1
|
Hussen MD, Rezwana F, Ony MI, Sultana F, Joba FA, Tabassum Z. Rare Case of Adult-Onset Gitelman Syndrome in a Patient With Multiple Comorbidities: A Case Report. Clin Case Rep 2025; 13:e70323. [PMID: 40093940 PMCID: PMC11908843 DOI: 10.1002/ccr3.70323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Gitelman Syndrome (GS) is a renal tubulopathy transmitted in an autosomal recessive manner. Its primary cause is mutations Of SLC12A3 (Solute Carrier Family 12 Member 3) gene that encodes the sodium-chloride co-transporter and is characterized by hypokalemia, hypocalciuria, hypomagnesemia, and metabolic alkalosis. It appears in most cases in adolescents or early adulthood, but with end-organ disease in later adulthood with other comorbid conditions. The patient was a 55-year-old woman with refractory electrolyte disturbances comprising low potassium, calcium, and metabolic alkalosis, history of NASH (non-alcoholic steatohepatitis) cirrhosis, benzodiazepine poisoning, and gastric polyps. Persistent electrolyte abnormalities were most likely worsening renal failure before improvement with the addition of spironolactone. Urinary magnesium/creatinine ratios above 1 were indicative of GS. Electrolyte imbalances were recurring in both her and her late mother, which even existed throughout her childhood. Persistent electrolyte abnormalities in this patient's chronic NASH cirrhosis would probably worsen due to secondary hyperaldosteronism. Supplementation of potassium, calcium, and magnesium failed to address the refractory hypokalemia and hypocalcemia, and hypomagnesemia. So spironolactone was initiated, which resulted in a successful resolution of the condition. Clinical diagnosis of GS made based on biochemical markers due to an existing strong familial pattern of similar electrolyte manifestations since a genetic test for the condition was unavailable. This case shows the issue of disease synergy and how various diseases relate and need specific methods of treatment. The patient's status requires constant observation and the investigation of the possible hereditary renal -tubular disorders.
Collapse
Affiliation(s)
| | | | | | - Fariha Sultana
- Chattagram Maa‐O‐ Shishu Hospital Medical CollegeChittagongBangladesh
| | | | | |
Collapse
|
2
|
Fang C, Zhou W. Genetic background of neonatal hypokalemia. Pediatr Nephrol 2025; 40:301-317. [PMID: 39283520 DOI: 10.1007/s00467-024-06492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/05/2024] [Accepted: 08/07/2024] [Indexed: 12/24/2024]
Abstract
Neonatal hypokalemia (defined as a serum potassium level <3.5 mEq/L) is the most common electrolyte disorder encountered in clinical practice. In addition to common secondary causes, primary genetic etiologies are also closely associated with hypokalemia. Currently, a systematic characterization of these genetic disorders is lacking, making early recognition challenging and clinical management uncertain. This review will aid clinicians by summarizing the genetic background of neonatal hypokalemia from two aspects: (1) increased excretion of K+, whereby genetic factors primarily lead to increased renal Na+ influx, decreased H+ efflux, or reduced Cl- influx, ultimately resulting in increased K+ efflux; and (2) decreased extracellular distribution of K+, whereby genetic factors result in abnormalities in transmembrane ion channels, reducing outward potassium currents or generating inward cation leak currents. We describe over ten genetic diseases associated with neonatal hypokalemia, which involve pathogenic variants in dozens of genes and affect multiple target organs, including the kidneys, intestines, and skeletal muscle. For example, in the renal tubules, pathogenic variants in the SLC12A1 gene encoding the Na+-K+-2Cl- cotransporter lead to renal K+ loss, causing Bartter syndrome type I; in intestinal epithelial cells, pathogenic variants in the SLC26A3 gene result in a defective Cl⁻-HCO₃⁻ exchanger, causing congenital chloride diarrhea; and in skeletal muscle, pathogenic variants in the CACNA1S gene impact membrane calcium ion channels resulting in hypokalemic periodic paralysis. Given the wide variety of organs and genetic alterations that can contribute to neonatal hypokalemia, we believe this review will provide valuable insights for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Chuchu Fang
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wenhao Zhou
- Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China.
| |
Collapse
|
3
|
Sánchez-Cazorla E, Carrera N, García-González MÁ. HNF1B Transcription Factor: Key Regulator in Renal Physiology and Pathogenesis. Int J Mol Sci 2024; 25:10609. [PMID: 39408938 PMCID: PMC11476927 DOI: 10.3390/ijms251910609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The HNF1B gene, located on chromosome 17q12, encodes a transcription factor essential for the development of several organs. It regulates the expression of multiple genes in renal, pancreatic, hepatic, neurological, and genitourinary tissues during prenatal and postnatal development, influencing processes such as nephrogenesis, cellular polarity, tight junction formation, cilia development, ion transport in the renal tubule, and renal metabolism. Mutations that alter the function of Hnf1b deregulate those processes, leading to various pathologies characterized by both renal and extrarenal manifestations. The main renal diseases that develop are polycystic kidney disease, hypoplastic or dysplastic kidneys, structural abnormalities, Congenital Anomalies of the Kidney and Urinary Tract (CAKUT), and electrolyte imbalances such as hyperuricemia and hypomagnesemia. Extrarenal manifestations include Maturity-Onset Diabetes of the Young (MODY), hypertransaminasemia, genital and urinary tract malformations, Autism Spectrum Disorder (ASD), and other neurodevelopmental disorders. Patients with HNF1B alterations typically carry either punctual mutations or a monoallelic microdeletion in the 17q12 region. Future research on the molecular mechanisms and genotype-phenotype correlations in HNF1B-related conditions will enhance our understanding, leading to improved clinical management, genetic counseling, monitoring, and patient care.
Collapse
Affiliation(s)
- Eloísa Sánchez-Cazorla
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
| | - Noa Carrera
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
- RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| | - Miguel Ángel García-González
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
- RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| |
Collapse
|
4
|
You R, Jia Z. Pathophysiological role of Na-Cl cotransporter in kidneys, blood pressure, and metabolism. Hum Cell 2024; 37:1306-1315. [PMID: 38985392 DOI: 10.1007/s13577-024-01099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The Na-Cl cotransporter (NCC) is a well-recognized regulator of ion transportation in the kidneys that facilitates Na+ reabsorption in the distal convoluted tubule. It is also the pharmacologic inhibitory target of thiazide diuretics, a class of front-line antihypertensive agents that have been widely used for decades. NCC is a potent regulator of Na+ reabsorption and homeostasis. Hence, its overactivation and suppression lead to hypertension and hypotension, respectively. Genetic mutations that affect NCC function contribute to several diseases such as Gordon and Gitelman syndromes. We summarized the role of NCC in various physiologic processes and pathological conditions, such as maintaining ion and water homeostasis, controlling blood pressure, and influencing renal physiology and injury. In addition, we discussed the recent advancements in understanding cryo-EM structure of NCC, the regulatory mechanisms and binding mode of thiazides with NCC, and novel physiologic implications of NCC in regulating the cross-talk between the immune system and adipose tissue or the kidneys. This review contributes to a comprehensive understanding of the pivotal role of NCC in maintaining ion homeostasis, regulating blood pressure, and facilitating kidney function and NCC's novel role in immune and metabolic regulation.
Collapse
Affiliation(s)
- Ran You
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Cho MH, Park PG, Kim JH, Jang KM, Lee JM, Yang EM, Park SJ, Suh JS, Cho H, Lee JW, Lee JH, Koo JW, Namgoong MK, Kim KH, Ahn YH, Kang HG, Cheong HI. Genotype-phenotype correlations in children with Gitelman syndrome. Clin Exp Nephrol 2024; 28:803-810. [PMID: 38478191 DOI: 10.1007/s10157-024-02474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/09/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND This study aimed to analyze genotype-phenotype correlations in children with Gitelman syndrome (GS). METHODS This multicenter retrospective study included 50 Korean children diagnosed with SLC12A3 variants in one or both alleles and the typical laboratory findings of GS. Genetic testing was performed using the Sanger sequencing except for one patient. RESULTS The median age at the diagnosis was 10.5 years (interquartile range, 6.8;14.1), and 41 patients were followed up for a median duration of 5.4 years (interquartile range, 4.1;9.6). A total of 30 different SLC12A3 variants were identified. Of the patients, 34 (68%) had biallelic variants, and 16 (32%) had monoallelic variants on examination. Among the patients with biallelic variants, those (n = 12) with the truncating variants in one or both alleles had lower serum chloride levels (92.2 ± 3.2 vs. 96.5 ± 3.8 mMol/L, P = 0.002) at onset, as well as lower serum potassium levels (3.0 ± 0.4 vs. 3.4 ± 0.3 mMol/L, P = 0.016), and lower serum chloride levels (96.1 ± 1.9 vs. 98.3 ± 3.0 mMol/L, P = 0.049) during follow-up than those without truncating variants (n = 22). Patients with monoallelic variants on examination showed similar phenotypes and treatment responsiveness to those with biallelic variants. CONCLUSIONS Patients with GS who had truncating variants in one or both alleles had more severe electrolyte abnormalities than those without truncating variants. Patients with GS who had monoallelic SLC12A3 variants on examination had almost the same phenotypes, response to treatment, and long-term prognosis as those with biallelic variants.
Collapse
Affiliation(s)
- Myung Hyun Cho
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Peong Gang Park
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kyung Mi Jang
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jiwon M Lee
- Division of Rare Disease Management, Bureau of Chronic Disease Management, Korea Disease Control and Prevention Agency, Osong, Republic of Korea
| | - Eun Mi Yang
- Department of Pediatrics, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea
| | - Se Jin Park
- Department of Pediatrics, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Jin-Soon Suh
- Department of Pediatrics, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Heeyeon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Won Lee
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Joo Hoon Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ja Wook Koo
- Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Mee Kyung Namgoong
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Kee Hyuck Kim
- Department of Pediatrics, National Health Insurance Corporation Ilsan Hospital, Goyang, Republic of Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul Red Cross Hospital, 9 Saemoonan-Ro, Jongno-Gu, Seoul, 03181, Korea.
| |
Collapse
|
6
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
7
|
Touyz RM, de Baaij JHF, Hoenderop JGJ. Magnesium Disorders. N Engl J Med 2024; 390:1998-2009. [PMID: 38838313 DOI: 10.1056/nejmra1510603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Affiliation(s)
- Rhian M Touyz
- From the Research Institute of McGill University Health Centre, Departments of Medicine and Family Medicine, McGill University, Montreal (R.M.T.); and the Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands (J.H.F.B., J.G.J.H.)
| | - Jeroen H F de Baaij
- From the Research Institute of McGill University Health Centre, Departments of Medicine and Family Medicine, McGill University, Montreal (R.M.T.); and the Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands (J.H.F.B., J.G.J.H.)
| | - Joost G J Hoenderop
- From the Research Institute of McGill University Health Centre, Departments of Medicine and Family Medicine, McGill University, Montreal (R.M.T.); and the Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands (J.H.F.B., J.G.J.H.)
| |
Collapse
|
8
|
Abu Obaid A, Ivandic I, Korsching SI. Deciphering the function of the fifth class of Gα proteins: regulation of ionic homeostasis as unifying hypothesis. Cell Mol Life Sci 2024; 81:213. [PMID: 38727814 PMCID: PMC11087313 DOI: 10.1007/s00018-024-05228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/13/2024]
Abstract
Trimeric G proteins transduce signals from a superfamily of receptors and each G protein controls a wide range of cellular and systemic functions. Their highly conserved alpha subunits fall in five classes, four of which have been well investigated (Gs, Gi, G12, Gq). In contrast, the function of the fifth class, Gv is completely unknown, despite its broad occurrence and evolutionary ancient origin (older than metazoans). Here we show a dynamic presence of Gv mRNA in several organs during early development of zebrafish, including the hatching gland, the pronephros and several cartilage anlagen, employing in situ hybridisation. Next, we generated a Gv frameshift mutation in zebrafish and observed distinct phenotypes such as reduced oviposition, premature hatching and craniofacial abnormalities in bone and cartilage of larval zebrafish. These phenotypes could suggest a disturbance in ionic homeostasis as a common denominator. Indeed, we find reduced levels of calcium, magnesium and potassium in the larvae and changes in expression levels of the sodium potassium pump atp1a1a.5 and the sodium/calcium exchanger ncx1b in larvae and in the adult kidney, a major osmoregulatory organ. Additionally, expression of sodium chloride cotransporter slc12a3 and the anion exchanger slc26a4 is altered in complementary ways in adult kidney. It appears that Gv may modulate ionic homeostasis in zebrafish during development and in adults. Our results constitute the first insight into the function of the fifth class of G alpha proteins.
Collapse
Affiliation(s)
- Asmaa Abu Obaid
- Institute of Genetics, Faculty of Mathematics and Natural Sciences of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
- Department of Optometry, Faculty of Modern Sciences, The Arab American University, Yousef Asfour Street, Ramallah, Palestine
| | - Ivan Ivandic
- Institute of Genetics, Faculty of Mathematics and Natural Sciences of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Faculty of Mathematics and Natural Sciences of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany.
| |
Collapse
|
9
|
Gamba G. From Fish Physiology to Human Disease: The Discovery of the NCC, NKCC2, and the Cation-Coupled Chloride Cotransporters. KIDNEY360 2024; 5:133-141. [PMID: 37968800 PMCID: PMC10833596 DOI: 10.34067/kid.0000000000000307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
The renal Na-K-2Cl and Na-Cl cotransporters are the major salt reabsorption pathways in the thick ascending limb of Henle loop and the distal convoluted tubule, respectively. These transporters are the target of the loop and thiazide type diuretics extensively used in the world for the treatment of edematous states and arterial hypertension. The diuretics appeared in the market many years before the salt transport systems were discovered. The evolving of the knowledge and the cloning of the genes encoding the Na-K-2Cl and Na-Cl cotransporters were possible thanks to the study of marine species. This work presents the history of how we came to know the mechanisms for the loop and thiazide type diuretics actions, the use of marine species in the cloning process of these cotransporters and therefore in the whole solute carrier cotransproters 12 (SLC12) family of electroneutral cation chloride cotransporters, and the disease associated with each member of the family.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| |
Collapse
|
10
|
Lee SH, Lee S, Kim H, Kim GH. Pseudo-Gitelman Syndrome Presenting with Hypokalemic Metabolic Alkalosis and Hypocalciuria. Electrolyte Blood Press 2023; 21:72-76. [PMID: 38152600 PMCID: PMC10751206 DOI: 10.5049/ebp.2023.21.2.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 12/29/2023] Open
Abstract
Pseudo-Bartter syndrome is a well-known differential diagnosis that needs to be excluded in cases of normotensive hypokalemic metabolic alkalosis. Pseudo-Bartter syndrome and pseudo-Gitelman syndrome are often collectively referred to as pseudo-Bartter/Gitelman syndrome; however, pseudo-Gitelman syndrome should be considered as a separate entity because Gitelman syndrome is characterized by hypocalciuria and hypomagnesemia, while Bartter syndrome is usually associated with hypercalciuria. Herein, we report the cases of two young adult female patients who presented with severe hypokalemic metabolic alkalosis, hypocalciuria, and hypomagnesemia. Diuretic or laxative abuse and self-induced vomiting were absent, and a chloride deficit and remarkable bicarbonaturia were observed. Initial sequencing studies for SLC12A3, CLCKNB, and KCNJ10 revealed no mutations, and whole-exome sequencing revealed no pathogenic variants. The metabolic alkalosis was saline-responsive in one case, and steroid therapy was necessary in the other to relieve chronic tubulointerstitial nephritis, which was diagnosed with kidney biopsy. A new category of pseudo-Gitelman syndrome should be defined, and various etiologies should be investigated.
Collapse
Affiliation(s)
- Seung Heon Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sukyung Lee
- Department of Internal Medicine, Pohang St. Mary's Hospital, Pohang, Republic of Korea
| | - Hyunsung Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Gheun-Ho Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Viering DH, Vermeltfoort L, Bindels RJ, Deinum J, de Baaij JH. Electrolyte Disorders in Mitochondrial Cytopathies: A Systematic Review. J Am Soc Nephrol 2023; 34:1875-1888. [PMID: 37678265 PMCID: PMC10631606 DOI: 10.1681/asn.0000000000000224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
SIGNIFICANCE STATEMENT Several recent studies identified mitochondrial mutations in patients with Gitelman or Fanconi syndrome. Mitochondrial cytopathies are generally not considered in the diagnostic workup of patients with electrolyte disorders. In this systematic review, we investigated the presence of electrolyte disorders in patients with mitochondrial cytopathies to determine the relevance of mitochondrial mutation screening in this population. Our analysis demonstrates that electrolyte disorders are commonly reported in mitochondrial cytopathies, often as presenting symptoms. Consequently, more clinical attention should be raised for mitochondrial disease as cause for disturbances in electrolyte homeostasis. Further prospective cohort studies are required to determine the exact prevalence of electrolyte disorders in mitochondrial cytopathies. BACKGROUND Electrolyte reabsorption in the kidney has a high energy demand. Proximal and distal tubular epithelial cells have a high mitochondrial density for energy release. Recently, electrolyte disorders have been reported as the primary presentation of some mitochondrial cytopathies. However, the prevalence and the pathophysiology of electrolyte disturbances in mitochondrial disease are unknown. Therefore, we systematically investigated electrolyte disorders in patients with mitochondrial cytopathies. METHODS We searched PubMed, Embase, and Google Scholar for articles on genetically confirmed mitochondrial disease in patients for whom at least one electrolyte is reported. Patients with a known second genetic anomaly were excluded. We evaluated 214 case series and reports (362 patients) as well as nine observational studies. Joanna Briggs Institute criteria were used to evaluate the quality of included studies. RESULTS Of 362 reported patients, 289 had an electrolyte disorder, with it being the presenting or main symptom in 38 patients. The average number of different electrolyte abnormalities per patient ranged from 2.4 to 1.0, depending on genotype. Patients with mitochondrial DNA structural variants seemed most affected. Reported pathophysiologic mechanisms included renal tubulopathies and hormonal, gastrointestinal, and iatrogenic causes. CONCLUSIONS Mitochondrial diseases should be considered in the evaluation of unexplained electrolyte disorders. Furthermore, clinicians should be aware of electrolyte abnormalities in patients with mitochondrial disease.
Collapse
Affiliation(s)
- Daan H.H.M. Viering
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lars Vermeltfoort
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J.M. Bindels
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H.F. de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Gunde R, Ca J, Bhat N, Bhat V, Kodapala S. Gitelman Syndrome Manifesting With Acute Hypokalemic Paralysis: A Case Report. Cureus 2023; 15:e45997. [PMID: 37900493 PMCID: PMC10601981 DOI: 10.7759/cureus.45997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Gitelman syndrome (GS) is a rare renal tubulopathy, classically characterized by renal salt wasting and metabolic alkalosis. It is usually an incidental diagnosis, being asymptomatic or with mild symptoms. GS manifesting with acute flaccid paralysis is extremely uncommon. We report a case of GS that mimicked Guillain-Barré syndrome (GBS), manifesting with acute hypokalemic paralysis. A middle-aged male with no known comorbidities presented to our center with paresthesias of all four limbs for one month and progressive, asymmetric limb weakness over the past eight days. Neurological examination revealed hypotonia, global areflexia, and power ranging from 3/5 to 4/5 in all four limbs, leading to our initial clinical diagnosis of GBS. Our patient's laboratory panel revealed hypokalemia, hypomagnesemia, metabolic alkalosis, and hypocalcemia, characteristic of GS. Additionally, he had significantly elevated creatine phosphokinase, suggestive of rhabdomyolysis. Further urine studies revealed renal potassium wasting, confirming the diagnosis of GS. Whole exome genome sequencing for common causative genes and workup for autoimmune disease were both negative. With gradual electrolyte correction, the patient rapidly improved symptomatically. Our case highlights an uncommon initial presentation of GS and emphasizes the need for more literature on its manifestations from the Indian subcontinent.
Collapse
Affiliation(s)
- Rahul Gunde
- Neurology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Jayashankar Ca
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Nuthan Bhat
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Vivek Bhat
- Internal Medicine, St. John's Medical College, Bangalore, IND
| | - Suresha Kodapala
- Neurology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| |
Collapse
|
13
|
García-Castaño A, Gómez-Conde S, Gondra L, Herrero M, Aguirre M, de la Hoz AB, Castaño L, Madariaga L. Genotypic variability in patients with clinical diagnosis of Bartter syndrome type 3. Sci Rep 2023; 13:12587. [PMID: 37537162 PMCID: PMC10400606 DOI: 10.1038/s41598-023-38179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Bartter syndrome (BS) is a salt-losing hereditary tubulopathy characterized by hypokalemic metabolic alkalosis with secondary hyperaldosteronism. Confirmatory molecular diagnosis may be difficult due to genetic heterogeneity and overlapping of clinical symptoms. The aim of our study was to describe the different molecular findings in patients with a clinical diagnosis of classic BS. We included 27 patients (26 families) with no identified pathogenic variants in CLCNKB. We used a customized Ion AmpliSeq Next-Generation Sequencing panel including 44 genes related to renal tubulopathies. We detected pathogenic or likely pathogenic variants in 12 patients (44%), reaching a conclusive genetic diagnosis. Variants in SLC12A3 were found in 6 (Gitelman syndrome). Median age at diagnosis was 14.6 years (range 0.1-31), with no history of prematurity or polyhydramnios. Serum magnesium level was low in 2 patients (33%) but urinary calcium excretion was normal or low in all, with no nephrocalcinosis. Variants in SLC12A1 were found in 3 (BS type 1); and in KCNJ1 in 1 (BS type 2). These patients had a history of polyhydramnios in 3 (75%), and the mean gestational age was 34.2 weeks (SD 1.7). The median age at diagnosis was 1.8 years (range 0.1-6). Chronic kidney disease and nephrocalcinosis were present in 1 (25%) and 3 (75%) patients, respectively. A variant in CLCN5 was found in one patient (Dent disease), and in NR3C2 in another patient (Geller syndrome). Genetic diagnosis of BS is heterogeneous as different tubulopathies can present with a similar clinical picture. The use of gene panels in these diseases becomes more efficient than the study gene by gene with Sanger sequencing.
Collapse
Affiliation(s)
- Alejandro García-Castaño
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- CIBERDEM, CIBERER, Endo-ERN, Madrid, Spain
| | - Sara Gómez-Conde
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- CIBERDEM, CIBERER, Endo-ERN, Madrid, Spain
- Pediatric Department, University of the Basque Country UPV/EHU, Bizkaia, Spain
| | - Leire Gondra
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- CIBERDEM, CIBERER, Endo-ERN, Madrid, Spain
- Pediatric Department, University of the Basque Country UPV/EHU, Bizkaia, Spain
- Pediatric Nephrology Department, Cruces University Hospital, Plaza de Cruces, 48903, Barakaldo, Bizkaia, Spain
| | - María Herrero
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Pediatric Nephrology Department, Cruces University Hospital, Plaza de Cruces, 48903, Barakaldo, Bizkaia, Spain
| | - Mireia Aguirre
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Pediatric Nephrology Department, Cruces University Hospital, Plaza de Cruces, 48903, Barakaldo, Bizkaia, Spain
| | - Ana-Belén de la Hoz
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- CIBERDEM, CIBERER, Endo-ERN, Madrid, Spain
| | - Luis Castaño
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- CIBERDEM, CIBERER, Endo-ERN, Madrid, Spain
- Pediatric Department, University of the Basque Country UPV/EHU, Bizkaia, Spain
| | - Leire Madariaga
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- CIBERDEM, CIBERER, Endo-ERN, Madrid, Spain.
- Pediatric Department, University of the Basque Country UPV/EHU, Bizkaia, Spain.
- Pediatric Nephrology Department, Cruces University Hospital, Plaza de Cruces, 48903, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
14
|
Abstract
Mg2+ is essential for many cellular and physiological processes, including muscle contraction, neuronal activity, and metabolism. Consequently, the blood Mg2+ concentration is tightly regulated by balanced intestinal Mg2+ absorption, renal Mg2+ excretion, and Mg2+ storage in bone and soft tissues. In recent years, the development of novel transgenic animal models and identification of Mendelian disorders has advanced our current insight in the molecular mechanisms of Mg2+ reabsorption in the kidney. In the proximal tubule, Mg2+ reabsorption is dependent on paracellular permeability by claudin-2/12. In the thick ascending limb of Henle's loop, the claudin-16/19 complex provides a cation-selective pore for paracellular Mg2+ reabsorption. The paracellular Mg2+ reabsorption in this segment is regulated by the Ca2+-sensing receptor, parathyroid hormone, and mechanistic target of rapamycin (mTOR) signaling. In the distal convoluted tubule, the fine tuning of Mg2+ reabsorption takes place by transcellular Mg2+ reabsorption via transient receptor potential melastatin-like types 6 and 7 (TRPM6/TRPM7) divalent cation channels. Activity of TRPM6/TRPM7 is dependent on hormonal regulation, metabolic activity, and interacting proteins. Basolateral Mg2+ extrusion is still poorly understood but is probably dependent on the Na+ gradient. Cyclin M2 and SLC41A3 are the main candidates to act as Na+/Mg2+ exchangers. Consequently, disturbances of basolateral Na+/K+ transport indirectly result in impaired renal Mg2+ reabsorption in the distal convoluted tubule. Altogether, this review aims to provide an overview of the molecular mechanisms of Mg2+ reabsorption in the kidney, specifically focusing on transgenic mouse models and human hereditary diseases.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Cui S, Fang X, Lee H, Shin YJ, Koh ES, Chung S, Park HS, Lim SW, Lee KI, Lee JY, Yang CW, Chung BH. Modeling of Fabry disease nephropathy using patient derived human induced pluripotent stem cells and kidney organoid system. J Transl Med 2023; 21:138. [PMID: 36814269 PMCID: PMC9948377 DOI: 10.1186/s12967-023-03992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVES To explore the possibility of kidney organoids generated using patient derived human induced pluripotent stem cells (hiPSC) for modeling of Fabry disease nephropathy (FDN). METHODS First, we generated hiPSC line using peripheral blood mononuclear cells (PBMCs) from two male FD-patients with different types of GLA mutation: a classic type mutation (CMC-Fb-001) and a non-classic type (CMC-Fb-003) mutation. Second, we generated kidney organoids using wild-type (WT) hiPSC (WTC-11) and mutant hiPSCs (CMC-Fb-001 and CMC-Fb-003). We then compared alpha-galactosidase A (α-GalA) activity, deposition of globotriaosylceremide (Gb-3), and zebra body formation under electromicroscopy (EM). RESULTS Both FD patients derived hiPSCs had the same mutations as those detected in PBMCs of patients, showing typical pluripotency markers, normal karyotyping, and successful tri-lineage differentiation. Kidney organoids generated using WT-hiPSC and both FD patients derived hiPSCs expressed typical nephron markers without structural deformity. Activity of α-GalA was decreased and deposition of Gb-3 was increased in FD patients derived hiPSCs and kidney organoids in comparison with WT, with such changes being far more significant in CMC-Fb-001 than in CMC-Fb-003. In EM finding, multi-lammelated inclusion body was detected in both CMC-Fb-001 and CMC-Fb-003 kidney organoids, but not in WT. CONCLUSIONS Kidney organoids generated using hiPSCs from male FD patients might recapitulate the disease phenotype and represent the severity of FD according to the GLA mutation type.
Collapse
Affiliation(s)
- Sheng Cui
- grid.411947.e0000 0004 0470 4224Transplantation Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea
| | - Xianying Fang
- grid.411947.e0000 0004 0470 4224Transplantation Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea
| | - Hanbi Lee
- grid.411947.e0000 0004 0470 4224Transplantation Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea ,grid.411947.e0000 0004 0470 4224Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea
| | - Yoo Jin Shin
- grid.411947.e0000 0004 0470 4224Transplantation Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea
| | - Eun-Sil Koh
- grid.411947.e0000 0004 0470 4224Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sungjin Chung
- grid.411947.e0000 0004 0470 4224Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hoon Suk Park
- grid.411947.e0000 0004 0470 4224Division of Nephrology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun Woo Lim
- grid.411947.e0000 0004 0470 4224Transplantation Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea
| | | | | | - Chul Woo Yang
- grid.411947.e0000 0004 0470 4224Transplantation Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea ,grid.411947.e0000 0004 0470 4224Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea
| | - Byung Ha Chung
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591, South Korea. .,Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591, South Korea.
| |
Collapse
|
16
|
Lim SW, Fang X, Cui S, Lee H, Shin YJ, Ko EJ, Lee KI, Lee JY, Chung BH, Yang CW. CRISPR-Cas9-Mediated Correction of SLC12A3 Gene Mutation Rescues the Gitelman's Disease Phenotype in a Patient-Derived Kidney Organoid System. Int J Mol Sci 2023; 24:ijms24033019. [PMID: 36769335 PMCID: PMC9917614 DOI: 10.3390/ijms24033019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
The aim of this study is to explore the possibility of modeling Gitelman's disease (GIT) with human-induced pluripotent stem cell (hiPSC)-derived kidney organoids and to test whether gene correction using CRISPR/Cas9 can rescue the disease phenotype of GIT. To model GIT, we used the hiPSC line CMCi002 (CMC-GIT-001), generated using PBMCs from GIT patients with SLC12A3 gene mutation. Using the CRISPR-Cas9 system, we corrected CMC-GIT-001 mutations and hence generated CMC-GIT-001corr. Both hiPSCs were differentiated into kidney organoids, and we analyzed the GIT phenotype. The number of matured kidney organoids from the CMC-GIT-001corr group was significantly higher, 3.3-fold, than that of the CMC-GIT-001 group (12.2 ± 0.7/cm2 vs. 3.7 ± 0.2/cm2, p < 0.05). In qRT-PCR, performed using harvested kidney organoids, relative sodium chloride cotransporter (NCCT) mRNA levels (normalized to each iPSC) were increased in the CMC-GIT-001corr group compared with the CMC-GIT-001 group (4.1 ± 0.8 vs. 2.5 ± 0.2, p < 0.05). Consistently, immunoblot analysis revealed increased levels of NCCT protein, in addition to other tubular proteins markers, such as LTL and ECAD, in the CMC-GIT-001corr group compared to the CMC-GIT-001 group. Furthermore, we found that increased immunoreactivity of NCCT in the CMC-GIT-001corr group was colocalized with ECAD (a distal tubule marker) using confocal microscopy. Kidney organoids from GIT patient-derived iPSC recapitulated the Gitelman's disease phenotype, and correction of SLC12A3 mutation utilizing CRISPR-Cas9 technology provided therapeutic insight.
Collapse
Affiliation(s)
- Sun Woo Lim
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Xianying Fang
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sheng Cui
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hanbi Lee
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, Division of Nephrology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoo Jin Shin
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun Jeong Ko
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, Division of Nephrology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kang In Lee
- R&D Center, ToolGen, Inc., Seoul 06591, Republic of Korea
| | - Jae Young Lee
- R&D Center, ToolGen, Inc., Seoul 06591, Republic of Korea
| | - Byung Ha Chung
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, Division of Nephrology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Correspondence: (B.H.C.); (C.W.Y.); Tel.: +82-2-2258-6066 (B.H.C.); +82-2-2258-6851 (C.W.Y.); Fax: +82-2-2258-6917 (B.H.C.); +82-2-2258-6917 (C.W.Y.)
| | - Chul Woo Yang
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, Division of Nephrology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Correspondence: (B.H.C.); (C.W.Y.); Tel.: +82-2-2258-6066 (B.H.C.); +82-2-2258-6851 (C.W.Y.); Fax: +82-2-2258-6917 (B.H.C.); +82-2-2258-6917 (C.W.Y.)
| |
Collapse
|
17
|
Castañeda-Bueno M, Ellison DH. Blood pressure effects of sodium transport along the distal nephron. Kidney Int 2022; 102:1247-1258. [PMID: 36228680 PMCID: PMC9754644 DOI: 10.1016/j.kint.2022.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
The mammalian distal nephron is a target of highly effective antihypertensive drugs. Genetic variants that alter its transport activity are also inherited causes of high or low blood pressure, clearly establishing its central role in human blood pressure regulation. Much has been learned during the past 25 years about salt transport along this nephron segment, spurred by the cloning of major transport proteins and the discovery of disease-causing genetic variants. Recognition is increasing that substantial cellular and segmental heterogeneity is present along this segment, with electroneutral sodium transport dominating more proximal segments and electrogenic sodium transport dominating more distal segments. Coupled with recent insights into factors that modulate transport along these segments, we now understand one important mechanism by which dietary potassium intake influences sodium excretion and blood pressure. This finding has solved the aldosterone paradox, by demonstrating how aldosterone can be both kaliuretic, when plasma potassium is elevated, and anti-natriuretic, when extracellular fluid volume is low. However, what also has become clear is that aldosterone itself only stimulates a portion of the mineralocorticoid receptors along this segment, with the others being activated by glucocorticoid hormones instead. These recent insights provide an increasingly clear picture of how this short nephron segment contributes to blood pressure homeostasis and have important implications for hypertension prevention and treatment.
Collapse
Affiliation(s)
- María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, National Institute of Medical Sciences and Nutrition, Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA; Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA; LeDucq Transatlantic Network of Excellence, Portland, Oregon, USA; Renal Section, VA Portland Healthcare System, Portland, Oregon, USA.
| |
Collapse
|