1
|
Matsusue E, Inoue C, Shimoda M, Nakamura T, Matsumoto S, Matsumoto K, Tanino T, Nakamura K, Fujii S. Utility of combining multiple parameters of 123I-IMP SPECT and voxel-based morphometry MRI using a multiparametric scoring system for differentiating dementia with Lewy bodies from Alzheimer's disease. Acta Radiol 2024; 65:825-834. [PMID: 38785068 DOI: 10.1177/02841851241253775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
BACKGROUND Brain magnetic resonance imaging voxel-based morphometry (VBM) and perfusion single-photon emission computed tomography (SPECT) are useful for differentiating dementia with Lewy bodies (DLB) from Alzheimer's disease (AD). PURPOSE To determine whether combining multiple parameters of VBM and SPECT using a multiparametric scoring system (MSS) improves diagnostic accuracy in differentiating DLB from AD. MATERIAL AND METHODS In total, 23 patients with DLB and 57 patients with AD underwent imaging using a voxel-based specific regional analysis system for AD (VSRAD), an easy Z-score imaging system, and a Z-Graph using three-dimensional stereotactic surface projection. The cutoff values were determined using the receiver operating characteristic curve to differentiate DLB from AD for all parameters. Patients were scored 1 (DLB) or 0 (AD) for each statistically significant parameter, according to a threshold. The total score was determined for each case to obtain a cutoff value for the MSS. RESULTS The mean Z-scores in the medial temporal lobes using the VSRAD were significantly lower in patients with DLB than in those with AD. Each Z-score of the summed Z-scores in all four segmented regions of the occipital lobes using the Z-Graph was significantly higher in patients with DLB than in those with AD. Among the five parameters, the highest accuracy was 80% for the Z-score of the summed Z-scores in the left medial occipital lobe. For the MSS, a cutoff value of four improved the diagnostic accuracy to 82%. CONCLUSION MSS was more accurate than any single parameter of VBM or SPECT in differentiating DLB from AD.
Collapse
Affiliation(s)
- Eiji Matsusue
- Department of Radiology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Chie Inoue
- Department of Radiology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Manabu Shimoda
- Department of Neurology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Tomoya Nakamura
- Department of Neurology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Shota Matsumoto
- Department of Neurology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Kensuke Matsumoto
- Department of Radiology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Tomohiko Tanino
- Department of Radiology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Kazuhiko Nakamura
- Department of Radiology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Shinya Fujii
- Division of Radiology, Department of Multidisciplinary Internal Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
2
|
Cotta Ramusino M, Massa F, Festari C, Gandolfo F, Nicolosi V, Orini S, Nobili F, Frisoni GB, Morbelli S, Garibotto V. Diagnostic performance of molecular imaging methods in predicting the progression from mild cognitive impairment to dementia: an updated systematic review. Eur J Nucl Med Mol Imaging 2024; 51:1876-1890. [PMID: 38355740 DOI: 10.1007/s00259-024-06631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017-2022), highlighting methodological shortcomings. METHODS Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy. RESULTS Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer's dementia were 43-100% and 63-94% for [18F]FDG-PET and 64-94% and 48-93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47-100% SE and 71-100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [123I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47-100% SE and 71-100% SP. CONCLUSION Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer's dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings.
Collapse
Affiliation(s)
- Matteo Cotta Ramusino
- Unit of Behavior Neurology and Dementia Research Center, IRCCS Mondino Foundation, via Mondino 2, 27100, Pavia, Italy.
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cristina Festari
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Federica Gandolfo
- Department of Geriatric Care, Orthogeriatrics and Rehabilitation, E.O. Galliera Hospital, Genoa, Italy
| | - Valentina Nicolosi
- UOC Neurologia Ospedale Magalini Di Villafranca Di Verona (VR) ULSS 9, Verona, Italy
| | - Stefania Orini
- Alzheimer's Unit-Memory Clinic, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Flavio Nobili
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
- NIMTLab, Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| |
Collapse
|
3
|
Jreige M, Kurian GK, Perriraz J, Potheegadoo J, Bernasconi F, Stampacchia S, Blanke O, Alessandra G, Lejay N, Chiabotti PS, Rouaud O, Nicod Lalonde M, Schaefer N, Treglia G, Allali G, Prior JO. The diagnostic performance of functional dopaminergic scintigraphic imaging in the diagnosis of dementia with Lewy bodies: an updated systematic review. Eur J Nucl Med Mol Imaging 2023; 50:1988-2035. [PMID: 36920494 PMCID: PMC10199865 DOI: 10.1007/s00259-023-06154-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Dopaminergic scintigraphic imaging is a cornerstone to support the diagnosis in dementia with Lewy bodies. To clarify the current state of knowledge on this imaging modality and its impact on clinical diagnosis, we performed an updated systematic review of the literature. METHODS This systematic review was carried out according to PRISMA guidelines. A comprehensive computer literature search of PubMed/MEDLINE, EMBASE, and Cochrane Library databases for studies published through June 2022 was performed using the following search algorithm: (a) "Lewy body" [TI] OR "Lewy bodies" [TI] and (b) ("DaTscan" OR "ioflupane" OR "123ip" OR "123?ip" OR "123 ip" OR "123i-FP-CIT" OR "FPCIT" OR "FP-CIT" OR "beta?CIT" OR "beta CIT" OR "CIT?SPECT" OR "CIT SPECT" OR "Dat?scan*" OR "dat scan*" OR "dat?spect*" OR "SPECT"). Risk of bias and applicability concerns of the studies were evaluated using the QUADAS-2 tool. RESULTS We performed a qualitative analysis of 59 studies. Of the 59 studies, 19 (32%) addressed the diagnostic performance of dopamine transporter imaging, 15 (25%) assessed the identification of dementia with Lewy bodies in the spectrum of Lewy body disease and 18 (31%) investigated the role of functional dopaminergic imaging in distinguishing dementia with Lewy bodies from other dementias. Dopamine transporter loss was correlated with clinical outcomes in 19 studies (32%) and with other functional imaging modalities in 15 studies (25%). Heterogeneous technical aspects were found among the studies through the use of various radioligands, the more prevalent being the [123I]N‑ω‑fluoropropyl‑2β‑carbomethoxy‑3β‑(4‑iodophenyl) nortropane (123I-FP-CIT) in 54 studies (91.5%). Image analysis used visual analysis (9 studies, 15%), semi-quantitative analysis (29 studies, 49%), or a combination of both (16 studies, 27%). CONCLUSION Our systematic review confirms the major role of dopaminergic scintigraphic imaging in the assessment of dementia with Lewy bodies. Early diagnosis could be facilitated by identifying the prodromes of dementia with Lewy bodies using dopaminergic scintigraphic imaging coupled with emphasis on clinical neuropsychiatric symptoms. Most published studies use a semi-quantitative analytical assessment of tracer uptake, while there are no studies using quantitative analytical methods to measure dopamine transporter loss. The superiority of a purely quantitative approach to assess dopaminergic transmission more accurately needs to be further clarified.
Collapse
Affiliation(s)
- Mario Jreige
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - George K Kurian
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Jérémy Perriraz
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jevita Potheegadoo
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Fosco Bernasconi
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Sara Stampacchia
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Griffa Alessandra
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Noemie Lejay
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Paolo Salvioni Chiabotti
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Rouaud
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Marie Nicod Lalonde
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giorgio Treglia
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, 6900, Lugano, Switzerland
| | - Gilles Allali
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Seeing the Woods for the Trees? Applying Diagnostic Criteria for Dementia with Lewy Bodies to Patients Presenting with Posterior Cortical Atrophy. Alzheimer Dis Assoc Disord 2023; 37:88-91. [PMID: 35969849 DOI: 10.1097/wad.0000000000000522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
Posterior cortical atrophy (PCA) is a clinico-radiological syndrome characterised by progressive decline in visual processing and other posterior cognitive functions, relatively preserved memory and language in the early stages, and atrophy of posterior brain regions. Often considered a "visual variant" of Alzheimer's disease, a number of other pathological substrates are recognised. Dementia with Lewy Bodies is the second most common neurodegenerative dementia and there is increasing recognition of presentations with little or no parkinsonism, highlighting significant under-recognition of this condition. To complicate matters, some patients with PCA exhibit additional features consistent with other neurodegenerative conditions. We present a series of three such patients presenting with features satisfying the recent consensus criteria for "PCA-Plus (DLB)". We review the current classification of PCA and highlight the importance of deep clinico-radiological phenotyping in neurodegenerative disease to guide targeted interventions and establish future trial-ready cohorts.
Collapse
|
5
|
Gallucci M, Fiore V, Grassivaro F, Da Ronch C, Bonanni L. "Occipital Pole" Sign on 18 F-FDG PET for Dementia With Lewy Bodies and Posterior Cortical Atrophy : Evidence From the Treviso Dementia (TREDEM) Registry. Clin Nucl Med 2022; 47:811-812. [PMID: 35473924 DOI: 10.1097/rlu.0000000000004136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ABSTRACT The 18 F-FDG PET images of dementia with Lewy bodies and posterior cortical atrophy, a visual-cognitive phenotype described in patients with Alzheimer disease, show occipital lobe hypometabolism with relative sparing of the primary visual cortex (PVC) generating the "occipital tunnel" sign proposed by Sawyer and Kuo in 2017, which is viewable on the medial sagittal projection. We believe that the saving of PVC compared with the lateral occipital cortex can be better appreciated by capturing the posterior projection of the PVC in a 3D stereotactic surface projection map, and we propose the name of "occipital pole" sign for this evidence.
Collapse
Affiliation(s)
| | - Vittorio Fiore
- Nuclear Medicine Unit, Local Health Authority, Marca Trevigiana, Treviso, Italy
| | - Francesca Grassivaro
- From the Cognitive Impairment Center, Local Health Authority, Marca Trevigiana, Treviso, Italy
| | - Chiara Da Ronch
- From the Cognitive Impairment Center, Local Health Authority, Marca Trevigiana, Treviso, Italy
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
6
|
Imaging Clinical Subtypes and Associated Brain Networks in Alzheimer’s Disease. Brain Sci 2022; 12:brainsci12020146. [PMID: 35203910 PMCID: PMC8869882 DOI: 10.3390/brainsci12020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) does not present uniform symptoms or a uniform rate of progression in all cases. The classification of subtypes can be based on clinical symptoms or patterns of pathological brain alterations. Imaging techniques may allow for the identification of AD subtypes and their differentiation from other neurodegenerative diseases already at an early stage. In this review, the strengths and weaknesses of current clinical imaging methods are described. These include positron emission tomography (PET) to image cerebral glucose metabolism and pathological amyloid or tau deposits. Magnetic resonance imaging (MRI) is more widely available than PET. It provides information on structural or functional changes in brain networks and their relation to AD subtypes. Amyloid PET provides a very early marker of AD but does not distinguish between AD subtypes. Regional patterns of pathology related to AD subtypes are observed with tau and glucose PET, and eventually as atrophy patterns on MRI. Structural and functional network changes occur early in AD but have not yet provided diagnostic specificity.
Collapse
|
7
|
Abstract
Dementia with Lewy bodies (DLB) is one of the most common forms of dementia. It can present as neurocognitive decline, visual hallucinations, and concomitant symptoms of rapid eye movement (REM) sleep behavior disorder. Early diagnosis remains one of the cornerstones of managing this form of neurocognitive disorder but, often, making an early and accurate diagnosis can prove to be challenging. For this article, our goal was to review the utility of various neuroimaging modalities in making a swift and accurate diagnosis of DLB. We used PubMed to look for helpful, informative, and peer-reviewed articles. We discussed the role of a plethora of different imaging techniques, ranging from structural imaging like computed tomography (CT) and magnetic resonance imaging (MRI) to molecular imaging (single-photon emission computed tomography, positron emission to- tomography) as a diagnostic tool for DLB. We arrived at the conclusion that these novel neuroimaging modalities have already proven to be very helpful in ruling out differentials and making an early diagnosis of DLB. However, ongoing research is required to increase the diagnostic accuracy, leading to the early identification and treatment of DLB.
Collapse
Affiliation(s)
- Abhishikta Saha
- General Medicine, Pennine Acute Hospitals NHS Trust, Manchester, GBR
| | | |
Collapse
|
8
|
Yerstein O, Parand L, Liang LJ, Isaac A, Mendez MF. Benson's Disease or Posterior Cortical Atrophy, Revisited. J Alzheimers Dis 2021; 82:493-502. [PMID: 34057092 PMCID: PMC8316293 DOI: 10.3233/jad-210368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND D. Frank Benson and colleagues first described the clinical and neuropathological features of posterior cortical atrophy (PCA) from patients in the UCLA Neurobehavior Program. OBJECTIVE We reviewed the Program's subsequent clinical experience with PCA, and its potential for clarifying this relatively rare syndrome in comparison to the accumulated literature on PCA. METHODS Using the original criteria derived from this clinic, 65 patients with neuroimaging-supported PCA were diagnosed between 1995 and 2020. RESULTS On presentation, most had visual localization complaints and related visuospatial symptoms, but nearly half had memory complaints followed by symptoms of depression. Neurobehavioral testing showed predominant difficulty with visuospatial constructions, Gerstmann's syndrome, and Balint's syndrome, but also impaired memory and naming. On retrospective application of the current Consensus Criteria for PCA, 59 (91%) met PCA criteria with a modification allowing for "significantly greater visuospatial over memory and naming deficits." There were 37 deaths (56.9%) with the median overall survival of 10.3 years (95% CI: 9.6-13.6 years), consistent with a slow neurodegenerative disorder in most patients. CONCLUSION Together, these findings recommend modifying the PCA criteria for "relatively spared" memory, language, and behavior to include secondary memory and naming difficulty and depression, with increased emphasis on the presence of Gerstmann's and Balint's syndromes.
Collapse
Affiliation(s)
- Oleg Yerstein
- Department of Neurology, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Leila Parand
- Department of Neurology, Behavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Neurology Service, Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Li-Jung Liang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Adrienne Isaac
- Department of Linguistics, Georgetown University, Washington, DC, USA
| | - Mario F. Mendez
- Department of Neurology, Behavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Neurology Service, Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Psychiatry and Behavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
9
|
Dave A, Hansen N, Downey R, Johnson C. FDG-PET Imaging of Dementia and Neurodegenerative Disease. Semin Ultrasound CT MR 2020; 41:562-571. [DOI: 10.1053/j.sult.2020.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Abstract
Dementia is a clinical syndrome that manifests itself with impairment in cognitive functions owing to various neurodegenerative etiologies causing severe disability in the older population. Although the diagnosis is largely dependent on clinical examination, biomarkers can significantly aid in early diagnosis of dementia, especially in those without any clinical evidence of neurocognitive impairment. These biomarkers can be discovered in cerebrospinal fluid (CSF) or can be assessed by neuroimaging. Our goal was to discuss and assess the role of different neuroimaging techniques in the early diagnosis of relatively common etiologies of dementia. We used PubMed as search engines to look for helpful articles; most of the sources used were peer reviewed. We discussed the utility of various neuroimaging techniques, such CT, MRI, positron emission tomography (PET) scan, and single-photon emission computed tomography (SPECT), in the diagnosis of dementia. We concluded that various modern neuroimaging techniques prove to be very helpful in early identification, diagnosis, and differentiation between subtypes. However, the actual clinical utility of these tests in terms of their cost-effectivity and availability remains to be seen. Ongoing research is required to further develop biomarkers for early identification and monitor the progression of different etiologies of dementia.
Collapse
Affiliation(s)
- Dipanjan Banerjee
- Neuroscience, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA.,Geriatrics, Queen's Medical Center, Nottingham University Hospitals NHS Trust, Nottingham, GBR
| | - Abilash Muralidharan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA.,Internal Medicine, Kiruba Hospital, Coimbatore, IND
| | - Abdul Rub Hakim Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Bilal Haider Malik
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
11
|
Role of [18F]-FDG PET in patients with atypical parkinsonism associated with dementia. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00360-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|