1
|
Alves VC, Figueiro-Silva J, Ferrer I, Carro E. Epigenetic silencing of OR and TAS2R genes expression in human orbitofrontal cortex at early stages of sporadic Alzheimer's disease. Cell Mol Life Sci 2023; 80:196. [PMID: 37405535 PMCID: PMC10322771 DOI: 10.1007/s00018-023-04845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Modulation of brain olfactory (OR) and taste receptor (TASR) expression was recently reported in neurological diseases. However, there is still limited evidence of these genes' expression in the human brain and the transcriptional regulation mechanisms involved remain elusive. We explored the possible expression and regulation of selected OR and TASR in the human orbitofrontal cortex (OFC) of sporadic Alzheimer's disease (AD) and non-demented control specimens using quantitative real-time RT-PCR and ELISA. Global H3K9me3 amounts were measured on OFC total histone extracts, and H3K9me3 binding at each chemoreceptor locus was examined through native chromatin immunoprecipitation. To investigate the potential interactome of the repressive histone mark H3K9me3 in OFC specimens, native nuclear complex co-immunoprecipitation (Co-IP) was combined with reverse phase-liquid chromatography coupled to mass spectrometry analysis. Interaction between H3K9me3 and MeCP2 was validated by reciprocal Co-IP, and global MeCP2 levels were quantitated. We found that OR and TAS2R genes are expressed and markedly downregulated in OFC at early stages of sporadic AD, preceding the progressive reduction in their protein levels and the appearance of AD-associated neuropathology. The expression pattern did not follow disease progression suggesting transcriptional regulation through epigenetic mechanisms. We discovered an increase of OFC global H3K9me3 levels and a substantial enrichment of this repressive signature at ORs and TAS2Rs proximal promoter at early stages of AD, ultimately lost at advanced stages. We revealed the interaction between H3K9me3 and MeCP2 at early stages and found that MeCP2 protein is increased in sporadic AD. Findings suggest MeCP2 might be implicated in OR and TAS2R transcriptional regulation through interaction with H3K9me3, and as an early event, it may uncover a novel etiopathogenetic mechanism of sporadic AD.
Collapse
Affiliation(s)
- Victoria Cunha Alves
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
| | - Joana Figueiro-Silva
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
| | - Isidre Ferrer
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuropathology, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Eva Carro
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Present Address: Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research Into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Kurtz R, Steinberg LG, Betcher M, Fowler D, Shepard BD. The Sensing Liver: Localization and Ligands for Hepatic Murine Olfactory and Taste Receptors. Front Physiol 2020; 11:574082. [PMID: 33123030 PMCID: PMC7573564 DOI: 10.3389/fphys.2020.574082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Sensory receptors, including olfactory receptors (ORs), taste receptors (TRs), and opsins (Opns) have recently been found in a variety of non-sensory tissues where they have distinct physiological functions. As G protein-coupled receptors (GPCRs), these proteins can serve as important chemosensors by sensing and interpreting chemical cues in the environment. We reasoned that the liver, the largest metabolic organ in the body, is primed to take advantage of some of these sensory receptors in order to sense and regulate blood content and metabolism. In this study, we report the expression of novel hepatic sensory receptors - including 7 ORs, 6 bitter TRs, and 1 Opn - identified through a systematic molecular biology screening approach. We further determined that several of these receptors are expressed within hepatocytes, the parenchymal cells of the liver. Finally, we uncovered several agonists of the previously orphaned hepatic ORs. These compounds fall under two classes: methylpyrazines and monoterpenes. In particular, the latter chemicals are plant and fungal-derived compounds with known hepatic protective effects. Collectively, this study sheds light on the chemosensory functions of the liver and unveils potentially important regulators of hepatic homeostasis.
Collapse
Affiliation(s)
- Ryan Kurtz
- Department of Human Science, Georgetown University, Washington, DC, United States
| | - Lily G Steinberg
- Department of Human Science, Georgetown University, Washington, DC, United States
| | - Madison Betcher
- Department of Human Science, Georgetown University, Washington, DC, United States
| | - Dalton Fowler
- Department of Human Science, Georgetown University, Washington, DC, United States
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, DC, United States
| |
Collapse
|
3
|
Ecelbarger CM. Deep-sea diving into the renal transcriptome of high-fat-fed mice nets unique catch. Am J Physiol Renal Physiol 2018; 314:F879-F880. [DOI: 10.1152/ajprenal.00607.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
4
|
Rajkumar P, Cha B, Yin J, Arend LJ, Păunescu TG, Hirabayashi Y, Donowitz M, Pluznick JL. Identifying the localization and exploring a functional role for Gprc5c in the kidney. FASEB J 2018; 32:2046-2059. [PMID: 29196502 DOI: 10.1096/fj.201700610rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The investigation of orphan GPCRs (GPRs) has the potential to uncover novel insights into whole animal physiology. In this study, our goal was to determine the renal localization of Gprc5c, a receptor that we previously reported to be highly expressed in murine whole kidney, and to examine physiologic parameters in Gprc5c knockout (KO) mice to gain insight into function. Gprc5c localized to the apical membrane of renal proximal tubules (PTs) in mice, rats, and humans. With the comparison of Gprc5c wild-type (WT) and KO mice, we found that Gprc5c KO mice have altered acid-base homeostasis. Specifically, Gprc5c KO mice have lower blood pH and higher urine pH compared with WT mice, with a reduced level of titratable acids in their urine. In an in vitro GPCR internalization assay, we observed that Gprc5c internalization (an index of activation) was triggered by alkaline extracellular pH. Furthermore, with the use of an in vitro BCECF assay, we observed that Gprc5c increases Na+/H+ exchanger 3 (NHE3) activity at alkaline pH. We also find that the NHE3 activity is reduced in Gprc5c KO mice by 2 photon imaging in seminaphthorhodafluors (SNARF)-4F-loaded kidney sections. NHE3 is a primary contributor to apical transport of H+ in the renal PT. Together, these data imply that Gprc5c modulates the renal contribution to systemic pH homeostasis, at least in part, by taking part in the regulation of NHE3.-Rajkumar, P., Cha, B., Yin, J., Arend, L. J., Păunescu, T. G., Hirabayashi, Y., Donowitz, M., Pluznick, J. L. Identifying the localization and exploring a functional role for Gprc5c in the kidney.
Collapse
Affiliation(s)
- Premraj Rajkumar
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Boyoung Cha
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jianyi Yin
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lois J Arend
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Teodor G Păunescu
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yoshio Hirabayashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Mark Donowitz
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer L Pluznick
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Rajkumar P, Pluznick JL. Unsung renal receptors: orphan G-protein-coupled receptors play essential roles in renal development and homeostasis. Acta Physiol (Oxf) 2017; 220:189-200. [PMID: 27699982 DOI: 10.1111/apha.12813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022]
Abstract
Recent studies have shown that orphan GPCRs of the GPR family are utilized as specialized chemosensors in various tissues to detect metabolites, and in turn to activate downstream pathways which regulate systemic homeostasis. These studies often find that such metabolites are generated by well-known metabolic pathways, implying that known metabolites and chemicals may perform novel functions. In this review, we summarize recent findings highlighting the role of deorphanized GPRs in renal development and function. Understanding the role of these receptors is critical in gaining insights into mechanisms that regulate renal function both in health and in disease.
Collapse
Affiliation(s)
- P. Rajkumar
- Department of Physiology; Johns Hopkins School of Medicine; Baltimore; MD USA
| | - J. L. Pluznick
- Department of Physiology; Johns Hopkins School of Medicine; Baltimore; MD USA
| |
Collapse
|
6
|
Shepard BD, Cheval L, Peterlin Z, Firestein S, Koepsell H, Doucet A, Pluznick JL. A Renal Olfactory Receptor Aids in Kidney Glucose Handling. Sci Rep 2016; 6:35215. [PMID: 27739476 PMCID: PMC5064317 DOI: 10.1038/srep35215] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/22/2016] [Indexed: 12/27/2022] Open
Abstract
Olfactory receptors (ORs) are G protein-coupled receptors which serve important sensory functions beyond their role as odorant detectors in the olfactory epithelium. Here we describe a novel role for one of these ORs, Olfr1393, as a regulator of renal glucose handling. Olfr1393 is specifically expressed in the kidney proximal tubule, which is the site of renal glucose reabsorption. Olfr1393 knockout mice exhibit urinary glucose wasting and improved glucose tolerance, despite euglycemia and normal insulin levels. Consistent with this phenotype, Olfr1393 knockout mice have a significant decrease in luminal expression of Sglt1, a key renal glucose transporter, uncovering a novel regulatory pathway involving Olfr1393 and Sglt1. In addition, by utilizing a large scale screen of over 1400 chemicals we reveal the ligand profile of Olfr1393 for the first time, offering new insight into potential pathways of physiological regulation for this novel signaling pathway.
Collapse
Affiliation(s)
- Blythe D. Shepard
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lydie Cheval
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, CNRS, ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Zita Peterlin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Stuart Firestein
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University Wurzburg, Julius-von-Sachs-Platz 2, 97082 Wurzburg, Germany
| | - Alain Doucet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, CNRS, ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Jennifer L. Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Shepard BD, Pluznick JL. How does your kidney smell? Emerging roles for olfactory receptors in renal function. Pediatr Nephrol 2016; 31:715-23. [PMID: 26264790 PMCID: PMC4752438 DOI: 10.1007/s00467-015-3181-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/24/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022]
Abstract
Olfactory receptors (ORs) are chemosensors that are responsible for one's sense of smell. In addition to this specialized role in the nose, recent evidence suggests that ORs are also found in a variety of additional tissues including the kidney. As this list of renal ORs continues to expand, it is becoming clear that they play important roles in renal and whole-body physiology, including a novel role in blood pressure regulation. In this review, we highlight important considerations that are crucial when studying ORs and present the current literature on renal ORs and their emerging relevance in maintaining renal function.
Collapse
|
8
|
Wu W, Bush KT, Liu HC, Zhu C, Abagyan R, Nigam SK. Shared Ligands Between Organic Anion Transporters (OAT1 and OAT6) and Odorant Receptors. Drug Metab Dispos 2015; 43:1855-63. [PMID: 26358290 PMCID: PMC4658493 DOI: 10.1124/dmd.115.065250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/04/2015] [Indexed: 12/31/2022] Open
Abstract
The multispecific organic anion drug transporters OAT6 (SLC22A20) and OAT1 (SLC22A6) are expressed in nasal epithelial cells and both can bind odorants. Sequence analysis of OAT6 revealed an evolutionarily conserved 79-amino acid (AA) fragment present not only in OAT6 but also in other SLC22 transporters, such as the organic anion transporter (OAT), organic carnitine transporter (OCTN), and organic cation transporter (OCT) subfamilies. A similar fragment is also conserved in some odorant receptors (ORs) in both humans and rodents. This fragment is located in regions believed to be important for ligand/substrate preference and recognition in both classes of proteins, raising the possibility that it may be part of a potential common ligand/substrate recognition site in certain ORs and SLC22 transporters. In silico screening of an odorant database containing known OR ligands with a pharmacophore hypothesis (generated from a set of odorants known to bind OAT6 and/or OAT1), followed by in vitro uptake assays in transfected cells, identified OR ligands capable of inhibiting OAT6- and/or OAT1-mediated transport, albeit with different affinities. The conservation of the AA fragments between these two different classes of proteins, together with their coexpression in olfactory as well as other tissues, suggests the possibility that ORs and SLC22 transporters function in concert, and raises the question as to whether these transporters function in remote sensing and signaling and/or as transceptors.
Collapse
Affiliation(s)
- Wei Wu
- Departments of Pediatrics (K.T.B., S.K.N.), Medicine (Division of Nephrology and Hypertension)(W.W., S.K.N.), Bioengineering (H.C.L.), Biomedical Sciences (C.Z.), School of Pharmacy/Pharmaceutical Science (R.A.), and Cellular and Molecular Medicine (S.K.N.), University of California, San Diego, La Jolla, California
| | - Kevin T Bush
- Departments of Pediatrics (K.T.B., S.K.N.), Medicine (Division of Nephrology and Hypertension)(W.W., S.K.N.), Bioengineering (H.C.L.), Biomedical Sciences (C.Z.), School of Pharmacy/Pharmaceutical Science (R.A.), and Cellular and Molecular Medicine (S.K.N.), University of California, San Diego, La Jolla, California
| | - Henry C Liu
- Departments of Pediatrics (K.T.B., S.K.N.), Medicine (Division of Nephrology and Hypertension)(W.W., S.K.N.), Bioengineering (H.C.L.), Biomedical Sciences (C.Z.), School of Pharmacy/Pharmaceutical Science (R.A.), and Cellular and Molecular Medicine (S.K.N.), University of California, San Diego, La Jolla, California
| | - Christopher Zhu
- Departments of Pediatrics (K.T.B., S.K.N.), Medicine (Division of Nephrology and Hypertension)(W.W., S.K.N.), Bioengineering (H.C.L.), Biomedical Sciences (C.Z.), School of Pharmacy/Pharmaceutical Science (R.A.), and Cellular and Molecular Medicine (S.K.N.), University of California, San Diego, La Jolla, California
| | - Ruben Abagyan
- Departments of Pediatrics (K.T.B., S.K.N.), Medicine (Division of Nephrology and Hypertension)(W.W., S.K.N.), Bioengineering (H.C.L.), Biomedical Sciences (C.Z.), School of Pharmacy/Pharmaceutical Science (R.A.), and Cellular and Molecular Medicine (S.K.N.), University of California, San Diego, La Jolla, California
| | - Sanjay K Nigam
- Departments of Pediatrics (K.T.B., S.K.N.), Medicine (Division of Nephrology and Hypertension)(W.W., S.K.N.), Bioengineering (H.C.L.), Biomedical Sciences (C.Z.), School of Pharmacy/Pharmaceutical Science (R.A.), and Cellular and Molecular Medicine (S.K.N.), University of California, San Diego, La Jolla, California
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW This review will summarize recent literature highlighting the roles of sensory Gpr receptors and their roles in renal function. RECENT FINDINGS Chemoreceptors play important roles in renal physiology wherein they modulate renal function in response to ligands from a variety of sources. SUMMARY As specialized chemical detectors, chemoreceptors in the kidney monitor the level of a variety of chemical ligands in the body and adjust renal function accordingly. In addition to olfactory receptors and taste receptors, G-protein coupled receptors of the orphan Gpr family are now being found to play a 'sensory' role in renal physiology. Identifying the physiological roles of these receptors and elucidating the cell biology underlying these signaling pathways can give us novel insights into renal function.
Collapse
|
10
|
Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, Bhatnagar V, Wu W. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev 2015; 95:83-123. [PMID: 25540139 PMCID: PMC4281586 DOI: 10.1152/physrev.00025.2013] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The organic anion transporter (OAT) subfamily, which constitutes roughly half of the SLC22 (solute carrier 22) transporter family, has received a great deal of attention because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, aristolochic acid), and nutrients (vitamins, flavonoids). Oats are expressed in many tissues, including kidney, liver, choroid plexus, olfactory mucosa, brain, retina, and placenta. Recent metabolomics and microarray data from Oat1 [Slc22a6, originally identified as NKT (novel kidney transporter)] and Oat3 (Slc22a8) knockouts, as well as systems biology studies, indicate that this pathway plays a central role in the metabolism and handling of gut microbiome metabolites as well as putative uremic toxins of kidney disease. Nuclear receptors and other transcription factors, such as Hnf4α and Hnf1α, appear to regulate the expression of certain Oats in conjunction with phase I and phase II drug metabolizing enzymes. Some Oats have a strong selectivity for particular signaling molecules, including cyclic nucleotides, conjugated sex steroids, odorants, uric acid, and prostaglandins and/or their metabolites. According to the "Remote Sensing and Signaling Hypothesis," which is elaborated in detail here, Oats may function in remote interorgan communication by regulating levels of signaling molecules and key metabolites in tissues and body fluids. Oats may also play a major role in interorganismal communication (via movement of small molecules across the intestine, placental barrier, into breast milk, and volatile odorants into the urine). The role of various Oat isoforms in systems physiology appears quite complex, and their ramifications are discussed in the context of remote sensing and signaling.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Kevin T Bush
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Gleb Martovetsky
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Sun-Young Ahn
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Henry C Liu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Erin Richard
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Vibha Bhatnagar
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Wei Wu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
11
|
Rajkumar P, Aisenberg WH, Acres OW, Protzko RJ, Pluznick JL. Identification and characterization of novel renal sensory receptors. PLoS One 2014; 9:e111053. [PMID: 25340336 PMCID: PMC4207771 DOI: 10.1371/journal.pone.0111053] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/26/2014] [Indexed: 01/15/2023] Open
Abstract
Recent studies have highlighted the important roles that “sensory” receptors (olfactory receptors, taste receptors, and orphan “GPR” receptors) play in a variety of tissues, including the kidney. Although several studies have identified important roles that individual sensory receptors play in the kidney, there has not been a systematic analysis of the renal repertoire of sensory receptors. In this study, we identify novel renal sensory receptors belonging to the GPR (n = 76), olfactory receptor (n = 6), and taste receptor (n = 11) gene families. A variety of reverse transcriptase (RT)- PCR screening strategies were used to identify novel renal sensory receptors, which were subsequently confirmed using gene-specific primers. The tissue-specific distribution of these receptors was determined, and the novel renal ORs were cloned from whole mouse kidney. Renal ORs that trafficked properly in vitro were screened for potential ligands using a dual-luciferase ligand screen, and novel ligands were identified for Olfr691. These studies demonstrate that multiple sensory receptors are expressed in the kidney beyond those previously identified. These results greatly expand the known repertoire of renal sensory receptors. Importantly, the mRNA of many of the receptors identified in this study are expressed highly in the kidney (comparable to well-known and extensively studied renal GPCRs), and in future studies it will be important to elucidate the roles that these novel renal receptors play in renal physiology.
Collapse
Affiliation(s)
- Premraj Rajkumar
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William H. Aisenberg
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Omar W. Acres
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ryan J. Protzko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer L. Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
Yang OC, Maxwell PH, Pollard PJ. Renal cell carcinoma: translational aspects of metabolism and therapeutic consequences. Kidney Int 2013; 84:667-81. [DOI: 10.1038/ki.2013.245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 02/08/2023]
|