
Collapse
Affiliation(s)
- Cristiana Cipriani
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy -
| | - Salvatore Minisola
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Luciano Colangelo
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Viviana DE Martino
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Federica Ferrone
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Federica Biamonte
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Vittoria Danese
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Chiara Sonato
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Rachele Santori
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Marco Occhiuto
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Jessica Pepe
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| |
Collapse
|
5
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
6
|
Physiological and pathophysiological role of endocrine fibroblast growth factors. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The endocrine subfamily of fibroblast growth factors (FGF) includes three factors: FGF19, FGF21, FGF23. They act on distal tissues through FGF receptors (FGFRs). The FGFR activation requires two cofactors: α- and β-Klotho, which are structurally related single-pass transmembrane proteins. The endocrine FGFs regulate various metabolic processes involved in the regulation of glucose and lipid metabolism as well as bile acid circulation, vitamin D modulation, and phosphate homeostasis. The FGF-FGFR dysregulation is widely implicated in the pathogenesis of various disorders. Significant alterations in plasma FGF concentration are associated with the most prevalent chronic diseases, including dyslipidemia, type 2 diabetes, cardiovascular diseases, obesity, non-alcoholic fatty liver disease, diseases of the biliary tract, chronic kidney disease, inflammatory bowel disease, osteomalacia, various malignancies, and depression. Therefore, the endocrine FGFs may serve as disease predictors or biomarkers, as well as potential therapeutic targets. Currently, numerous analogues and inhibitors of endocrine FGFs are under development for treatment of various disorders, and recently, a human monoclonal antibody against FGF23 has been approved for treatment of X-linked hypophosphatemia. The aim of this review is to summarize the current data on physiological and pathophysiological actions of the endocrine FGF subfamily and recent research concerning the therapeutic potential of the endocrine FGF pathways.
Collapse
|
7
|
Thrailkill KM, Kalaitzoglou E, Fowlkes JL. Emerging therapies for the treatment of rare pediatric bone disorders. Front Pediatr 2022; 10:1012816. [PMID: 36304528 PMCID: PMC9592743 DOI: 10.3389/fped.2022.1012816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, new therapies for the treatment of rare pediatric bone disorders have emerged, guided by an increasing understanding of the genetic and molecular etiology of these diseases. Herein, we review three such disorders, impacted by debilitating deficits in bone mineralization or cartilage ossification, as well as the novel disease-modifying drugs that are now available to treat these conditions. Specifically, we discuss asfotase alfa, burosumab-twza, and vosoritide, for the treatment of hypophosphatasia, X-linked hypophosphatemia and achondroplasia, respectively. For each skeletal disorder, an overview of the clinical phenotype and natural history of disease is provided, along with a discussion of the clinical pharmacology, mechanism of action and FDA indication for the relevant medication. In each case, a brief review of clinical trial data supporting drug development for each medication is provided. Additionally, guidance as to drug dosing and long-term monitoring of adverse events and pediatric efficacy is presented, to aid the clinician seeking to utilize these novel therapies in their practice, or to become familiar with the healthcare expectations for children receiving these medications through specialized multidisciplinary clinics. The availability of these targeted therapies now significantly augments treatment options for conditions in which past therapy has relied upon less specific, symptomatic medical and orthopedic care.
Collapse
Affiliation(s)
- Kathryn M Thrailkill
- Department of Pediatrics, University of Kentucky Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Evangelia Kalaitzoglou
- Department of Pediatrics, University of Kentucky Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, United States
| | - John L Fowlkes
- Department of Pediatrics, University of Kentucky Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
8
|
Li Y, Gu Z, Wang J, Wang Y, Chen X, Dong B. The Emerging Role of Bone-Derived Hormones in Diabetes Mellitus and Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 13:938830. [PMID: 35966090 PMCID: PMC9367194 DOI: 10.3389/fendo.2022.938830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) causes the greatest proportion of end-stage renal disease (ESRD)-related mortality and has become a high concern in patients with diabetes mellitus (DM). Bone is considered an endocrine organ, playing an emerging role in regulating glucose and energy metabolism. Accumulating research has proven that bone-derived hormones are involved in glucose metabolism and the pathogenesis of DM complications, especially DKD. Furthermore, these hormones are considered to be promising predictors and prospective treatment targets for DM and DKD. In this review, we focused on bone-derived hormones, including fibroblast growth factor 23, osteocalcin, sclerostin, and lipocalin 2, and summarized their role in regulating glucose metabolism and DKD.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zuhua Gu
- Department of Endocrinology and Nephropathy, Weihai Hospital, Weihai, China
| | - Jun Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bingzi Dong, ; Xian Chen,
| | - Bingzi Dong
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bingzi Dong, ; Xian Chen,
| |
Collapse
|