1
|
Siracusa C, Carabetta N, Morano MB, Manica M, Strangio A, Sabatino J, Leo I, Castagna A, Cianflone E, Torella D, Andreucci M, Zicarelli MT, Musolino M, Bolignano D, Coppolino G, De Rosa S. Understanding Vascular Calcification in Chronic Kidney Disease: Pathogenesis and Therapeutic Implications. Int J Mol Sci 2024; 25:13096. [PMID: 39684805 DOI: 10.3390/ijms252313096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Vascular calcification (VC) is a biological phenomenon characterized by an accumulation of calcium and phosphate deposits within the walls of blood vessels causing the loss of elasticity of the arterial walls. VC plays a crucial role in the incidence and progression of chronic kidney disease (CKD), leading to a significant increase in cardiovascular mortality in these patients. Different conditions such as age, sex, dyslipidemia, diabetes, and hypertension are the main risk factors in patients affected by chronic kidney disease. However, VC may occur earlier and faster in these patients if it is associated with new or non-traditional risk factors such as oxidative stress, anemia, and inflammation. In chronic kidney disease, several pathophysiological processes contribute to vascular calcifications, including osteochondrogenic differentiation of vascular cells, hyperphosphatemia and hypercalcemia, and the loss of specific vascular calcification inhibitors including pyrophosphate, fetuin-A, osteoprotegerin, and matrix GLA protein. In this review we discuss the main traditional and non-traditional risk factors that can promote VC in patients with kidney disease. In addition, we provide an overview of the main pathogenetic mechanisms responsible for VC that may be crucial to identify new prevention strategies and possible new therapeutic approaches to reduce cardiovascular risk in patients with kidney disease.
Collapse
Affiliation(s)
- Chiara Siracusa
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Maria Benedetta Morano
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Marzia Manica
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Alberto Castagna
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Michele Andreucci
- Department of Health Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Maria Teresa Zicarelli
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Michela Musolino
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Giuseppe Coppolino
- Department of Health Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Sun X, Zheng Y, Xie L, Zhou Y, Liu R, Ma Y, Zhao M, Liu Y. Autophagy reduces aortic calcification in diabetic mice by reducing matrix vesicle body-mediated IL-1β release. Exp Cell Res 2023; 432:113803. [PMID: 37774764 DOI: 10.1016/j.yexcr.2023.113803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Vascular calcification (VC) is a common pathological process of cardiovascular disease that occurs in patients with type 2 diabetes mellitus (T2DM). However, the molecular basis of VC progression remains unknown. A GEO dataset (GSE146638) was analyzed to show that microbodies and IL-1β may play important roles in the pathophysiology of VC. The release of matrix vesicle bodies (MVBs) and IL-1β and the colocalization of IL-1β with MVBs or autophagosomes were studied by immunofluorescence in an in vivo diabetes mouse model with aortic calcification and an in vitro high glucose cell calcification model. MVB numbers, IL-1β levels and autophagy were increased in calcified mouse aortas and calcified vascular smooth muscle cells (VSMCs). IL-1β colocalized with MVBs and autophagosomes. The MVBs from calcified VSMCs induced the calcification of normal recipient VSMCs, and this effect was alleviated by silencing IL-1β. The autophagy inducer rapamycin reduced IL-1β expression and calcification in VSMCs, while these processes were induced by the autophagy inhibitor chloroquine. In conclusion, our results suggested that MVBs could carry IL-1β out of cells and induce VC in normal VSMCs, and these processes could be counteracted by autophagy. These results suggested that MVB-mediated IL-1β release may be an effective target for treating vascular calcification.
Collapse
Affiliation(s)
- Xiaolei Sun
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Department of Interventional Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Laboratory of Nucleic Acids in Medicine for National High-Level Talents, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China; Cardiovascular and Metabolic Diseases Key Laboratory of Sichuan, Luzhou, 646000, China.
| | - Yang Zheng
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Department of Vascular and Interventional, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Linzhuo Xie
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yuanqun Zhou
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China; State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Runyu Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yarong Ma
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China.
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Park JYC, King A, Björk V, English BW, Fedintsev A, Ewald CY. Strategic outline of interventions targeting extracellular matrix for promoting healthy longevity. Am J Physiol Cell Physiol 2023; 325:C90-C128. [PMID: 37154490 DOI: 10.1152/ajpcell.00060.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The extracellular matrix (ECM), composed of interlinked proteins outside of cells, is an important component of the human body that helps maintain tissue architecture and cellular homeostasis. As people age, the ECM undergoes changes that can lead to age-related morbidity and mortality. Despite its importance, ECM aging remains understudied in the field of geroscience. In this review, we discuss the core concepts of ECM integrity, outline the age-related challenges and subsequent pathologies and diseases, summarize diagnostic methods detecting a faulty ECM, and provide strategies targeting ECM homeostasis. To conceptualize this, we built a technology research tree to hierarchically visualize possible research sequences for studying ECM aging. This strategic framework will hopefully facilitate the development of future research on interventions to restore ECM integrity, which could potentially lead to the development of new drugs or therapeutic interventions promoting health during aging.
Collapse
Affiliation(s)
- Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Aaron King
- Foresight Institute, San Francisco, California, United States
| | | | - Bradley W English
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
4
|
Statzer C, Park JYC, Ewald CY. Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. Aging Dis 2023; 14:670-693. [PMID: 37191434 DOI: 10.14336/ad.2022.1116] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 05/17/2023] Open
Abstract
The biomechanical properties of extracellular matrices (ECM) and their consequences for cellular homeostasis have recently emerged as a driver of aging. Here we review the age-dependent deterioration of ECM in the context of our current understanding of the aging processes. We discuss the reciprocal interactions of longevity interventions with ECM remodeling. And the relevance of ECM dynamics captured by the matrisome and the matreotypes associated with health, disease, and longevity. Furthermore, we highlight that many established longevity compounds promote ECM homeostasis. A large body of evidence for the ECM to qualify as a hallmark of aging is emerging, and the data in invertebrates is promising. However, direct experimental proof that activating ECM homeostasis is sufficient to slow aging in mammals is lacking. We conclude that further research is required and anticipate that a conceptual framework for ECM biomechanics and homeostasis will provide new strategies to promote health during aging.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
5
|
Sugiura H, Tsunezumi J, Yanagisawa H, Futaya M, Nitta K, Tsuchiya K. Fibulin7 aggravates calcium oxalate-induced acute kidney injury by binding to calcium oxalate crystals. J Cell Physiol 2023; 238:165-178. [PMID: 36370444 DOI: 10.1002/jcp.30914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
Fibulin7 (Fbln7) is a matricellular protein that is structurally similar to short fibulins but does not possess elastogenic abilities. Fbln7 is localized on the cell surface of the renal tubular epithelium in the adult kidney. We previously reported that Fbln7 binds artificial calcium phosphate particles in vitro, and that heparin counteracts this binding by releasing Fbln7 from the cell surface. Fbln7 gene (Fbln7) deletion in vivo decreased interstitial fibrosis and improved renal function in a high phosphate diet-induced chronic kidney disease mouse model. However, the contribution of Fbln7 during acute injury response remains largely unknown. We hypothesized that Fbln7 serves as an exacerbating factor in acute kidney injury (AKI). We employed three AKI models in vivo and in vitro, including unilateral ureteral obstruction (UUO), cisplatin-induced AKI, and calcium oxalate (CaOx)-induced AKI. Here, we report that Fbln7KO mice were protected from kidney damage in a CaOx-induced AKI model. Using HEK293T cells, we found that Fbln7 overexpression enhanced the CaOx-induced upregulation of EGR1 and LAMB3, and that heparin treatment canceled this effect. Interestingly, the protective function observed in Fbln7KO kidneys was limited to the CaOx-induced AKI model, while Fbln7KO mice were not protected against UUO-induced renal fibrosis or cisplatin-induced renal tubular damage. Taken together, our study indicates that Fbln7 mediates the local deposition of CaOx and damages the renal tubular epithelium. Releasing Fbln7 from the cell surface via heparin/heparin derivatives or Fbln7 inhibitory antibodies may provide a general strategy to mitigate calcium crystal-induced kidney injuries.
Collapse
Affiliation(s)
- Hidekazu Sugiura
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.,Department of Nephrology, Division of Medicine, Saiseikai Kazo Hospital, Kazo, Saitama, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jun Tsunezumi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Miyazaki, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mayuko Futaya
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Ken Tsuchiya
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.,Department of Blood Purification, Kidney Center, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| |
Collapse
|
6
|
Thent ZC, Froemming GRA, Muid SA. Does Vitamin K Intake Influence High Phosphate Induced Vascular Pseudo-ossification: An Underappreciated Therapeutic Prospect in General Population? Curr Drug Targets 2018; 20:421-430. [PMID: 30378497 DOI: 10.2174/1389450119666181031124430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 02/01/2023]
Abstract
Increasing interest in vascular pseudo-ossification has alarmed the modern atherosclerotic society. High phosphate is one of the key factors in vascular pseudo ossification, also known as vascular calcification. The active process of deposition of the phosphate crystals in vascular tissues results in arterial stiffness. High phosphate condition is mainly observed in chronic kidney disease patients. However, prolonged exposure with high phosphate enriched foods such as canned drinks, dietary foods, etc. can be considered as modifiable risk factors for vascular complication in a population regardless of chronic kidney disease. High intake of vitamin K regulates the vascular calcification by exerting its anti-calcification effect. The changes in serum phosphate and vitamin K levels in a normal individual with high phosphate intake are not well investigated. This review summarised the underlying mechanisms of high phosphate induced vascular pseudo ossification such as vascular transdifferentiation, vascular apoptosis and phosphate uptake by sodium-dependent co-transporters. Pubmed, Science Direct, Scopus, ISI Web of Knowledge and Google Scholar were searched using the terms 'vitamin K', 'vascular calcification, 'phosphate', 'transdifferentiation' and 'vascular pseudoossification'. Vitamin K certainly activates the matrix GIA protein and inhibits vascular transition and apoptosis in vascular pseudo-ossification. The present view highlighted the possible therapeutic linkage between vitamin K and the disease. Understanding the role of vitamin K will be considered as potent prophylaxis agent against the vascular disease in near future.
Collapse
Affiliation(s)
- Zar Chi Thent
- Basic Medical Science Cluster, Faculty of Medicine, Sungai Buloh Campus, 47000 Selangor; Universiti Teknologi MARA, Malaysia
| | - Gabriele R A Froemming
- Universiti Malaysia Sarawak (UNIMAS), Faculty of Medicine and Health Sciences, Sarawak, Malaysia
| | - Suhaila Abd Muid
- Basic Medical Science Cluster, Faculty of Medicine, Sungai Buloh Campus, 47000 Selangor; Universiti Teknologi MARA, Malaysia
| |
Collapse
|
7
|
Tsunezumi J, Sugiura H, Oinam L, Ali A, Thang BQ, Sada A, Yamashiro Y, Kuro-O M, Yanagisawa H. Fibulin-7, a heparin binding matricellular protein, promotes renal tubular calcification in mice. Matrix Biol 2018; 74:5-20. [PMID: 29730503 DOI: 10.1016/j.matbio.2018.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022]
Abstract
Ectopic calcification occurs during development of chronic kidney disease and has a negative impact on long-term prognosis. The precise molecular mechanism and prevention strategies, however, are not established. Fibulin-7 (Fbln7) is a matricellular protein structurally similar to elastogenic short fibulins, shown to bind dental mesenchymal cells and heparin. Here, we report that Fbln7 is highly expressed in renal tubular epithelium in the adult kidney and mediates renal calcification in mice. In vitro analysis revealed that Fbln7 bound heparin at the N-terminal coiled-coil domain. In Fbln7-expressing CHO-K1 cells, exogenous heparin increased the release of Fbln7 into conditioned media in a dose-dependent manner. This heparin-induced Fbln7 release was abrogated in CHO-745 cells lacking heparan sulfate proteoglycan or in CHO-K1 cells expressing the Fbln7 mutant lacking the N-terminal coiled-coil domain, suggesting that Fbln7 was tethered to pericellular matrix via this domain. Interestingly, Fbln7 knockout (Fbln7-/-) mice were protected from renal tubular calcification induced by high phosphate diet. Mechanistically, Fbln7 bound artificial calcium phosphate particles (aCPP) implicated in calcification and renal inflammation. Binding was decreased significantly in Fbln7-/- primary kidney cells relative to wild-type cells. Further, overexpression of Fbln7 increased binding to aCPP. Addition of heparin reduced binding between aCPP and wild-type cells to levels of Fbln7-/- cells. Taken together, our study suggests that Fbln7 is a local mediator of calcium deposition and that releasing Fbln7 from the cell surface by heparin/heparin derivatives or Fbln7 inhibitory antibodies may provide a novel strategy to prevent ectopic calcification in vivo.
Collapse
Affiliation(s)
- Jun Tsunezumi
- Department of Medicine, Division of Nephrology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hidekazu Sugiura
- Fourth Department of Internal Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan; Department of Nephrology, Division of Medicine, Saiseikai Kurihashi Hospital, Saitama 349-1105, Japan
| | - Lalhaba Oinam
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 305-8577, Japan
| | - Aktar Ali
- Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bui Quoc Thang
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Aiko Sada
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yoshito Yamashiro
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Makoto Kuro-O
- Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| |
Collapse
|
8
|
Yang S, Li A, Wang J, Liu J, Han Y, Zhang W, Li YC, Zhang H. Vitamin D Receptor: A Novel Therapeutic Target for Kidney Diseases. Curr Med Chem 2018; 25:3256-3271. [PMID: 29446731 PMCID: PMC6142412 DOI: 10.2174/0929867325666180214122352] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Kidney disease is a serious problem that adversely affects human health, but critical knowledge is lacking on how to effectively treat established chronic kidney disease. Mounting evidence from animal and clinical studies has suggested that Vitamin D Receptor (VDR) activation has beneficial effects on various renal diseases. METHODS A structured search of published research literature regarding VDR structure and function, VDR in various renal diseases (e.g., IgA nephropathy, idiopathic nephrotic syndrome, renal cell carcinoma, diabetic nephropathy, lupus nephritis) and therapies targeting VDR was performed for several databases. RESULT Included in this study are the results from 177 published research articles. Evidence from these papers indicates that VDR activation is involved in the protection against renal injury in kidney diseases by a variety of mechanisms, including suppression of RAS activation, anti-inflammation, inhibiting renal fibrogenesis, restoring mitochondrial function, suppression of autoimmunity and renal cell apoptosis. CONCLUSION VDR offers an attractive druggable target for renal diseases. Increasing our understanding of VDR in the kidney is a fertile area of research and may provide effective weapons in the fight against kidney diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hao Zhang
- Address correspondence to this author is at the Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Tel: 86-731-88638238; E-mail:
| |
Collapse
|
9
|
Shah A, Miller CJ, Nast CC, Adams MD, Truitt B, Tayek JA, Tong L, Mehtani P, Monteon F, Sedor JR, Clinkenbeard EL, White K, Mehrotra R, LaPage J, Dickson P, Adler SG, Iyengar SK. Severe vascular calcification and tumoral calcinosis in a family with hyperphosphatemia: a fibroblast growth factor 23 mutation identified by exome sequencing. Nephrol Dial Transplant 2014; 29:2235-43. [PMID: 25378588 DOI: 10.1093/ndt/gfu324] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Tumoral calcinosis is an autosomal recessive disorder characterized by ectopic calcification and hyperphosphatemia. METHODS We describe a family with tumoral calcinosis requiring amputations. The predominant metabolic anomaly identified in three affected family members was hyperphosphatemia. Biochemical and phenotypic analysis of 13 kindred members, together with exome analysis of 6 members, was performed. RESULTS We identified a novel Q67K mutation in fibroblast growth factor 23 (FGF23), segregating with a null (deletion) allele on the other FGF23 homologue in three affected members. Affected siblings had high circulating plasma C-terminal FGF23 levels, but undetectable intact FGF23 or N-terminal FGF23, leading to loss of FGF23 function. CONCLUSIONS This suggests that in human, as in experimental models, severe prolonged hyperphosphatemia may be sufficient to produce bone differentiation proteins in vascular cells, and vascular calcification severe enough to require amputation. Genetic modifiers may contribute to the phenotypic variation within and between families.
Collapse
Affiliation(s)
- Anuja Shah
- Division of Nephrology and Hypertension, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Clinton J Miller
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cynthia C Nast
- Division of Pathology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Mark D Adams
- J. Craig Venter Institute, San Diego, CA 92121, USA
| | - Barbara Truitt
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - John A Tayek
- Division of General Internal Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Lili Tong
- Division of Nephrology and Hypertension, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Parag Mehtani
- Division of Nephrology and Hypertension, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Francisco Monteon
- Unidad de Nefrologia y Transplante, Hospital Mexico-Americano, Guadalajara, Jalisco, Mexico
| | - John R Sedor
- Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
| | - Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kenneth White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rajnish Mehrotra
- Division of Nephrology and Hypertension, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Janine LaPage
- Division of Nephrology and Hypertension, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Patricia Dickson
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Sharon G Adler
- Division of Nephrology and Hypertension, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Sudha K Iyengar
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
Boraldi F, Annovi G, Bartolomeo A, Quaglino D. Fibroblasts from patients affected by Pseudoxanthoma elasticum exhibit an altered PPi metabolism and are more responsive to pro-calcifying stimuli. J Dermatol Sci 2014; 74:72-80. [PMID: 24461675 DOI: 10.1016/j.jdermsci.2013.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Pseudoxanthoma elasticum (PXE) is a genetic disorder characterized by progressive calcification of soft connective tissues. The pathogenesis is still hard to pin down. In PXE dermal fibroblasts, in addition to impaired carboxylation of the vitamin K-dependent inhibitor matrix Gla protein (MGP), we have also demonstrated an up-regulation of alkaline phosphatase activity. In the light of these data we have suggested that both calcium and phosphate metabolism might be locally altered, both pathways acting in synergy on the occurrence of matrix calcification. OBJECTIVE This study aims to better explore if cultured PXE fibroblasts, compared to control cells, exhibit a modified inorganic pyrophosphate (PPi) metabolism and are more responsive to pro-calcifying stimuli. METHODS Primary human dermal fibroblasts isolated from healthy individuals and from PXE patients were cultured for different time points in standard and in pro-calcifying media. The expression of ANKH/ANKH, ENPP1/PC1, ALPL/TNAP, SPP1/OPN was evaluated by qRT-PCR and Western blot, respectively. TNAP activity was measured by spectrophotometric analyses, whereas calcification was investigated by light and electron microscopy as well as by micro-analytical techniques. RESULTS In the presence of pro-calcifying stimuli, dermal fibroblasts alter their phenotype favouring matrix mineralization. In particular, ENPP1/PC1 and SPP1/OPN expression, as well as TNAP activity, was differently expressed in control and in PXE fibroblasts. Moreover, in pathologic cells the ratio between factors favouring and reducing PPi availability exhibits a more pronounced shift towards a pro-calcifying balance. CONCLUSION PXE fibroblasts are more susceptible to pro-calcifying stimuli and in these cells an altered PPi metabolism contributes to matrix calcification.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Annovi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Angelica Bartolomeo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
11
|
Yang SK, Xiao L, Li J, Liu F, Sun L. Oxidative stress, a common molecular pathway for kidney disease: Role of the redox enzyme p66Shc. Ren Fail 2013; 36:313-20. [DOI: 10.3109/0886022x.2013.846867] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
12
|
Warraich S, Bone DBJ, Quinonez D, Ii H, Choi DS, Holdsworth DW, Drangova M, Dixon SJ, Séguin CA, Hammond JR. Loss of equilibrative nucleoside transporter 1 in mice leads to progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis in humans. J Bone Miner Res 2013. [PMID: 23184610 DOI: 10.1002/jbmr.1826] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Diffuse idiopathic skeletal hyperostosis (DISH) is a noninflammatory spondyloarthropathy, characterized by ectopic calcification of spinal tissues. Symptoms include spine pain and stiffness, and in severe cases dysphagia and spinal cord compression. The etiology of DISH is unknown and there are no specific treatments. Recent studies have suggested a role for purine metabolism in the regulation of biomineralization. Equilibrative nucleoside transporter 1 (ENT1) transfers hydrophilic nucleosides, such as adenosine, across the plasma membrane. In mice lacking ENT1, we observed the development of calcified lesions resembling DISH. By 12 months of age, ENT1(-/-) mice exhibited signs of spine stiffness, hind limb dysfunction, and paralysis. Micro-computed tomography (µCT) revealed ectopic mineralization of paraspinal tissues in the cervical-thoracic region at 2 months of age, which extended to the lumbar and caudal regions with advancing age. Energy-dispersive X-ray microanalysis of lesions revealed a high content of calcium and phosphorus with a ratio similar to that of cortical bone. At 12 months of age, histological examination of ENT1(-/-) mice revealed large, irregular accumulations of eosinophilic material in paraspinal ligaments and entheses, intervertebral discs, and sternocostal articulations. There was no evidence of mineralization in appendicular joints or blood vessels, indicating specificity for the axial skeleton. Plasma adenosine levels were significantly greater in ENT1(-/-) mice than in wild-type, consistent with loss of ENT1--a primary adenosine uptake pathway. There was a significant reduction in the expression of Enpp1, Ank, and Alpl in intervertebral discs from ENT1(-/-) mice compared to wild-type mice. Elevated plasma levels of inorganic pyrophosphate in ENT1(-/-) mice indicated generalized disruption of pyrophosphate homeostasis. This is the first report of a role for ENT1 in regulating the calcification of soft tissues. Moreover, ENT1(-/-) mice may be a useful model for investigating pathogenesis and evaluating therapeutics for the prevention of mineralization in DISH and related disorders.
Collapse
Affiliation(s)
- Sumeeta Warraich
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fischer DC, Behets GJ, Hakenberg OW, Voigt M, Vervaet BA, Robijn S, Kundt G, Schareck W, D'Haese PC, Haffner D. Arterial microcalcification in atherosclerotic patients with and without chronic kidney disease: a comparative high-resolution scanning X-ray diffraction analysis. Calcif Tissue Int 2012; 90:465-72. [PMID: 22476351 DOI: 10.1007/s00223-012-9594-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
Vascular calcification, albeit heterogeneous in terms of biological and physicochemical properties, has been associated with ageing, lifestyle, diabetes, and chronic kidney disease (CKD). It is unknown whether or not moderately impaired renal function (CKD stages 2-4) affects the physiochemical composition and/or the formation of magnesium-containing tricalcium phosphate ([Ca,Mg](3)[PO(4)](2), whitlockite) in arterial microcalcification. Therefore, a high-resolution scanning X-ray diffraction analysis (European Synchrotron Radiation Facility, Grenoble, France) utilizing histological sections of paraffin-embedded arterial specimens derived from atherosclerotic patients with normal renal function (n = 15) and CKD (stages 2-4, n = 13) was performed. This approach allowed us to spatially assess the contribution of calcium phosphate (apatite) and whitlockite to arterial microcalcification. Per group, the number of samples (13 vs. 12) with sufficient signal intensity and total lengths of regions (201 vs. 232 μm) giving rise to diffractograms ("informative regions") were comparable. Summarizing all informative regions per group into one composite sample revealed calcium phosphate/apatite as the leading mineral phase in CKD patients, whereas in patients with normal renal function the relative contribution of whitlockite and calcium phosphate/apatite was on the same order of magnitude (CKD, calcium phosphate/apatite 157 μm, whitlockite 38.7 μm; non-CKD, calcium phosphate/apatite 79.0 μm, whitlockite 94.1 μm; each p < 0.05). Our results, although based on a limited number of samples, indicate that chronic impairment of renal function affects local magnesium homeostasis and thus contributes to the physicochemical composition of microcalcification in atherosclerotic patients.
Collapse
Affiliation(s)
- Dagmar-Christiane Fischer
- Department of Pediatrics, University Children's Hospital Rostock, Ernst-Heydemann-Str. 8, 18057, Rostock, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|