1
|
Gemmell AJ, Brown CM, Ray S, Small A. Robustness of textural analysis features in quantitative 99 mTc and 177Lu SPECT-CT phantom acquisitions. EJNMMI Phys 2025; 12:40. [PMID: 40244535 PMCID: PMC12006590 DOI: 10.1186/s40658-025-00749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Textural Analysis features in molecular imaging require to be robust under repeat measurement and to be independent of volume for optimum use in clinical studies. Recent EANM and SNMMI guidelines for radiomics provide advice on the potential use of phantoms to identify robust features (Hatt in EJNMMI, 2022). This study applies the suggested phantoms to use in SPECT quantification for two radionuclides, 99 mTc and 177Lu. METHODS Acquisitions were made with a uniform phantom to test volume dependency and with a customised 'Revolver' phantom, based on the PET phantom described in Hatt (EJNMMI, 2022) but with local adaptations for SPECT. Each phantom was filled separately with 99 mTc and 177Lu. Sixty-seven Textural Analysis features were extracted and tested for robustness and volume dependency. RESULTS Features showing high volume dependency or high Coefficient of Variation (indicating poor repeatability) were removed from the list of features that may be suitable for use in clinical studies. After feature reduction, there were 39 features for 99 mTc and 33 features for 177Lu remaining. CONCLUSION The use of a uniform phantom to test volume dependency and a Revolver phantom to identify repeatable Textural Analysis features is possible for quantitative SPECT using 99 mTc or 177Lu. Selection of such features is likely to be centre-dependent due to differences in camera performance as well as acquisition and reconstruction protocols.
Collapse
Affiliation(s)
- Alastair J Gemmell
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- Department of Clinical Physics & Bioengineering, NHS Greater Glasgow & Clyde, Glasgow, UK.
- Department of Nuclear Medicine, Upper Ground Floor, Gartnavel General Hospital, 1053 Great Western Road, Glasgow, G12 0YN, UK.
| | - Colin M Brown
- Department of Clinical Physics & Bioengineering, NHS Greater Glasgow & Clyde, Glasgow, UK
- Department of Nuclear Medicine, Upper Ground Floor, Gartnavel General Hospital, 1053 Great Western Road, Glasgow, G12 0YN, UK
| | - Surajit Ray
- School of Mathematics & Statistics, University of Glasgow, Glasgow, UK
| | - Alexander Small
- Department of Clinical Physics & Bioengineering, NHS Greater Glasgow & Clyde, Glasgow, UK
- Department of Nuclear Medicine, Upper Ground Floor, Gartnavel General Hospital, 1053 Great Western Road, Glasgow, G12 0YN, UK
| |
Collapse
|
2
|
Kumari D, Bruyn ED, Al-Qawasmi F. Imaging for Interventional Radiology Liver-Directed Therapies for Neuroendocrine Liver Metastases. Semin Intervent Radiol 2024; 41:270-277. [PMID: 39165651 PMCID: PMC11333109 DOI: 10.1055/s-0044-1788338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Neuroendocrine tumors are an indolent, heterogeneous group of tumors that primarily arise from the gastropancreatic tract and lungs. Most patients present with liver metastases at the time of diagnosis, which cause significant morbidity and mortality due to excess hormone secretion, bile duct obstruction, and liver damage. A small percentage of these patients are eligible for potential cure through surgical resection. However, interventional radiology provides liver-directed therapies, such as percutaneous ablation, transarterial embolization, chemoembolization, and radioembolization, for palliative care and potential bridging to debulking and surgical resection of neuroendocrine liver metastases. This article aims to provide a brief overview of these liver-directed therapies focusing on the pre-, intra-, and postprocedural imaging findings.
Collapse
Affiliation(s)
- Divya Kumari
- Department of Radiology, University of Chicago Medicine, Chicago, Illinois
| | - Elise de Bruyn
- Department of Radiology, University of Chicago Medicine, Chicago, Illinois
| | | |
Collapse
|
3
|
Wei C, Jiang T, Wang K, Gao X, Zhang H, Wang X. GEP-NETs radiomics in action: a systematical review of applications and quality assessment. Clin Transl Imaging 2024; 12:287-326. [DOI: 10.1007/s40336-024-00617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2025]
|
4
|
Yang XL, Ni DH, Yu Y, Zhao JC, Lin R, Xiu C, Chang ZX. Value of magnetic resonance imaging radiomics features in predicting histologic grade of invasive ductal carcinoma of the breast. Technol Health Care 2024; 32:1609-1618. [PMID: 38393931 PMCID: PMC11091567 DOI: 10.3233/thc-230671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/10/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Breast cancer has the second highest mortality rate of all cancers and occurs mainly in women. OBJECTIVE To investigate the relationship between magnetic resonance imaging (MRI) radiomics features and histological grade of invasive ductal carcinoma (IDC) of the breast and to evaluate its diagnostic efficacy. METHODS The two conventional MRI quantitative indicators, i.e. the apparent diffusion coefficient (ADC) and the initial enhancement rate, were collected from 112 patients with breast cancer. The breast cancer lesions were manually segmented in dynamic contrast-enhanced MRI (DCE-MRI) and ADC images, the differences in radiomics features between Grades I, II and III IDCs were compared and the diagnostic efficacy was evaluated. RESULTS The ADC values (0.77 ± 0.22 vs 0.91 ± 0.22 vs 0.92 ± 0.20, F= 4.204, p< 0.01), as well as the B_sum_variance (188.51 ± 67.803 vs 265.37 ± 77.86 vs 263.74 ± 82.58, F= 6.040, p< 0.01), L_energy (0.03 ± 0.02 vs 0.13 ± 0.11 vs 0.12 ± 0.14, F= 7.118, p< 0.01) and L_sum_average (0.78 ± 0.32 vs 16.34 ± 4.23 vs 015.45 ± 3.74, F= 21.860, p< 0.001) values of patients with Grade III IDC were significantly lower than those of patients with Grades I and II IDC. The B_uniform (0.15 ± 0.12 vs 0.11 ± 0.04 vs 0.12 ± 0.03, F= 3.797, p< 0.01) and L_SRE (0.85 ± 0.07 vs 0.78 ± 0.03 vs 0.79 ± 0.32, F= 3.024, p< 0.01) values of patients with Grade III IDC were significantly higher than those of patients with Grades I and II IDC. All differences were statistically significant (p< 0.05). The ADC radiomics signature model had a higher area-under-the-curve value in identifying different grades of IDC than the ADC value model and the DCE radiomics signature model (0.869 vs 0.711 vs 0.682). The accuracy (0.812 vs 0.647 vs 0.710), specificity (0.731 vs 0.435 vs 0.342), positive predictive value (0.815 vs 0.663 vs 0.669) and negative predictive value (0.753 vs 0.570 vs 0.718) of the ADC radiomics signature model were all significantly better than the ADC value model and the DCE radiomics signature model. CONCLUSION ADC values and breast MRI radiomics signatures are significant in identifying the histological grades of IDC, with the ADC radiomics signatures having greater value.
Collapse
Affiliation(s)
- Xin-Lei Yang
- Blood Tumor Treatment Center, Beihua University Affiliated Hospital, Jilin, China
| | - Dong-He Ni
- Blood Tumor Treatment Center, Beihua University Affiliated Hospital, Jilin, China
- Department of Radiology, Jilin Province Integrated Traditional Chinese and Western Medicine Hospital, Jilin, China
| | - Yang Yu
- Department of Radiology, Beihua University Affiliated Hospital, Jilin, China
| | - Jin-Cui Zhao
- Department of Radiology, Beihua University Affiliated Hospital, Jilin, China
| | - Rui Lin
- Blood Tumor Treatment Center, Beihua University Affiliated Hospital, Jilin, China
| | - Chao Xiu
- Department of Radiology, Beihua University Affiliated Hospital, Jilin, China
| | - Zhe-Xing Chang
- Blood Tumor Treatment Center, Beihua University Affiliated Hospital, Jilin, China
| |
Collapse
|
5
|
Virarkar MK, Montanarella M, Itani M, Calimano-Ramirez L, Gopireddy D, Bhosale P. PET/MRI imaging in neuroendocrine neoplasm. Abdom Radiol (NY) 2023; 48:3585-3600. [PMID: 36525051 DOI: 10.1007/s00261-022-03757-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Molecular imaging plays a vital role in the management of neuroendocrine neoplasms (NENs). Somatostatin receptor (SSTR) PET is critical for evaluating NENs, ascertaining peptide receptor radionuclide therapy (PRRT) eligibility, and treatment response. SSTR-PET/MRI can provide a one-stop-shop multiparametric evaluation of NENs. The acquisition of complementary imaging information in PET/MRI has distinct advantages over PET/CT and MR imaging acquisitions. The purpose of this manuscript is to provide a comprehensive overview of PET/MRI and a current review of recent PET/MRI advances in the diagnosis, staging, treatment, and surveillance of NENs.
Collapse
Affiliation(s)
- Mayur K Virarkar
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Matthew Montanarella
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Malak Itani
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 S Kings Highway Blvd, Campus Box 8131, St Louis, MO, 63110, USA
| | - Luis Calimano-Ramirez
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA.
| | - Dheeraj Gopireddy
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Priya Bhosale
- Division of Diagnostic Imaging, Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Milosevic A, Styczen H, Haubold J, Kessler L, Grueneisen J, Li Y, Weber M, Fendler WP, Morawitz J, Damman P, Wrede K, Kebir S, Glas M, Guberina M, Blau T, Schaarschmidt BM, Deuschl C. Correlation of the apparent diffusion coefficient with the standardized uptake value in meningioma of the skull plane using [68]Ga-DOTATOC PET/MRI. Nucl Med Commun 2023; 44:1106-1113. [PMID: 37823259 DOI: 10.1097/mnm.0000000000001774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE To evaluate a correlation between an MRI-specific marker for cellular density [apparent diffusion coefficient (ADC)] and the expression of Somatostatin Receptors (SSTR) in patients with meningioma of the skull plane and orbital space. METHODS 68 Ga-DOTATOC PET/MR imaging was performed in 60 Patients with suspected or diagnosed meningiomas of the skull base and eye socket. Analysis of ADC values succeeded in 32 patients. ADC values (ADC mean and ADC min ) were analyzed using a polygonal region of interest. Tracer-uptake of target lesions was assessed according to corresponding maximal (SUV max ) and mean (SUV mean ) values. Correlations between assessed parameters were evaluated using the Pearson correlation coefficient. RESULTS One out of 32 patients (3%) was diagnosed with lymphoma by histopathological examination and therefore excluded from further analysis. Median ADC mean amounted to 822 × 10 -5 mm²/s -1 (95% CI: 570-1497) and median ADC min was 493 × 10 -5 mm 2 /s -1 (95% CI: 162-783). There were no significant correlations between SUV max and ADC min (r = 0.60; P = 0.76) or ADC mean (r = -0.52; P = 0.79), respectively. However, Pearson's test showed a weak, inverse but insignificant correlation between ADC mean and SUV mean (r = -0.33; P = 0.07). CONCLUSION The presented data displays no relevant correlations between increased SSTR expression and cellularity in patients with meningioma of the skull base. SSTR-PET and DWI thus may offer complementary information on tumor characteristics of meningioma.
Collapse
Affiliation(s)
- Aleksandar Milosevic
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Hanna Styczen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Johannes Haubold
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Lukas Kessler
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Johannes Grueneisen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Yan Li
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Manuel Weber
- Department of Nuclear Medicine, University Hospital Essen,
| | | | | | - Philipp Damman
- Department of Neurosurgery and Spine Surgery, University Hospital Essen,
| | - Karsten Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen,
| | - Sied Kebir
- Department of Neurology and Neurooncology, University Hospital Essen,
| | - Martin Glas
- Department of Neurology and Neurooncology, University Hospital Essen,
| | - Maja Guberina
- Department of Radiotherapy, University Hospital Essen and
| | - Tobias Blau
- Department of Neuropathology, University Hospital Essen, Germany
| | - Benedikt M Schaarschmidt
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| |
Collapse
|
7
|
Li Y, Li J, Meng M, Duan S, Shi H, Hang J. Development and Validation of a Radiomics Nomogram for Liver Metastases Originating from Gastric and Colorectal Cancer. Diagnostics (Basel) 2023; 13:2937. [PMID: 37761304 PMCID: PMC10528017 DOI: 10.3390/diagnostics13182937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The origin of metastatic liver tumours (arising from gastric or colorectal sources) is closely linked to treatment choices and survival prospects. However, in some instances, the primary lesion remains elusive even after an exhaustive diagnostic investigation. Consequently, we have devised and validated a radiomics nomogram for ascertaining the primary origin of liver metastases stemming from gastric cancer (GCLMs) and colorectal cancer (CCLMs). This retrospective study encompassed patients diagnosed with either GCLMs or CCLMs, comprising a total of 277 GCLM cases and 278 CCLM cases. Radiomic characteristics were derived from venous phase computed tomography (CT) scans, and a radiomics signature (RS) was computed. Multivariable regression analysis demonstrated that gender (OR = 3.457; 95% CI: 2.102-5.684; p < 0.001), haemoglobin levels (OR = 0.976; 95% CI: 0.967-0.986; p < 0.001), carcinoembryonic antigen (CEA) levels (OR = 0.500; 95% CI: 0.307-0.814; p = 0.005), and RS (OR = 2.147; 95% CI: 1.127-4.091; p = 0.020) exhibited independent associations with GCLMs as compared to CCLMs. The nomogram, combining RS with clinical variables, demonstrated strong discriminatory power in both the training (AUC = 0.71) and validation (AUC = 0.78) cohorts. The calibration curve, decision curve analysis, and clinical impact curves revealed the clinical utility of this nomogram and substantiated its enhanced diagnostic performance.
Collapse
Affiliation(s)
- Yuying Li
- Department of Radiology, Changzhou Second People’s Hospital Affiliated with Nanjing Medical University, Changzhou 213000, China; (Y.L.); (J.L.); (M.M.)
- Graduate College, Dalian Medical University, Dalian 116000, China
| | - Jingjing Li
- Department of Radiology, Changzhou Second People’s Hospital Affiliated with Nanjing Medical University, Changzhou 213000, China; (Y.L.); (J.L.); (M.M.)
- Graduate College, Dalian Medical University, Dalian 116000, China
| | - Mingzhu Meng
- Department of Radiology, Changzhou Second People’s Hospital Affiliated with Nanjing Medical University, Changzhou 213000, China; (Y.L.); (J.L.); (M.M.)
| | - Shaofeng Duan
- GE Healthcare, Precision Health Institution, Shanghai 201100, China;
| | - Haifeng Shi
- Department of Radiology, Changzhou Second People’s Hospital Affiliated with Nanjing Medical University, Changzhou 213000, China; (Y.L.); (J.L.); (M.M.)
| | - Junjie Hang
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
- Department of Oncology, Changzhou Second People’s Hospital Affiliated with Nanjing Medical University, Changzhou 213000, China
| |
Collapse
|
8
|
Shamsabadipour A, Pourmadadi M, Davodabadi F, Rahdar A, Romanholo Ferreira LF. Applying thermodynamics as an applicable approach to cancer diagnosis, evaluation, and therapy: A review. J Drug Deliv Sci Technol 2023; 86:104681. [DOI: 10.1016/j.jddst.2023.104681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Balma M, Laudicella R, Gallio E, Gusella S, Lorenzon L, Peano S, Costa RP, Rampado O, Farsad M, Evangelista L, Deandreis D, Papaleo A, Liberini V. Applications of Artificial Intelligence and Radiomics in Molecular Hybrid Imaging and Theragnostics for Neuro-Endocrine Neoplasms (NENs). Life (Basel) 2023; 13:1647. [PMID: 37629503 PMCID: PMC10455722 DOI: 10.3390/life13081647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Nuclear medicine has acquired a crucial role in the management of patients with neuroendocrine neoplasms (NENs) by improving the accuracy of diagnosis and staging as well as their risk stratification and personalized therapies, including radioligand therapies (RLT). Artificial intelligence (AI) and radiomics can enable physicians to further improve the overall efficiency and accuracy of the use of these tools in both diagnostic and therapeutic settings by improving the prediction of the tumor grade, differential diagnosis from other malignancies, assessment of tumor behavior and aggressiveness, and prediction of treatment response. This systematic review aims to describe the state-of-the-art AI and radiomics applications in the molecular imaging of NENs.
Collapse
Affiliation(s)
- Michele Balma
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy; (S.P.); (A.P.); (V.L.)
| | - Riccardo Laudicella
- Unit of Nuclear Medicine, Biomedical Department of Internal and Specialist Medicine, University of Palermo, 90133 Palermo, Italy; (R.L.); (R.P.C.)
| | - Elena Gallio
- Medical Physics Unit, A.O.U. Città Della Salute E Della Scienza Di Torino, Corso Bramante 88/90, 10126 Torino, Italy; (E.G.); (O.R.)
| | - Sara Gusella
- Nuclear Medicine, Central Hospital Bolzano, 39100 Bolzano, Italy; (S.G.); (M.F.)
| | - Leda Lorenzon
- Medical Physics Department, Central Bolzano Hospital, 39100 Bolzano, Italy;
| | - Simona Peano
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy; (S.P.); (A.P.); (V.L.)
| | - Renato P. Costa
- Unit of Nuclear Medicine, Biomedical Department of Internal and Specialist Medicine, University of Palermo, 90133 Palermo, Italy; (R.L.); (R.P.C.)
| | - Osvaldo Rampado
- Medical Physics Unit, A.O.U. Città Della Salute E Della Scienza Di Torino, Corso Bramante 88/90, 10126 Torino, Italy; (E.G.); (O.R.)
| | - Mohsen Farsad
- Nuclear Medicine, Central Hospital Bolzano, 39100 Bolzano, Italy; (S.G.); (M.F.)
| | - Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy;
| | - Desiree Deandreis
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy and Université Paris Saclay, 94805 Villejuif, France;
| | - Alberto Papaleo
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy; (S.P.); (A.P.); (V.L.)
| | - Virginia Liberini
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy; (S.P.); (A.P.); (V.L.)
| |
Collapse
|
10
|
Weber M, Telli T, Kersting D, Seifert R. Prognostic Implications of PET-Derived Tumor Volume and Uptake in Patients with Neuroendocrine Tumors. Cancers (Basel) 2023; 15:3581. [PMID: 37509242 PMCID: PMC10377105 DOI: 10.3390/cancers15143581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Historically, molecular imaging of somatostatin receptor (SSTR) expression in patients with neuroendocrine tumors (NET) was performed using SSTR scintigraphy (SRS). Sustained advances in medical imaging have led to its gradual replacement with SSTR positron-emission tomography (SSTR-PET). The higher sensitivity in comparison to SRS on the one hand and conventional cross-sectional imaging, on the other hand, enables more accurate staging and allows for image quantification. In addition, in recent years, a growing body of evidence has assessed the prognostic implications of SSTR-PET-derived prognostic biomarkers for NET patients, with the aim of risk stratification, outcome prognostication, and prediction of response to peptide receptor radionuclide therapy. In this narrative review, we give an overview of studies examining the prognostic value of advanced SSTR-PET-derived (semi-)quantitative metrics like tumor volume, uptake, and composite metrics. Complementing this analysis, a discussion of the current trends, clinical implications, and future directions is provided.
Collapse
Affiliation(s)
- Manuel Weber
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147 Essen, Germany
| | - Tugce Telli
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147 Essen, Germany
| | - David Kersting
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147 Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
11
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 2, Infradiaphragmatic Cancers, Blood Malignancies, Melanoma and Musculoskeletal Cancers. Diagnostics (Basel) 2022; 12:diagnostics12061330. [PMID: 35741139 PMCID: PMC9222024 DOI: 10.3390/diagnostics12061330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of this review was to summarize published radiomics studies dealing with infradiaphragmatic cancers, blood malignancies, melanoma, and musculoskeletal cancers, and assess their quality. PubMed database was searched from January 1990 to February 2022 for articles performing radiomics on PET imaging of at least 1 specified tumor type. Exclusion criteria includd: non-oncological studies; supradiaphragmatic tumors; reviews, comments, cases reports; phantom or animal studies; technical articles without a clinically oriented question; studies including <30 patients in the training cohort. The review database contained PMID, first author, year of publication, cancer type, number of patients, study design, independent validation cohort and objective. This database was completed twice by the same person; discrepant results were resolved by a third reading of the articles. A total of 162 studies met inclusion criteria; 61 (37.7%) studies included >100 patients, 13 (8.0%) were prospective and 61 (37.7%) used an independent validation set. The most represented cancers were esophagus, lymphoma, and cervical cancer (n = 24, n = 24 and n = 19 articles, respectively). Most studies focused on 18F-FDG, and prognostic and response to treatment objectives. Although radiomics and artificial intelligence are technically challenging, new contributions and guidelines help improving research quality over the years and pave the way toward personalized medicine.
Collapse
Affiliation(s)
- David Morland
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence:
| | - Elizabeth Katherine Anna Triumbari
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
12
|
Zhang L, Zhao H, Jiang H, Zhao H, Han W, Wang M, Fu P. 18F-FDG texture analysis predicts the pathological Fuhrman nuclear grade of clear cell renal cell carcinoma. Abdom Radiol (NY) 2021; 46:5618-5628. [PMID: 34455450 PMCID: PMC8590655 DOI: 10.1007/s00261-021-03246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE This article analyzes the image heterogeneity of clear cell renal cell carcinoma (ccRCC) based on positron emission tomography (PET) and positron emission tomography-computed tomography (PET/CT) texture parameters, and provides a new objective quantitative parameter for predicting pathological Fuhrman nuclear grading before surgery. METHODS A retrospective analysis was performed on preoperative PET/CT images of 49 patients whose surgical pathology was ccRCC, 27 of whom were low grade (Fuhrman I/II) and 22 of whom were high grade (Fuhrman III/IV). Radiological parameters and standard uptake value (SUV) indicators on PET and computed tomography (CT) images were extracted by using the LIFEx software package. The discriminative ability of each texture parameter was evaluated through receiver operating curve (ROC). Binary logistic regression analysis was used to screen the texture parameters with distinguishing and diagnostic capabilities and whose area under curve (AUC) > 0.5. DeLong's test was used to compare the AUCs of PET texture parameter model and PET/CT texture parameter model with traditional maximum standardized uptake value (SUVmax) model and the ratio of tumor SUVmax to liver SUVmean (SUL)model. In addition, the models with the larger AUCs among the SUV models and texture models were prospectively internally verified. RESULTS In the ROC curve analysis, the AUCs of SUVmax model, SUL model, PET texture parameter model, and PET/CT texture parameter model were 0.803, 0.819, 0.873, and 0.926, respectively. The prediction ability of PET texture parameter model or PET/CT texture parameter model was significantly better than SUVmax model (P = 0.017, P = 0.02), but it was not better than SUL model (P = 0.269, P = 0.053). In the prospective validation cohort, both the SUL model and the PET/CT texture parameter model had good predictive ability, and the AUCs of them were 0.727 and 0.792, respectively. CONCLUSION PET and PET/CT texture parameter models can improve the prediction ability of ccRCC Fuhrman nuclear grade; SUL model may be the more accurate and easiest way to predict ccRCC Fuhrman nuclear grade.
Collapse
Affiliation(s)
- Linhan Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Hong Zhao
- Department of Nuclear Medicine, ShenZhen People's Hospital, ShenZhen, China
| | - Wei Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengjiao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
13
|
Liberini V, De Santi B, Rampado O, Gallio E, Dionisi B, Ceci F, Polverari G, Thuillier P, Molinari F, Deandreis D. Impact of segmentation and discretization on radiomic features in 68Ga-DOTA-TOC PET/CT images of neuroendocrine tumor. EJNMMI Phys 2021; 8:21. [PMID: 33638729 PMCID: PMC7914329 DOI: 10.1186/s40658-021-00367-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To identify the impact of segmentation methods and intensity discretization on radiomic features (RFs) extraction from 68Ga-DOTA-TOC PET images in patients with neuroendocrine tumors. METHODS Forty-nine patients were retrospectively analyzed. Tumor contouring was performed manually by four different operators and with a semi-automatic edge-based segmentation (SAEB) algorithm. Three SUVmax fixed thresholds (20, 30, 40%) were applied. Fifty-one RFs were extracted applying two different intensity rescale factors for gray-level discretization: one absolute (AR60 = SUV from 0 to 60) and one relative (RR = min-max of the VOI SUV). Dice similarity coefficient (DSC) was calculated to quantify segmentation agreement between different segmentation methods. The impact of segmentation and discretization on RFs was assessed by intra-class correlation coefficients (ICC) and the coefficient of variance (COVL). The RFs' correlation with volume and SUVmax was analyzed by calculating Pearson's correlation coefficients. RESULTS DSC mean value was 0.75 ± 0.11 (0.45-0.92) between SAEB and operators and 0.78 ± 0.09 (0.36-0.97), among the four manual segmentations. The study showed high robustness (ICC > 0.9): (a) in 64.7% of RFs for segmentation methods using AR60, improved by applying SUVmax threshold of 40% (86.5%); (b) in 50.9% of RFs for different SUVmax thresholds using AR60; and (c) in 37% of RFs for discretization settings using different segmentation methods. Several RFs were not correlated with volume and SUVmax. CONCLUSIONS RFs robustness to manual segmentation resulted higher in NET 68Ga-DOTA-TOC images compared to 18F-FDG PET/CT images. Forty percent SUVmax thresholds yield superior RFs stability among operators, however leading to a possible loss of biological information. SAEB segmentation appears to be an optimal alternative to manual segmentation, but further validations are needed. Finally, discretization settings highly impacted on RFs robustness and should always be stated.
Collapse
Affiliation(s)
- Virginia Liberini
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| | - Bruno De Santi
- Biolab, Department of Electronics and Telecomunications, Politecnico di Torino, Turin, Italy
| | - Osvaldo Rampado
- Medical Physics Unit, AOU Città della Salute e della Scienza, Turin, Italy
| | - Elena Gallio
- Medical Physics Unit, AOU Città della Salute e della Scienza, Turin, Italy
| | - Beatrice Dionisi
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Francesco Ceci
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Giulia Polverari
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Philippe Thuillier
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
- Department of Endocrinology, University Hospital of Brest, Politecnico di Torino Brest, Turin, France
| | - Filippo Molinari
- Biolab, Department of Electronics and Telecomunications, Politecnico di Torino, Turin, Italy
| | - Désirée Deandreis
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| |
Collapse
|
14
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|
15
|
Magi L, Rinzivillo M, Panzuto F. Tumor Heterogenity in Gastro-Entero-Pancreatic Neuroendocrine Neoplasia. ENDOCRINES 2021; 2:28-36. [DOI: 10.3390/endocrines2010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Owing to the rarity and the biological and clinical heterogeneity of gastroenteropancreatic neuroendocrine neoplasia (GEP NEN), the management of these patients may be challenging for physicians. This review highlights the specific features of GEP NEN with particular attention on the role of Ki67 heterogeneity, the potential prognostic role of novel radiological techniques, and the clinical usefulness of functional imaging, including 68Ga-DOTA-SST PET/CT and 18F-FDG PET/CT. Understanding these specific features may help to plan proper and tailored follow-up programs and therapeutic approaches.
Collapse
Affiliation(s)
- Ludovica Magi
- SAIMLAL Department (Human Anatomy, Histology, Forensic Medicine and Orthopedics), Sapienza University of Rome, 00185 Rome, Italy
- Digestive Disease Unit, Sant’Andrea University Hospital—ENETS Center of Excellence of Via di Grottarossa, 1035, 00189 Rome, Italy
| | - Maria Rinzivillo
- Digestive Disease Unit, Sant’Andrea University Hospital—ENETS Center of Excellence of Via di Grottarossa, 1035, 00189 Rome, Italy
| | - Francesco Panzuto
- Digestive Disease Unit, Sant’Andrea University Hospital—ENETS Center of Excellence of Via di Grottarossa, 1035, 00189 Rome, Italy
| |
Collapse
|
16
|
Liberini V, Huellner MW, Grimaldi S, Finessi M, Thuillier P, Muni A, Pellerito RE, Papotti MG, Piovesan A, Arvat E, Deandreis D. The Challenge of Evaluating Response to Peptide Receptor Radionuclide Therapy in Gastroenteropancreatic Neuroendocrine Tumors: The Present and the Future. Diagnostics (Basel) 2020; 10:E1083. [PMID: 33322819 PMCID: PMC7763988 DOI: 10.3390/diagnostics10121083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The NETTER-1 study has proven peptide receptor radionuclide therapy (PRRT) to be one of the most effective therapeutic options for metastatic neuroendocrine tumors (NETs), improving progression-free survival and overall survival. However, PRRT response assessment is challenging and no consensus on methods and timing has yet been reached among experts in the field. This issue is owed to the suboptimal sensitivity and specificity of clinical biomarkers, limitations of morphological response criteria in slowly growing tumors and necrotic changes after therapy, a lack of standardized parameters and timing of functional imaging and the heterogeneity of PRRT protocols in the literature. The aim of this article is to review the most relevant current approaches for PRRT efficacy prediction and response assessment criteria in order to provide an overview of suitable tools for safe and efficacious PRRT.
Collapse
Affiliation(s)
- Virginia Liberini
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.G.); (M.F.); (P.T.); (D.D.)
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Martin W. Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Serena Grimaldi
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.G.); (M.F.); (P.T.); (D.D.)
| | - Monica Finessi
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.G.); (M.F.); (P.T.); (D.D.)
| | - Philippe Thuillier
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.G.); (M.F.); (P.T.); (D.D.)
- Department of Endocrinology, University Hospital of Brest, 29200 Brest, France
| | - Alfredo Muni
- Department of Nuclear Medicine, S.S. Biagio e Antonio e C. Arrigo Hospital, 15121 Alessandria, Italy;
| | | | - Mauro G. Papotti
- Pathology Unit, City of Health and Science University Hospital, 10126 Turin, Italy;
- Department of Oncology, University of Turin at Molinette Hospital, 10126 Turin, Italy
| | - Alessandro Piovesan
- Department of Endocrinology, A. O. U. Città della Salute della Scienza of Turin, 10126 Turin, Italy;
| | - Emanuela Arvat
- Oncological Endocrinology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
| | - Désirée Deandreis
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.G.); (M.F.); (P.T.); (D.D.)
| |
Collapse
|
17
|
Radiomics of Liver Metastases: A Systematic Review. Cancers (Basel) 2020; 12:cancers12102881. [PMID: 33036490 PMCID: PMC7600822 DOI: 10.3390/cancers12102881] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Patients with liver metastases can be scheduled for different therapies (e.g., chemotherapy, surgery, radiotherapy, and ablation). The choice of the most appropriate treatment should rely on adequate understanding of tumor biology and prediction of survival, but reliable biomarkers are lacking. Radiomics is an innovative approach to medical imaging: it identifies invisible-to-the-human-eye radiological patterns that can predict tumor aggressiveness and patients outcome. We reviewed the available literature to elucidate the role of radiomics in patients with liver metastases. Thirty-two papers were analyzed, mostly (56%) concerning metastases from colorectal cancer. Even if available studies are still preliminary, radiomics provided effective prediction of response to chemotherapy and of survival, allowing more accurate and earlier prediction than standard predictors. Entropy and homogeneity were the radiomic features with the strongest clinical impact. In the next few years, radiomics is expected to give a consistent contribution to the precision medicine approach to patients with liver metastases. Abstract Multidisciplinary management of patients with liver metastases (LM) requires a precision medicine approach, based on adequate profiling of tumor biology and robust biomarkers. Radiomics, defined as the high-throughput identification, analysis, and translational applications of radiological textural features, could fulfill this need. The present review aims to elucidate the contribution of radiomic analyses to the management of patients with LM. We performed a systematic review of the literature through the most relevant databases and web sources. English language original articles published before June 2020 and concerning radiomics of LM extracted from CT, MRI, or PET-CT were considered. Thirty-two papers were identified. Baseline higher entropy and lower homogeneity of LM were associated with better survival and higher chemotherapy response rates. A decrease in entropy and an increase in homogeneity after chemotherapy correlated with radiological tumor response. Entropy and homogeneity were also highly predictive of tumor regression grade. In comparison with RECIST criteria, radiomic features provided an earlier prediction of response to chemotherapy. Lastly, texture analyses could differentiate LM from other liver tumors. The commonest limitations of studies were small sample size, retrospective design, lack of validation datasets, and unavailability of univocal cut-off values of radiomic features. In conclusion, radiomics can potentially contribute to the precision medicine approach to patients with LM, but interdisciplinarity, standardization, and adequate software tools are needed to translate the anticipated potentialities into clinical practice.
Collapse
|