1
|
Quinn CH, Julson JR, Erwin MH, Markert HR, Bownes LV, Stewart JE, Shirley S, Yoon KJ, Aye JM, Markert JM, Beierle EA. Investigation of an oncolytic herpes simplex virus as a potential therapeutic agent for gastroenteropancreatic neuroendocrine neoplasms. Sci Rep 2025; 15:13356. [PMID: 40247049 PMCID: PMC12006505 DOI: 10.1038/s41598-025-98588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 04/14/2025] [Indexed: 04/19/2025] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) present unique challenges due to their heterogeneity and limited treatment options. Oncolytic virotherapy has emerged as a promising therapeutic for other NETs and thus, we sought to investigate the potential of an engineered oncolytic herpes simplex virus (oHSV), M002, for GEP-NETS. We employed an established long-term passage GEP-NET cell line and a unique, human pediatric patient-derived xenograft GEP-NET line. We found the virus to effectively infect, replicate within, and kill both cell lines in vitro. Similar effects were noted in vivo, with M002 decreasing tumor growth and improving overall survival in mice bearing tumors from both the established cell line and human GEP-NET PDX. Overall, these studies provide an evaluation of an oncolytic HSV in GEP-NETs, highlighting its therapeutic potential and considerations for clinical translation.
Collapse
Affiliation(s)
- Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave South, Lowder, Suite 300, Birmingham, AL, 35233, USA
| | - Janet R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave South, Lowder, Suite 300, Birmingham, AL, 35233, USA
| | - Michael H Erwin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave South, Lowder, Suite 300, Birmingham, AL, 35233, USA
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave South, Lowder, Suite 300, Birmingham, AL, 35233, USA
| | - Larua V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave South, Lowder, Suite 300, Birmingham, AL, 35233, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave South, Lowder, Suite 300, Birmingham, AL, 35233, USA
| | - Sorina Shirley
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave South, Lowder, Suite 300, Birmingham, AL, 35233, USA
| | - Karina J Yoon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie M Aye
- Division of Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave South, Lowder, Suite 300, Birmingham, AL, 35233, USA.
| |
Collapse
|
2
|
AlSadi R, Maaz AUR, Bouhali O, Djekidel M. 68Ga-DOTATATE PET in Restaging and Response to Therapy in Neuroblastoma: A Case Series and a Mini Review. J Nucl Med Technol 2023:jnmt.122.264694. [PMID: 37192823 DOI: 10.2967/jnmt.122.264694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/07/2023] [Indexed: 05/18/2023] Open
Abstract
68Ga-DOTATATE PET/CT is widely used for the evaluation of neuroendocrine tumors. Some reports exist on its use in the management of neuroblastoma. Building on the prior reports as well as our previous experience in using this technique for initial staging, we propose to describe its practical benefits in restaging and response to therapy. We describe different aspects including supply logistics, preparation, spatial resolution, and other practical applications. Methods: We reviewed the medical records for 8 patients who were evaluated with 68Ga-DOTATATE PET/CT at our institution over 2 y. A note was made of the patient and disease characteristics and the indication for PET imaging, and the results were retrospectively analyzed for feasibility, logistics, radiation exposure, and utility in answering the clinical question. Results: Eight children (5 girls and 3 boys; age range, 4-60 mo; median age, 30 mo) diagnosed with neuroblastoma were imaged with 68Ga-DOTATATE PET/CT and 5 with 123I-metaiodobenzylguanidine (123I-MIBG) SPECT/CT over 2 y. Three 68Ga-DOTATATE PET scans were done for staging, 10 for response evaluation, and 2 for restaging. 68Ga-DOTATATE PET accurately identified neuroblastoma lesions suspected or seen on anatomic imaging. It has been shown to be more specific and more sensitive than 123I-MIBG and at times also MRI. It had better spatial and contrast resolution than 123I-MIBG. 68Ga-DOTATATE PET was better than 123I-MIBG SPECT/CT, CT, and MRI in the detection of early progression and viable tumor delineation for response assessment, as well as in target volume definition for external-beam radiotherapy and proton-beam radiotherapy. 68Ga-DOTATATE PET was also better at assessing bony and bone marrow disease changes with time. Conclusion: 68Ga-DOTATATE PET/CT offers added value and a superior edge to other imaging modalities in restaging and response assessment in neuroblastoma patients. Further multicenter evaluations in larger cohorts are needed.
Collapse
Affiliation(s)
- Rahaf AlSadi
- Department of Science, Texas A&M University at Qatar, Doha, Qatar
| | - Ata Ur Rehman Maaz
- Department of Pediatrics, Division of Hematology-Oncology, Sidra Medicine, Doha, Qatar
| | - Othmane Bouhali
- Department of Science, Texas A&M University at Qatar, Doha, Qatar
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar; and
| | | |
Collapse
|
3
|
Castle JT, Levy BE, Chauhan A. Pediatric Neuroendocrine Neoplasms: Rare Malignancies with Incredible Variability. Cancers (Basel) 2022; 14:cancers14205049. [PMID: 36291833 PMCID: PMC9599522 DOI: 10.3390/cancers14205049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) encompass a variety of neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs) which can arise anywhere in the body. While relatively rare in the pediatric population, the incidence of NENs has increased in the past few decades. These neoplasms can be devastating if not diagnosed and treated early, however, symptoms are variable and can be indolent for many years. There is a reported median of 10 years from the appearance of the first symptoms to time of diagnosis. Considering some of these neoplasms have a mortality rate as high as 90%, it is crucial healthcare providers are aware of NENs and remain vigilant. With better provider education and easily accessible resources for information about these neoplasms, awareness can be improved leading to earlier disease recognition and diagnosis. This manuscript aims to provide an overview of both the most common NENs as well as the rarer NENs with high lethality in the pediatric population. This review provides up to date evidence and recommendations, encompassing recent changes in classification and advances in treatment modalities, including recently completed and ongoing clinical trials.
Collapse
Affiliation(s)
- Jennifer T. Castle
- Department of Surgery, Markey Cancer Center, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA
| | - Brittany E. Levy
- Department of Surgery, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA
| | - Aman Chauhan
- Department of Internal Medicine-Medical Oncology, Markey Cancer Center, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA
- Correspondence: or
| |
Collapse
|
4
|
Di Stasio GD, Cuccurullo V, Cascini GL, Grana CM. Tailored Molecular Imaging of Pheochromocytoma and Paraganglioma: Which Tracer and When. Neuroendocrinology 2022; 112:927-940. [PMID: 35051937 DOI: 10.1159/000522089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/18/2022] [Indexed: 11/19/2022]
Abstract
Pheochromocytoma (PCC) and paraganglioma (PGL) are rare neoplasms that fall within the category of neuroendocrine tumors. In the last decade, their diagnostic algorithm has been modified to include the evaluation of molecular pathways, genotype, and biochemical phenotype, in order to correctly interpret anatomical and functional imaging results and tailor the best therapeutic choices to patients. More specifically, the identification of germline mutations has led to a three-way cluster classification: pseudo-hypoxic cluster, cluster of kinase receptor signaling and protein translation pathways, and cluster of Wnt-altered pathway. In this context, functional imaging gained a crucial role in the management of these patients in agreement with the ever-growing concept of personalized medicine. In this paper, we provide an overview of three specific molecular pathways targeted by positron-emitting tracers to image PCCs and PGLs: catecholamine metabolism, somatostatin receptors, and glucose uptake. Finally, we recommend different flow charts for use in the selection of tracers for specific clinical scenarios, based on sporadic/inherited tumor and known/unknown mutation status.
Collapse
Affiliation(s)
| | - Vincenzo Cuccurullo
- Nuclear Medicine Unit, Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Giuseppe Lucio Cascini
- Nuclear Medicine Unit, Department of Diagnostic Imaging, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Chiara Maria Grana
- Nuclear Medicine Division, European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
5
|
Pediatric issues in nuclear medicine therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Usmani N, Deyell RJ, Portwine C, Rafael MS, Moorehead PC, Shammas A, Vali R, Farfan M, Vanniyasingam T, Morgenstern DA, Irwin MS. Residual meta-iodobenzyl guanidine (MIBG) positivity following therapy for metastatic neuroblastoma: Patient characteristics, imaging, and outcome. Pediatr Blood Cancer 2021; 68:e29289. [PMID: 34411405 DOI: 10.1002/pbc.29289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Meta-iodobenzylguanidine(MIBG) scans are used to detect neuroblastoma metastatic lesions at diagnosis and during posttreatment surveillance. MIBG positivity following induction chemotherapy correlates with poor outcome; however, there are reports of patients with progression-free survival despite MIBG positivity at the end of therapy. The factors distinguishing these survivors from patients who progress or relapse are unclear. FDG-positron-emission tomography (PET) scans can also detect metastatic lesions at diagnosis; however, their role in posttherapy surveillance is less well studied. METHODS We performed a retrospective analysis of International Neuroblastoma Staging System (INSS) stage 4 patients to identify those with residual MIBG-avid metastatic lesions on end-of-therapy scans without prior progression. Data collected included age, disease sites, histopathology, biomarkers, treatment, imaging studies, and response. RESULTS Eleven of 265 patients met inclusion criteria. At diagnosis three of 11 patients were classified as intermediate and eight of 11 high risk; nine of 11 had documented marrow involvement. Histologic classification was favorable for four of 10 and MYCN amplification was detected in zero of 11 cases. The median time with persistent MIBG positivity following treatment was 1.5 years. Seven patients had at least one PET scan with low or background activity. Biopsies of three of three MIBG-avid residual lesions showed differentiation. All patients remain alive with no disease progression at a median of 4.0 years since end of therapy. CONCLUSION Persistently MIBG-avid metastatic lesions in subsets of patients following completion of therapy may not represent active disease that will progress. Further studies are needed to determine whether MYCN status or other biomarkers, and/or PET scans, may help identify patients with residual inactive MIBG lesions who require no further therapy.
Collapse
Affiliation(s)
- Nida Usmani
- Department of Pediatrics, Division of Hematology and Oncology, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Rebecca J Deyell
- Department of Pediatrics, Division of Hematology/Oncology/BMT, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carol Portwine
- Department of Pediatrics, Division of Hematology and Oncology, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Margarida Simao Rafael
- Department of Pediatrics, Division of Hematology and Oncology, Janeway Children's Health and Rehabilitation Centre, and Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Paul C Moorehead
- Department of Pediatrics, Division of Hematology and Oncology, Janeway Children's Health and Rehabilitation Centre, and Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Amer Shammas
- Department of Diagnostic Imaging, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Reza Vali
- Department of Diagnostic Imaging, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Mateo Farfan
- Department of Pediatrics, Division of Hematology/Oncology/BMT, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Daniel A Morgenstern
- Department of Pediatrics, Division of Hematology & Oncology, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Meredith S Irwin
- Department of Pediatrics, Division of Hematology & Oncology, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Li X, Shi S, Zhou H, Zhao Z, Lu J. Novel [ 18F]-Labeled Meta-Bromobenzylguanidine Derivatives: Potential Positron Emission Tomography Imaging Probes for the Norepinephrine Transporter. Mol Pharm 2021; 18:3811-3819. [PMID: 34519204 DOI: 10.1021/acs.molpharmaceut.1c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To develop novel norepinephrine transporter (NET)-targeting positron emission tomography (PET) probes with optimal pharmacokinetic properties, a series of meta-bromobenzylguanidine derivatives was synthesized. 4-Fluorodiethoxyethane-3-bromobenzylguanidine (compound 12) showed relatively good affinity for the NET (IC50 = 1.00 ± 0.04 μM). The corresponding radiotracer 18F-12 was prepared in high radiochemical purity (>98%) via a three-step method. The in vitro cellular uptake results demonstrated that 18F-12 was specifically taken up by NET-expressing SK-N-SH cells by the uptake-1 mechanism. Biodistribution studies in mice showed that 18F-12 exhibited high cardiac uptake (10.45 ± 0.66 %ID/g at 5 min p.i. and 6.44 ± 0.40 %ID/g at 120 min p.i.), faster liver clearance, and a lower dose of absorbed radiation than [123I]-labeled meta-iodobenzylguanidine ([123I]MIBG). Small animal PET imaging confirmed the high heart-to-background ratio of 18F-12 and the uptake-1 mechanism specific for the NET in rats, indicating its potential as a promising PET radiotracer for cardiac sympathetic nerve imaging.
Collapse
Affiliation(s)
- Xiaoyan Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Department of Isotopes, China Institute of Atomic Energy, Beijing 102413, P. R. China
| | - Shuyu Shi
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hang Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zuoquan Zhao
- Department of Nuclear Medicine, Cardiovascular Institute and FuWai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, P. R. China
| | - Jie Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
8
|
Moody TW, Lee L, Ramos-Alvarez I, Iordanskaia T, Mantey SA, Jensen RT. Bombesin Receptor Family Activation and CNS/Neural Tumors: Review of Evidence Supporting Possible Role for Novel Targeted Therapy. Front Endocrinol (Lausanne) 2021; 12:728088. [PMID: 34539578 PMCID: PMC8441013 DOI: 10.3389/fendo.2021.728088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are increasingly being considered as possible therapeutic targets in cancers. Activation of GPCR on tumors can have prominent growth effects, and GPCRs are frequently over-/ectopically expressed on tumors and thus can be used for targeted therapy. CNS/neural tumors are receiving increasing attention using this approach. Gliomas are the most frequent primary malignant brain/CNS tumor with glioblastoma having a 10-year survival <1%; neuroblastomas are the most common extracranial solid tumor in children with long-term survival<40%, and medulloblastomas are less common, but one subgroup has a 5-year survival <60%. Thus, there is an increased need for more effective treatments of these tumors. The Bombesin-receptor family (BnRs) is one of the GPCRs that are most frequently over/ectopically expressed by common tumors and is receiving particular attention as a possible therapeutic target in several tumors, particularly in prostate, breast, and lung cancer. We review in this paper evidence suggesting why a similar approach in some CNS/neural tumors (gliomas, neuroblastomas, medulloblastomas) should also be considered.
Collapse
Affiliation(s)
- Terry W. Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Training, Office of the Director, Bethesda, MD, United States
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Gastroenterology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tatiana Iordanskaia
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Samuel A. Mantey
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Photopharmacological Applications for Cherenkov Radiation Generated by Clinically Used Radionuclides. Int J Mol Sci 2021; 22:ijms22169010. [PMID: 34445716 PMCID: PMC8396513 DOI: 10.3390/ijms22169010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023] Open
Abstract
Translational photopharmacological applications are limited through irradiation by light showing wavelengths within the bio-optical window. To achieve sufficient tissue penetration, using wavelengths >500 nm is mandatory. Nevertheless, the majority of photopharmacological compounds respond to irradiation with more energetic UV light, which shows only a minor depth of tissue penetration in the µm range. Thus, we became interested in UV light containing Cherenkov radiation (CR) induced as a by-product by clinically employed radionuclides labeling specific tissues. Therefore, CR may be applicable in novel photopharmacological approaches. To provide evidence for the hypothesis, we verified the clinically established radionuclides 68Ga and 90Y but not 18F in clinically used activities to be capable of generating CR in aqueous solutions. We then investigated whether the generated CR was able to photoactivate the caged kinase inhibitor cagedAZD5438 as a photoresponsive model system. Herein, 21% uncaging of the model system cagedAZD5438 occurred by incubation with 90Y, along with a non-specific compound decomposition for 68Ga and partly for 90Y. The findings suggest that the combination of a clinically employed radionuclide with an optimized photoresponsive agent could be beneficial for highly focused photopharmacological therapies.
Collapse
|