1
|
Czibor S, Csatlós Z, Fábián K, Piroska M, Györke T. Volumetric and textural analysis of PET/CT in patients with diffuse large B-cell lymphoma highlights the importance of novel MTVrate feature. Nucl Med Commun 2024; 45:931-937. [PMID: 39102514 PMCID: PMC11460743 DOI: 10.1097/mnm.0000000000001884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVES To investigate the prognostic value of clinical, volumetric, and radiomics-based textural parameters in baseline [ 18 F]FDG-PET/CT scans of diffuse large B-cell lymphoma (DLBCL) patients. METHODS We retrospectively investigated baseline PET/CT scans and collected clinical data of fifty DLBCL patients. PET images were segmented semiautomatically to determine metabolic tumor volume (MTV), then the largest segmented lymphoma volume of interest (VOI) was used to extract first-, second-, and high-order textural features. A novel value, MTVrate was introduced as the quotient of the largest lesion's volume and total body MTV. Receiver operating characteristics (ROC) analyses were performed and 24-months progression-free survival (PFS) of low- and high-risk cohorts were compared by log-rank analyses. A machine learning algorithm was used to build a prognostic model from the available clinical, volumetric, and textural data based on logistic regression. RESULTS The area-under-the-curve (AUC) on ROC analysis was the highest of MTVrate at 0.74, followed by lactate-dehydrogenase, MTV, and skewness, with AUCs of 0.68, 0.63, and 0.55, respectively which parameters were also able to differentiate the PFS. A combined survival analysis including MTV and MTVrate identified a subgroup with particularly low PFS at 38%. In the machine learning-based model had an AUC of 0.83 and the highest relative importance was attributed to three textural features and both MTV and MTVrate as important predictors of PFS. CONCLUSION Individual evaluation of different biomarkers yielded only limited prognostic data, whereas a machine learning-based combined analysis had higher effectivity. MTVrate had the highest prognostic ability on individual analysis and, combined with MTV, it identified a patient group with particularly poor prognosis.
Collapse
Affiliation(s)
- Sándor Czibor
- Department of Nuclear Medicine, Medical Imaging Centre, Semmelweis University
| | | | - Krisztián Fábián
- Department of Nuclear Medicine, Medical Imaging Centre, Semmelweis University
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Márton Piroska
- Department of Nuclear Medicine, Medical Imaging Centre, Semmelweis University
| | - Tamás Györke
- Department of Nuclear Medicine, Medical Imaging Centre, Semmelweis University
| |
Collapse
|
2
|
Hasanabadi S, Aghamiri SMR, Abin AA, Abdollahi H, Arabi H, Zaidi H. Enhancing Lymphoma Diagnosis, Treatment, and Follow-Up Using 18F-FDG PET/CT Imaging: Contribution of Artificial Intelligence and Radiomics Analysis. Cancers (Basel) 2024; 16:3511. [PMID: 39456604 PMCID: PMC11505665 DOI: 10.3390/cancers16203511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Lymphoma, encompassing a wide spectrum of immune system malignancies, presents significant complexities in its early detection, management, and prognosis assessment since it can mimic post-infectious/inflammatory diseases. The heterogeneous nature of lymphoma makes it challenging to definitively pinpoint valuable biomarkers for predicting tumor biology and selecting the most effective treatment strategies. Although molecular imaging modalities, such as positron emission tomography/computed tomography (PET/CT), specifically 18F-FDG PET/CT, hold significant importance in the diagnosis of lymphoma, prognostication, and assessment of treatment response, they still face significant challenges. Over the past few years, radiomics and artificial intelligence (AI) have surfaced as valuable tools for detecting subtle features within medical images that may not be easily discerned by visual assessment. The rapid expansion of AI and its application in medicine/radiomics is opening up new opportunities in the nuclear medicine field. Radiomics and AI capabilities seem to hold promise across various clinical scenarios related to lymphoma. Nevertheless, the need for more extensive prospective trials is evident to substantiate their reliability and standardize their applications. This review aims to provide a comprehensive perspective on the current literature regarding the application of AI and radiomics applied/extracted on/from 18F-FDG PET/CT in the management of lymphoma patients.
Collapse
Affiliation(s)
- Setareh Hasanabadi
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran 1983969411, Iran; (S.H.); (S.M.R.A.)
| | - Seyed Mahmud Reza Aghamiri
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran 1983969411, Iran; (S.H.); (S.M.R.A.)
| | - Ahmad Ali Abin
- Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - Hamid Abdollahi
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland;
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland;
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, 500 Odense, Denmark
- University Research and Innovation Center, Óbuda University, 1034 Budapest, Hungary
| |
Collapse
|
3
|
Pellegrino S, Origlia D, Di Donna E, Lamagna M, Della Pepa R, Pane F, Del Vecchio S, Fonti R. Coefficient of variation and texture analysis of 18F-FDG PET/CT images for the prediction of outcome in patients with multiple myeloma. Ann Hematol 2024; 103:3713-3721. [PMID: 39046513 PMCID: PMC11358233 DOI: 10.1007/s00277-024-05905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
In multiple myeloma (MM) bone marrow infiltration by monoclonal plasma cells can occur in both focal and diffuse manner, making staging and prognosis rather difficult. The aim of our study was to test whether texture analysis of 18 F-2-deoxy-d-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) images can predict survival in MM patients. Forty-six patients underwent 18 F-FDG-PET/CT before treatment. We used an automated contouring program for segmenting the hottest focal lesion (FL) and a lumbar vertebra for assessing diffuse bone marrow involvement (DI). Maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean) and texture features such as Coefficient of variation (CoV), were obtained from 46 FL and 46 DI. After a mean follow-up of 51 months, 24 patients died of myeloma and were compared to the 22 survivors. At univariate analysis, FL SUVmax (p = 0.0453), FL SUVmean (p = 0.0463), FL CoV (p = 0.0211) and DI SUVmax (p = 0.0538) predicted overall survival (OS). At multivariate analysis only FL CoV and DI SUVmax were retained in the model (p = 0.0154). By Kaplan-Meier method and log-rank testing, patients with FL CoV below the cut-off had significantly better OS than those with FL CoV above the cut-off (p = 0.0003), as well as patients with DI SUVmax below the threshold versus those with DI SUVmax above the threshold (p = 0.0006). Combining FL CoV and DI SUVmax by using their respective cut-off values, a statistically significant difference was found between the resulting four survival curves (p = 0.0001). Indeed, patients with both FL CoV and DI SUVmax below their respective cut-off values showed the best prognosis. Conventional and texture parameters derived from 18F-FDG PET/CT analysis can predict survival in MM patients by assessing the heterogeneity and aggressiveness of both focal and diffuse infiltration.
Collapse
Affiliation(s)
- Sara Pellegrino
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Davide Origlia
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Erica Di Donna
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Martina Lamagna
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Roberta Della Pepa
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Fabrizio Pane
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Rosa Fonti
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.
| |
Collapse
|
4
|
Chen M, Rong J, Zhao J, Teng Y, Jiang C, Chen J, Xu J. PET-based radiomic feature based on the cross-combination method for predicting the mid-term efficacy and prognosis in high-risk diffuse large B-cell lymphoma patients. Front Oncol 2024; 14:1394450. [PMID: 38903712 PMCID: PMC11188321 DOI: 10.3389/fonc.2024.1394450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Objectives This study aims to develop 7×7 machine-learning cross-combinatorial methods for selecting and classifying radiomic features used to construct Radiomics Score (RadScore) of predicting the mid-term efficacy and prognosis in high-risk patients with diffuse large B-cell lymphoma (DLBCL). Methods Retrospectively, we recruited 177 high-risk DLBCL patients from two medical centers between October 2012 and September 2022 and randomly divided them into a training cohort (n=123) and a validation cohort (n=54). We finally extracted 110 radiomic features along with SUVmax, MTV, and TLG from the baseline PET. The 49 features selection-classification pairs were used to obtain the optimal LASSO-LASSO model with 11 key radiomic features for RadScore. Logistic regression was employed to identify independent RadScore, clinical and PET factors. These models were evaluated using receiver operating characteristic (ROC) curves and calibration curves. Decision curve analysis (DCA) was conducted to assess the predictive power of the models. The prognostic power of RadScore was assessed using cox regression (COX) and Kaplan-Meier plots (KM). Results 177 patients (mean age, 63 ± 13 years,129 men) were evaluated. Multivariate analyses showed that gender (OR,2.760; 95%CI:1.196,6.368); p=0.017), B symptoms (OR,4.065; 95%CI:1.837,8.955; p=0.001), SUVmax (OR,2.619; 95%CI:1.107,6.194; p=0.028), and RadScore (OR,7.167; 95%CI:2.815,18.248; p<0.001) independently contributed to the risk factors for predicting mid-term outcome. The AUC values of the combined models in the training and validation groups were 0.846 and 0.724 respectively, outperformed the clinical model (0.714;0.556), PET based model (0.664; 0.589), NCCN-IPI model (0.523;0.406) and IPI model (0.510;0.412) in predicting mid-term treatment outcome. DCA showed that the combined model incorporating RadScore, clinical risk factors, and PET metabolic metrics has optimal net clinical benefit. COX indicated that the high RadScore group had worse prognosis and survival in progression-free survival (PFS) (HR, 2.1737,95%CI: 1.2983, 3.6392) and overall survival (OS) (HR,2.1356,95%CI: 1.2561, 3.6309) compared to the low RadScore group. KM survival analysis also showed the same prognosis prediction as Cox results. Conclusion The combined model incorporating RadScore, sex, B symptoms and SUVmax demonstrates a significant enhancement in predicting medium-term efficacy and prognosis in high-risk DLBCL patients. RadScore using 7×7 machine learning cross-combinatorial methods for selection and classification holds promise as a potential method for evaluating medium-term treatment outcome and prognosis in high-risk DLBCL patients.
Collapse
Affiliation(s)
- Man Chen
- Department of Hematology, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jian Rong
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jincheng Zhao
- Department of Hematology, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Teng
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chong Jiang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Chen
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Jiang H, Tian M. Cancer. TRANSPATHOLOGY 2024:297-305. [DOI: 10.1016/b978-0-323-95223-1.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Cha SH, Kang KW, Han NY, Cho Y, Sung DJ, Park BJ, Kim MJ, Sim KC, Han YE, Sung HJ. Development and validation of CT‑based radiomics model of PET-negative residual CT masses: a potential biomarker for predicting relapse‑free survival in non-Hodgkin lymphoma patients showing complete metabolic response. Abdom Radiol (NY) 2024; 49:341-353. [PMID: 37884749 DOI: 10.1007/s00261-023-04083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE PET-negative residual CT masses (PnRCMs) are usually dismissed as nonviable post-treatment lesions in non-Hodgkin lymphoma (NHL) patients showing complete metabolic response (CMR). We aimed to develop and validate computed tomography (CT)-based radiomics model of PET-negative residual CT mass (PnRCM) for predicting relapse-free survival (RFS) in NHL patients showing CMR. METHODS A total of 224 patients who showed CMR after completing first-line chemotherapy for PET-avid NHL were recruited for model development. Patients with PnRCM were selected in accordance with the Lugano classification. Three-dimensional segmentation was done by two readers. Radiomic scores (RS) were constructed using features extracted using the Least-absolute shrinkage and selection operator analysis among radiomics features of PnRCMs showing more than substantial interobserver agreement (> 0.6). Cox regression analysis was performed with clinical and radiologic features. The performance of the model was evaluated using area under the curve (AUC). For validation, 153 patients from an outside hospital were recruited and analyzed in the same way. RESULTS In the model development cohort, 68 (30.4%) patients had PnRCM. Kaplan-Meier analysis showed that patients with PnRCM had significantly (p = 0.005) shorter RFS than those without PnRCM. In Kaplan-Meier analysis, the high RS group showed significantly (p = 0.038) shorter RFS than the low-scoring group. Multivariate Cox regression analysis showed that high IPI score [hazard ratio (HR) 2.46; p = 0.02], treatment without rituximab (HR 3.821; p = 0.019) were factors associated with shorter RFS. In estimating RFS, combined model in both development and validation cohort showed AUC values of 0.81. CONCLUSION The combined model that incorporated both clinical parameters and CT-based RS showed good performance in predicting relapse in NHL patients with PnRCM.
Collapse
Affiliation(s)
- Seung Ha Cha
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ka-Won Kang
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-Gu, Seoul, Republic of Korea
| | - Na Yeon Han
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Yongwon Cho
- Department of Radiology and AI Center, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - Deuk Jae Sung
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Beom Jin Park
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min Ju Kim
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ki Choon Sim
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yeo Eun Han
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hwa Jung Sung
- Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Nakajo M, Jinguji M, Ito S, Tani A, Hirahara M, Yoshiura T. Clinical application of 18F-fluorodeoxyglucose positron emission tomography/computed tomography radiomics-based machine learning analyses in the field of oncology. Jpn J Radiol 2024; 42:28-55. [PMID: 37526865 PMCID: PMC10764437 DOI: 10.1007/s11604-023-01476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Machine learning (ML) analyses using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) radiomics features have been applied in the field of oncology. The current review aimed to summarize the current clinical articles about 18F-FDG PET/CT radiomics-based ML analyses to solve issues in classifying or constructing prediction models for several types of tumors. In these studies, lung and mediastinal tumors were the most commonly evaluated lesions, followed by lymphatic, abdominal, head and neck, breast, gynecological, and other types of tumors. Previous studies have commonly shown that 18F-FDG PET radiomics-based ML analysis has good performance in differentiating benign from malignant tumors, predicting tumor characteristics and stage, therapeutic response, and prognosis by examining significant differences in the area under the receiver operating characteristic curves, accuracies, or concordance indices (> 0.70). However, these studies have reported several ML algorithms. Moreover, different ML models have been applied for the same purpose. Thus, various procedures were used in 18F-FDG PET/CT radiomics-based ML analysis in oncology, and 18F-FDG PET/CT radiomics-based ML models, which are easy and universally applied in clinical practice, would be expected to be established.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Megumi Jinguji
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Soichiro Ito
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Atushi Tani
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Mitsuho Hirahara
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
8
|
Samimi R, Shiri I, Ahmadyar Y, van den Hoff J, Kamali-Asl A, Rezaee A, Yousefirizi F, Geramifar P, Rahmim A. Radiomics predictive modeling from dual-time-point FDG PET K i parametric maps: application to chemotherapy response in lymphoma. EJNMMI Res 2023; 13:70. [PMID: 37493872 PMCID: PMC10371962 DOI: 10.1186/s13550-023-01022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND To investigate the use of dynamic radiomics features derived from dual-time-point (DTP-feature) [18F]FDG PET metabolic uptake rate Ki parametric maps to develop a predictive model for response to chemotherapy in lymphoma patients. METHODS We analyzed 126 lesions from 45 lymphoma patients (responding n = 75 and non-responding n = 51) treated with chemotherapy from two different centers. Static and DTP radiomics features were extracted from baseline static PET images and DTP Ki parametric maps. Spearman's rank correlations were calculated between static and DTP features to identify features with potential additional information. We first employed univariate analysis to determine correlations between individual features, and subsequently utilized multivariate analysis to derive predictive models utilizing DTP and static radiomics features before and after ComBat harmonization. For multivariate modeling, we utilized both the minimum redundancy maximum relevance feature selection technique and the XGBoost classifier. To evaluate our model, we partitioned the patient datasets into training/validation and testing sets using an 80/20% split. Different metrics for classification including area under the curve (AUC), sensitivity (SEN), specificity (SPE), and accuracy (ACC) were reported in test sets. RESULTS Via Spearman's rank correlations, there was negligible to moderate correlation between 32 out of 65 DTP features and some static features (ρ < 0.7); all the other 33 features showed high correlations (ρ ≥ 0.7). In univariate modeling, no significant difference between AUC of DTP and static features was observed. GLRLM_RLNU from static features demonstrated a strong correlation (AUC = 0.75, p value = 0.0001, q value = 0.0007) with therapy response. The most predictive DTP features were GLCM_Energy, GLCM_Entropy, and Uniformity, each with AUC = 0.73, p value = 0.0001, and q value < 0.0005. In multivariate analysis, the mean ranges of AUCs increased following harmonization. Use of harmonization plus combining DTP and static features was shown to provide significantly improved predictions (AUC = 0.97 ± 0.02, accuracy = 0.89 ± 0.05, sensitivity = 0.92 ± 0.09, and specificity = 0.88 ± 0.05). All models depicted significant performance in terms of AUC, ACC, SEN, and SPE (p < 0.05, Mann-Whitney test). CONCLUSIONS Our results demonstrate significant value in harmonization of radiomics features as well as combining DTP and static radiomics models for predicting response to chemotherapy in lymphoma patients.
Collapse
Affiliation(s)
- Rezvan Samimi
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Yashar Ahmadyar
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
| | - Jörg van den Hoff
- PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Alireza Kamali-Asl
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran.
| | | | - Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Mishra A, Ravina M, Kote R, Kumar A, Kashyap Y, Dasgupta S, Reddy M. Role of Textural Analysis of Pretreatment 18F Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Response Prediction in Esophageal Carcinoma Patients. Indian J Nucl Med 2023; 38:255-263. [PMID: 38046976 PMCID: PMC10693362 DOI: 10.4103/ijnm.ijnm_1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/30/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Positron emission tomography/computed tomography (PET/CT) is routinely used for staging, response assessment, and surveillance in esophageal carcinoma patients. The aim of this study was to investigate whether textural features of pretreatment 18F-fluorodeoxyglucose (18F-FDG) PET/CT images can contribute to prognosis prediction in carcinoma oesophagus patients. Materials and Methods This is a retrospective study of 30 diagnosed carcinoma esophagus patients. These patients underwent pretreatment 18F-FDG PET/CT for staging. The images were processed in a commercially available textural analysis software. Region of interest was drawn over primary tumor with a 40% threshold and was processed further to derive 92 textural and radiomic parameters. These parameters were then compared between progression group and nonprogression group. The original dataset was subject separately to receiver operating curve analysis. Receiver operating characteristic (ROC) curves were used to identify the cutoff values for textural features with a P < 0.05 for statistical significance. Feature selection was done with principal component analysis. The selected features of each evaluator were subject to 4 machine-learning algorithms. The highest area under the curve (AUC) values was selected for 10 features. Results A retrospective study of 30 primary carcinoma esophagus patients was done. Patients were followed up after chemo-radiotherapy and they underwent follow-up PET/CT. On the basis of their response, patients were divided into progression group and nonprogression group. Among them, 15 patients showed disease progression and 15 patients were in the nonprogression group. Ten textural analysis parameters turned out to be significant in the prediction of disease progression. Cutoff values were calculated for these parameters according to the ROC curves, GLZLM_long zone emphasis (Gray Level Zone Length Matrix)_long zone emphasis (44.9), GLZLM_low gray level zone emphasis (0.006), GLZLM_short zone low gray level emphasis (0.0032), GLZLM_long zone low gray level emphasis (0.185), GLRLM_long run emphasis (Gray Level Run Length Matrix) (1.31), GLRLM_low gray level run emphasis (0.0058), GLRLM_short run low gray level emphasis (0.005496), GLRLM_long run low gray level emphasis (0.00727), NGLDM_Busyness (Neighborhood Gray Level Difference Matrix) (0.75), and gray level co-occurrence matrix_homogeneity (0.37). Feature selection by principal components analysis and feature classification by the K-nearest neighbor machine-learning model using independent training and test samples yielded the overall highest AUC. Conclusions Textural analysis parameters could provide prognostic information in carcinoma esophagus patients. Larger multicenter studies are needed for better clinical prognostication of these parameters.
Collapse
Affiliation(s)
- Ajit Mishra
- Department of Surgical Gastroenterology, DKS Multispeciality Hospital, Raipur, India
| | - Mudalsha Ravina
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Raipur, India
| | - Rutuja Kote
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Raipur, India
| | - Amit Kumar
- Department of Medical Oncology, All India Institute of Medical Sciences, Raipur, India
| | - Yashwant Kashyap
- Department of Medical Oncology, All India Institute of Medical Sciences, Raipur, India
| | - Subhajit Dasgupta
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Raipur, India
| | - Moulish Reddy
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Raipur, India
| |
Collapse
|
10
|
Zanoni L, Bezzi D, Nanni C, Paccagnella A, Farina A, Broccoli A, Casadei B, Zinzani PL, Fanti S. PET/CT in Non-Hodgkin Lymphoma: An Update. Semin Nucl Med 2023; 53:320-351. [PMID: 36522191 DOI: 10.1053/j.semnuclmed.2022.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022]
Abstract
Non-Hodgkin lymphomas represents a heterogeneous group of lymphoproliferative disorders characterized by different clinical courses, varying from indolent to highly aggressive. 18F-FDG-PET/CT is the current state-of-the-art diagnostic imaging, for the staging, restaging and evaluation of response to treatment in lymphomas with avidity for 18F-FDG, despite it is not routinely recommended for surveillance. PET-based response criteria (using five-point Deauville Score) are nowadays uniformly applied in FDG-avid lymphomas. In this review, a comprehensive overview of the role of 18F-FDG-PET in Non-Hodgkin lymphomas is provided, at each relevant point of patient management, particularly focusing on recent advances on diffuse large B-cell lymphoma and follicular lymphoma, with brief updates also on other histotypes (such as marginal zone, mantle cell, primary mediastinal- B cell lymphoma and T cell lymphoma). PET-derived semiquantitative factors useful for patient stratification and prognostication and emerging radiomics research are also presented.
Collapse
Affiliation(s)
- Lucia Zanoni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Davide Bezzi
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Paccagnella
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy; Nuclear Medicine Unit, AUSL Romagna, Cesena, Italy
| | - Arianna Farina
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Alessandro Broccoli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Veziroglu EM, Farhadi F, Hasani N, Nikpanah M, Roschewski M, Summers RM, Saboury B. Role of Artificial Intelligence in PET/CT Imaging for Management of Lymphoma. Semin Nucl Med 2023; 53:426-448. [PMID: 36870800 DOI: 10.1053/j.semnuclmed.2022.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 03/06/2023]
Abstract
Our review shows that AI-based analysis of lymphoma whole-body FDG-PET/CT can inform all phases of clinical management including staging, prognostication, treatment planning, and treatment response evaluation. We highlight advancements in the role of neural networks for performing automated image segmentation to calculate PET-based imaging biomarkers such as the total metabolic tumor volume (TMTV). AI-based image segmentation methods are at levels where they can be semi-automatically implemented with minimal human inputs and nearing the level of a second-opinion radiologist. Advances in automated segmentation methods are particularly apparent in the discrimination of lymphomatous vs non-lymphomatous FDG-avid regions, which carries through to automated staging. Automated TMTV calculators, in addition to automated calculation of measures such as Dmax are informing robust models of progression-free survival which can then feed into improved treatment planning.
Collapse
Affiliation(s)
| | - Faraz Farhadi
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD; Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Navid Hasani
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Moozhan Nikpanah
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD; Department of Radiology, University of Alabama at Birmingham, AL
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Ronald M Summers
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD; Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD
| | - Babak Saboury
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
12
|
Ortega C, Eshet Y, Prica A, Anconina R, Johnson S, Constantini D, Keshavarzi S, Kulanthaivelu R, Metser U, Veit-Haibach P. Combination of FDG PET/CT Radiomics and Clinical Parameters for Outcome Prediction in Patients with Hodgkin’s Lymphoma. Cancers (Basel) 2023; 15:cancers15072056. [PMID: 37046717 PMCID: PMC10093084 DOI: 10.3390/cancers15072056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose: The aim of the study is to evaluate the prognostic value of a joint evaluation of PET and CT radiomics combined with standard clinical parameters in patients with HL. Methods: Overall, 88 patients (42 female and 46 male) with a median age of 43.3 (range 21–85 years) were included. Textural analysis of the PET/CT images was performed using freely available software (LIFE X). 65 radiomic features (RF) were evaluated. Univariate and multivariate models were used to determine the value of clinical characteristics and FDG PET/CT radiomics in outcome prediction. In addition, a binary logistic regression model was used to determine potential predictors for radiotherapy treatment and odds ratios (OR), with 95% confidence intervals (CI) reported. Features relevant to survival outcomes were assessed using Cox proportional hazards to calculate hazard ratios with 95% CI. Results: albumin (p = 0.034) + ALP (p = 0.028) + CT radiomic feature GLRLM GLNU mean (p = 0.012) (Area under the curve (AUC): 95% CI (86.9; 100.0)—Brier score: 3.9, 95% CI (0.1; 7.8) remained significant independent predictors for PFS outcome. PET-SHAPE Sphericity (p = 0.033); CT grey-level zone length matrix with high gray-level zone emphasis (GLZLM SZHGE mean (p = 0.028)); PARAMS XSpatial Resampling (p = 0.0091) as well as hemoglobin results (p = 0.016) remained as independent factors in the final model for a binary outcome as predictors of the need for radiotherapy (AUC = 0.79). Conclusion: We evaluated the value of baseline clinical parameters as well as combined PET and CT radiomics in HL patients for survival and the prediction of the need for radiotherapy treatment. We found that different combinations of all three factors/features were independently predictive of the here evaluated endpoints.
Collapse
|
13
|
Kotsyfakis S, Iliaki-Giannakoudaki E, Anagnostopoulos A, Papadokostaki E, Giannakoudakis K, Goumenakis M, Kotsyfakis M. The application of machine learning to imaging in hematological oncology: A scoping review. Front Oncol 2022; 12:1080988. [PMID: 36605438 PMCID: PMC9808781 DOI: 10.3389/fonc.2022.1080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Here, we conducted a scoping review to (i) establish which machine learning (ML) methods have been applied to hematological malignancy imaging; (ii) establish how ML is being applied to hematological cancer radiology; and (iii) identify addressable research gaps. Methods The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews guidelines. The inclusion criteria were (i) pediatric and adult patients with suspected or confirmed hematological malignancy undergoing imaging (population); (ii) any study using ML techniques to derive models using radiological images to apply to the clinical management of these patients (concept); and (iii) original research articles conducted in any setting globally (context). Quality Assessment of Diagnostic Accuracy Studies 2 criteria were used to assess diagnostic and segmentation studies, while the Newcastle-Ottawa scale was used to assess the quality of observational studies. Results Of 53 eligible studies, 33 applied diverse ML techniques to diagnose hematological malignancies or to differentiate them from other diseases, especially discriminating gliomas from primary central nervous system lymphomas (n=18); 11 applied ML to segmentation tasks, while 9 applied ML to prognostication or predicting therapeutic responses, especially for diffuse large B-cell lymphoma. All studies reported discrimination statistics, but no study calculated calibration statistics. Every diagnostic/segmentation study had a high risk of bias due to their case-control design; many studies failed to provide adequate details of the reference standard; and only a few studies used independent validation. Conclusion To deliver validated ML-based models to radiologists managing hematological malignancies, future studies should (i) adhere to standardized, high-quality reporting guidelines such as the Checklist for Artificial Intelligence in Medical Imaging; (ii) validate models in independent cohorts; (ii) standardize volume segmentation methods for segmentation tasks; (iv) establish comprehensive prospective studies that include different tumor grades, comparisons with radiologists, optimal imaging modalities, sequences, and planes; (v) include side-by-side comparisons of different methods; and (vi) include low- and middle-income countries in multicentric studies to enhance generalizability and reduce inequity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michail Kotsyfakis
- Biology Center of the Czech Academy of Sciences, Budweis (Ceske Budejovice), Czechia
| |
Collapse
|
14
|
Deng H, Zhou Y, Lu W, Chen W, Yuan Y, Li L, Shu H, Zhang P, Ye X. Development and validation of nomograms by radiomic features on ultrasound imaging for predicting overall survival in patients with primary nodal diffuse large B-cell lymphoma. Front Oncol 2022; 12:991948. [PMID: 36568168 PMCID: PMC9768489 DOI: 10.3389/fonc.2022.991948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives To develop and validate a nomogram to predict the overall survival (OS) of patients with primary nodal diffuse large B-cell lymphoma(N-DLBCL) based on radiomic features and clinical features. Materials and methods A retrospective analysis was performed on 145 patients confirmed with N-DLBCL and they were randomly assigned to training set(n=78), internal validation set(n=33), external validation set(n=34). First, a clinical model (model 1) was established according to clinical features and ultrasound (US) results. Then, based on the radiomics features extracted from conventional ultrasound images, a radiomic signature was constructed (model 2), and the radiomics score (Rad-Score) was calculated. Finally, a comprehensive model was established (model 3) combined with Rad-score and clinical features. Receiver operating characteristic (ROC) curves were employed to evaluate the performance of model 1, model 2 and model 3. Based on model 3, we plotted a nomogram. Calibration curves were used to test the effectiveness of the nomogram, and decision curve analysis (DCA) was used to asset the nomogram in clinical use. Results According to multivariate analysis, 3 clinical features and Rad-score were finally selected to construct the model 3, which showed better predictive value for OS in patients with N-DLBCL than mode 1 and model 2 in training (AUC,0. 891 vs. 0.779 vs.0.756), internal validation (AUC, 0.868 vs. 0.713, vs.0.756) and external validation (AUC, 914 vs. 0.866, vs.0.789) sets. Decision curve analysis demonstrated that the nomogram based on model 3 was more clinically useful than the other two models. Conclusion The developed nomogram is a useful tool for precisely analyzing the prognosis of N-DLBCL patients, which could help clinicians in making personalized survival predictions and assessing individualized clinical options.
Collapse
Affiliation(s)
- Hongyan Deng
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yasu Zhou
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjuan Lu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenqin Chen
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya Yuan
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hua Shu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pingyang Zhang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xinhua Ye, ; Pingyang Zhang,
| | - Xinhua Ye
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xinhua Ye, ; Pingyang Zhang,
| |
Collapse
|
15
|
COŞKUN N, YÜKSEL AÖ, CANYİĞİT M, ÖZDEMİR E. Radiomics analysis of pre-treatment F-18 FDG PET/CT for predicting response to transarterial radioembolization in liver tumors. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1118649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aim: To investigate the relationship between the textural features extracted from pre-treatment fluorine-18 fluorodeoxyglucose positron emission with computed tomography (F-18 FDG PET/CT) and the response to treatment in patients undergoing transarterial radioembolization (TARE) due to primary or metastatic liver tumors.
Material and Method: A total of 25 liver lesions from the pre-treatment F-18 PET/CT images of 14 patients were segmented manually. Standard uptake value (SUV) metrics and radiomics features were extracted for each lesion. Metabolic treatment response was determined according to PERCIST criteria in 18F-FDG PET/CT imaging performed 2 months after the treatment. Feature selection was done with recursive feature elimination (RFE). The association between selected features and treatment response was evaluated with logistic regression analysis.
Results: Eventually, 13 lesions responded to TARE, while 12 lesions remain stable or progressed. All standard uptake values and 27 out of 30 textural heterogeneity indicators were significantly higher in lesions that responded to treatment. SUVmax, kurtosis and dissimilarity features were selected by the RFE algorithm for the prediction of response to TARE. Logistic regression analysis revealed that all three parameters were significantly associated with treatment outcome.
Conclusion: Textural features extracted from pre-treatment F-18 FDG PET/CT in patients undergoing TARE due to liver tumors are promising biomarkers that can be potentially used to predict metabolic treatment response.
Collapse
Affiliation(s)
- Nazım COŞKUN
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, ANKARA ŞEHİR SAĞLIK UYGULAMA VE ARAŞTIRMA MERKEZİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ
| | - Alptuğ Özer YÜKSEL
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, ANKARA ŞEHİR SAĞLIK UYGULAMA VE ARAŞTIRMA MERKEZİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, NÜKLEER TIP ANABİLİM DALI
| | - Murat CANYİĞİT
- YILDIRIM BEYAZIT ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, RADYOLOJİ ANABİLİM DALI
| | - Elif ÖZDEMİR
- YILDIRIM BEYAZIT ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, NÜKLEER TIP ANABİLİM DALI
| |
Collapse
|
16
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 2, Infradiaphragmatic Cancers, Blood Malignancies, Melanoma and Musculoskeletal Cancers. Diagnostics (Basel) 2022; 12:diagnostics12061330. [PMID: 35741139 PMCID: PMC9222024 DOI: 10.3390/diagnostics12061330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of this review was to summarize published radiomics studies dealing with infradiaphragmatic cancers, blood malignancies, melanoma, and musculoskeletal cancers, and assess their quality. PubMed database was searched from January 1990 to February 2022 for articles performing radiomics on PET imaging of at least 1 specified tumor type. Exclusion criteria includd: non-oncological studies; supradiaphragmatic tumors; reviews, comments, cases reports; phantom or animal studies; technical articles without a clinically oriented question; studies including <30 patients in the training cohort. The review database contained PMID, first author, year of publication, cancer type, number of patients, study design, independent validation cohort and objective. This database was completed twice by the same person; discrepant results were resolved by a third reading of the articles. A total of 162 studies met inclusion criteria; 61 (37.7%) studies included >100 patients, 13 (8.0%) were prospective and 61 (37.7%) used an independent validation set. The most represented cancers were esophagus, lymphoma, and cervical cancer (n = 24, n = 24 and n = 19 articles, respectively). Most studies focused on 18F-FDG, and prognostic and response to treatment objectives. Although radiomics and artificial intelligence are technically challenging, new contributions and guidelines help improving research quality over the years and pave the way toward personalized medicine.
Collapse
Affiliation(s)
- David Morland
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence:
| | - Elizabeth Katherine Anna Triumbari
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
17
|
Jiang H, Li A, Ji Z, Tian M, Zhang H. Role of Radiomics-Based Baseline PET/CT Imaging in Lymphoma: Diagnosis, Prognosis, and Response Assessment. Mol Imaging Biol 2022; 24:537-549. [PMID: 35031945 DOI: 10.1007/s11307-022-01703-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Radiomic analysis provides information on the underlying tumour heterogeneity in lymphoma, reflecting the real-time evolution of malignancy. 2-Deoxy-2-[18F] fluoro-D-glucose positron emission tomography ([18F] FDG PET/CT) imaging is recommended before, during, and at the end of treatment for almost all lymphoma patients. This methodology offers high specificity and sensitivity, which can aid in accurate staging and assist in prompt treatment. Pretreatment [18F] FDG PET/CT-based radiomics facilitates improved diagnostic ability, guides individual treatment regimens, and boosts outcome prognosis based on heterogeneity as well as the biological, pathological, and metabolic status of the lymphoma. This technique has attracted considerable attention given its numerous applications in medicine. In the current review, we will briefly describe the basic radiomics workflow and types of radiomic features. Details of current applications of baseline [18F] FDG PET/CT-based radiomics in lymphoma will be discussed, such as differential diagnosis from other primary malignancies, diagnosis of bone marrow involvement, and response and prognostic prediction. We will also describe how this technique provides a unique noninvasive platform to assess tumour heterogeneity. Newly emerging PET radiotracers and multimodality technology will improve diagnostic specificity and further clarify tumor biology and even genetic variations in lymphoma, potentially promoting the development of precision medicine.
Collapse
Affiliation(s)
- Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ang Li
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhongyou Ji
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 8 Hangzhou, Hangzhou, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 8 Hangzhou, Hangzhou, China. .,College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|