1
|
Mahmoudjanlou H, Saberpour M, Bakhshi B. Antimicrobial, anti-adhesive, and anti-invasive effects of condition media derived from adipose mesenchymal stem cells against Shigella flexneri. Arch Microbiol 2024; 206:142. [PMID: 38441673 DOI: 10.1007/s00203-024-03860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 03/07/2024]
Abstract
The objective of the current study was to examine the antimicrobial, anti-adhesion, and anti-invasion properties of various concentrations of condition media obtained from adipose mesenchymal stem cells (AD-MSCs CM) against Shigella flexneri (S. flexneri). AD-MSCs characterization and antimicrobial assay were performed using flow cytometry and microdilution by colony counting, respectively. For evaluating adhesion and invasion, Caco-2 cells were infected by S. flexneri at three different multiplicities of infection (MOIs of 1, 10, and 50) and then treated with DMEM medium and AD-MSCs CM. The inhibitory effect of AD-MSCs CM was assessed after 24 and 48 h of treatment by CFU (colony-forming unit) counting. A total of 84, 65, and 56% reduction in the adhesion rate of S. flexneri to Caco-2 cells treated with AD-MSCs CM were observed at MOIs of 1, 10, and 50, respectively. While S. flexneri at MOI:1 had no invasive effect on Caco-2 cells, convincing invasion was detected at MOIs of 10 and 50, showing a significant decrease following treatment with AD-MSCs CM. The current study results open new insights into AD-MSCs CM as a new non-antibiotic therapeutic candidate for S. flexneri infections.
Collapse
Affiliation(s)
- Hodiseh Mahmoudjanlou
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116, Iran
| | - Masoumeh Saberpour
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116, Iran.
| |
Collapse
|
2
|
Robinson AM, Stavely R, Miller S, Eri R, Nurgali K. Mesenchymal stem cell treatment for enteric neuropathy in the Winnie mouse model of spontaneous chronic colitis. Cell Tissue Res 2022; 389:41-70. [PMID: 35536444 DOI: 10.1007/s00441-022-03633-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic gut inflammation with periods of acute flares and remission. Beneficial effects of a single dose of mesenchymal stem cell (MSC)-based treatment have been demonstrated in acute models of colitis. No studies investigated therapeutic effects of MSCs for the attenuation of enteric neuropathy in a chronic model of colitis. The short and long-term effects of MSC treatment in modulating inflammation and damage to the enteric nervous system (ENS) were studied in the Winnie mouse model of spontaneous chronic colitis highly representative of human IBD. Winnie mice received a single dose of either 1 × 106 human bone marrow-derived MSCs or 100µL PBS by intracolonic enema. C57BL/6 mice received 100µL PBS. Colon tissues were collected at 3 and 60 days post MSC administration to evaluate the short-term and long-term effects of MSCs on inflammation and enteric neuropathy by histological and immunohistochemical analyses. In a separate set of experiments, multiple treatments with 4 × 106 and 2 × 106 MSCs were performed and tissue collected at 3 days post treatment. Chronic intestinal inflammation in Winnie mice was associated with persistent diarrhea, perianal bleeding, morphological changes, and immune cell infiltration in the colon. Significant changes to the ENS, including impairment of cholinergic, noradrenergic and sensory innervation, and myenteric neuronal loss were prominent in Winnie mice. Treatment with a single dose of bone marrow-derived MSCs was ineffective in attenuating chronic inflammation and enteric neuropathy in Winnie.
Collapse
Affiliation(s)
- Ainsley M Robinson
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sarah Miller
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rajaraman Eri
- University of Tasmania, School of Health Sciences, Launceston, TAS, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia. .,Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia. .,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia.
| |
Collapse
|
3
|
MSC-Derived Exosome Promotes M2 Polarization and Enhances Cutaneous Wound Healing. Stem Cells Int 2019; 2019:7132708. [PMID: 31582986 PMCID: PMC6754952 DOI: 10.1155/2019/7132708] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/09/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell transplantation (MSCT) promotes cutaneous wound healing. Numerous studies have shown that the therapeutic effects of MSCT appear to be mediated by paracrine signaling. However, the cell-cell interaction during MSCT between MSCs and macrophages in the region of cutaneous wound healing is still unknown. In this study, early depletion of macrophages delayed the wound repair with MSC injection, which suggested that MSC-mediated wound healing required macrophages. Moreover, we demonstrated that systemically infused bone marrow MSCs (BMMSCs) and jaw bone marrow MSCs (JMMSCs) could translocate to the wound site, promote macrophages toward M2 polarization, and enhance wound healing. In vitro coculture of MSCs with macrophages enhanced their M2 polarization. Mechanistically, we found that exosomes derived from MSCs induced macrophage polarization and depletion of exosomes of MSCs reduced the M2 phenotype of macrophages. Infusing MSCs without exosomes led to lower number of M2 macrophages at the wound site along with delayed wound repair. We further showed that the miR-223, derived from exosomes of MSCs, regulated macrophage polarization by targeting pknox1. These findings provided the evidence that MSCT elicits M2 polarization of macrophages and may accelerate wound healing by transferring exosome-derived microRNA.
Collapse
|
4
|
Romano B, Lleo A, Sala E, D’Amico G, Marino DI, Ciccocioppo R, Vetrano S. Mesenchymal Stem Cells to Treat Digestive System Disorders: Progress Made and Future Directions. CURRENT TRANSPLANTATION REPORTS 2019; 6:134-145. [DOI: 10.1007/s40472-019-00238-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Quirós M, Nusrat A. Contribution of Wound-Associated Cells and Mediators in Orchestrating Gastrointestinal Mucosal Wound Repair. Annu Rev Physiol 2019; 81:189-209. [PMID: 30354933 PMCID: PMC7871200 DOI: 10.1146/annurev-physiol-020518-114504] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastrointestinal mucosa, structurally formed by the epithelium and lamina propria, serves as a selective barrier that separates luminal contents from the underlying tissues. Gastrointestinal mucosal wound repair is orchestrated by a series of spatial and temporal events that involve the epithelium, recruited immune cells, resident stromal cells, and the microbiota present in the wound bed. Upon injury, repair of the gastrointestinal barrier is mediated by collective migration, proliferation, and subsequent differentiation of epithelial cells. Epithelial repair is intimately regulated by a number of wound-associated cells that include immune cells and stromal cells in addition to mediators released by luminal microbiota. The highly regulated interaction of these cell types is perturbed in chronic inflammatory diseases that are associated with impaired wound healing. An improved understanding of prorepair mechanisms in the gastrointestinal mucosa will aid in the development of novel therapeutics that promote mucosal healing and reestablish the critical epithelial barrier function.
Collapse
Affiliation(s)
- Miguel Quirós
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| |
Collapse
|
6
|
Yadak R, Breur M, Bugiani M. Gastrointestinal Dysmotility in MNGIE: from thymidine phosphorylase enzyme deficiency to altered interstitial cells of Cajal. Orphanet J Rare Dis 2019; 14:33. [PMID: 30736844 PMCID: PMC6368792 DOI: 10.1186/s13023-019-1016-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
Background MNGIE is a rare and fatal disease in which absence of the enzyme thymidine phosphorylase induces systemic accumulation of thymidine and deoxyuridine and secondary mitochondrial DNA alterations. Gastrointestinal (GI) symptoms are frequently reported in MNGIE patients, however, they are not resolved with the current treatment interventions. Recently, our understanding of the GI pathology has increased, which rationalizes the pursuit of more targeted therapeutic strategies. In particular, interstitial cells of Cajal (ICC) play key roles in GI physiology and are involved in the pathogenesis of the GI dysmotility. However, understanding of the triggers of ICC deficits in MNGIE is lacking. Herein, we review the current knowledge about the pathology of GI dysmotility in MNGIE, discuss potential mechanisms in relation to ICC loss/dysfunction, remark on the limited contribution of the current treatments, and propose intervention strategies to overcome ICC deficits. Finally, we address the advances and new research avenues offered by organoids and tissue engineering technologies, and propose schemes to implement to further our understanding of the GI pathology and utility in regenerative and personalized medicine in MNGIE. Conclusion Interstitial cells of Cajal play key roles in the physiology of the gastrointestinal motility. Evaluation of their status in the GI dysmotility related to MNGIE would be valuable for diagnosis of MNGIE. Understanding the underlying pathological and molecular mechanisms affecting ICC is an asset for the development of targeted prevention and treatment strategies for the GI dysmotility related to MNGIE.
Collapse
Affiliation(s)
- Rana Yadak
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Marjolein Breur
- Department of Child Neurology, VU University Medical center, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Xiu G, Sun J, Li X, Jin H, Zhu Y, Zhou X, Liu P, Pan X, Li J, Ling B. The role of HMGB1 in BMSC transplantation for treating MODS in rats. Cell Tissue Res 2018; 373:395-406. [PMID: 29637307 DOI: 10.1007/s00441-018-2823-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 03/06/2018] [Indexed: 02/02/2023]
Abstract
The effect of bone marrow mesenchymal stem cells (BMSCs) in treatment for multiple organ dysfunction syndrome (MODS) remains unknown and the mechanism is still unclear. Therefore, the goal of this study is to investigate the effects of intracellular high mobility group box 1 protein (HMGB1) on BMSCs treating for MODS. The rats were given 15% blood loss plus 1 mg/kg lipopolysaccharide (LPS) via lower extremity superficial venous, then randomly allocated into four groups: sham group, MODS group, MODS plus BMSC group, MODS plus ethyl pyruvate (EP) group, MODS plus BMSCs plus EP group. Twenty-four hours later, rats in groups were sacrificed and then the blood and tissues were collected to evaluate the changes of tissue histopathology, cell apoptosis, inflammation level and organ function. The HGMB1 expression was monitored by RT-qPCR and Western blot. The expression of RAGE/TLR2/TLR4 and NF-κB at the protein levels was also assessed. BMSCs and/or EP exhibits an outstanding protective effect against LPS-induced histopathological injury by improving cell apoptosis, inflammatory response and the organ dysfunction but no effect on BMSC homing to the injury site. Moreover, BMSCs and/or EP inhibited LPS-induced upregulation of HMGB1, RAGE, TLR2 and TLR4 expression at protein levels and compromised p65 phosphorylation in the rat model of MODS. These findings suggest that HMGB1 is involved in BMSC treatment for MODS, through regulation of the TLR2, TLR4-mediated NF-κB signal pathway. It suggests that HMGB1 is an attractive potential target for the development of new therapeutic strategies for MODS.
Collapse
Affiliation(s)
- Guanghui Xiu
- Department of ICU, The Second People's Hospital of Yunnan Province, 176 Qingnian Road, Wuhua District, Kunming, 650021, China
| | - Jie Sun
- Department of ICU, The Second People's Hospital of Yunnan Province, 176 Qingnian Road, Wuhua District, Kunming, 650021, China
| | - Xiuling Li
- Department of Obstetrics, The First People's Hospital of Yunnan Province, Kunming, China
| | - Hua Jin
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yichao Zhu
- Department of Anesthesiology, The affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xia Zhou
- Department of ICU, The Second People's Hospital of Yunnan Province, 176 Qingnian Road, Wuhua District, Kunming, 650021, China
| | - Ping Liu
- Department of ICU, The Second People's Hospital of Yunnan Province, 176 Qingnian Road, Wuhua District, Kunming, 650021, China
| | - Xinghua Pan
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital, Chengdu Military Command, Kunming, China
| | - Jian Li
- Kunming Biological Diversity Regional Center of Instruments, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bin Ling
- Department of ICU, The Second People's Hospital of Yunnan Province, 176 Qingnian Road, Wuhua District, Kunming, 650021, China.
| |
Collapse
|
8
|
Qiu Y, Guo J, Mao R, Chao K, Chen BL, He Y, Zeng ZR, Zhang SH, Chen MH. TLR3 preconditioning enhances the therapeutic efficacy of umbilical cord mesenchymal stem cells in TNBS-induced colitis via the TLR3-Jagged-1-Notch-1 pathway. Mucosal Immunol 2017; 10:727-742. [PMID: 27649928 DOI: 10.1038/mi.2016.78] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 07/19/2016] [Indexed: 02/04/2023]
Abstract
Toll-like receptor-3 (TLR3) priming may enhance mesenchymal stem cell (MSC) immunosuppressive activity, but this mechanism has not been investigated in the context of inflammatory bowel disease. Thus, we assessed the immunosuppressive properties of TLR3-primed MSCs using a trinitrobenzene sulfonate (TNBS)-induced mouse model of colitis. Intraperitoneally injected polyribocytidylic acid (poly (I:C)- (a ligand of TLR3) primed human umbilical cord-derived MSCs (hUC-MSCs) migrated to the inflamed colon and effectively improved clinical and pathological manifestations in colitic mice compared with mice treated with unstimulated hUC-MSCs (UCMs). Poly (I:C)-MSCs decreased a wide range of inflammatory cytokines and increased systemic interleukin-10 (IL-10) levels in colonic tissues. Poly (I:C)-MSCs also impaired T-helper type 1/17 (Th1/17) cell expansion and enhanced the suppressive effects of regulatory T cells (Treg) in vitro and in vivo. Poly (I:C)-MSCs suppressed the proliferation of activated mesenteric lymph node (MLN) cells via the overproduction of prostaglandin E2 (PGE2) and upregulation of Jagged-1. PGE2 produced by hUC-MSCs in response to poly (I:C) increased the production of IL-10 and promoted the differentiation of Treg, which could be reversed by inhibition of Notch-1. Collectively, preconditioning MSCs with poly (I:C) enhanced the therapeutic effects of hUC-MSCs in TNBS-induced colitis, and TLR3-activated Notch-1 signaling regulated the immune suppression of hUC-MSCs through the production of PGE2.
Collapse
Affiliation(s)
- Y Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - J Guo
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - R Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - K Chao
- Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - B-L Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Y He
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Z-R Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - S-H Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - M-H Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Bone marrow mesenchymal stem cells and their conditioned media could potentially ameliorate ovalbumin-induced asthmatic changes. Biomed Pharmacother 2016; 85:28-40. [PMID: 27930984 DOI: 10.1016/j.biopha.2016.11.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/20/2016] [Accepted: 11/27/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The major feature of asthma is governed by chronic airway inflammation. This investigation was proposed to achieve the suitable candidate for ameliorating long-term chronic asthmatic changes of respiratory tract. METHODS 36 rats were classified into healthy (C) and ovalbumin (OVA)-sensitized animals (S). To sensitize, the rats were exposed to OVA over a course of 32±1days. One day after sensitization, equal six different groups were subjected to experimental procedure (n=6); Rats only received intratracheally 50ml PBS (CPT and SPT groups), 50μl conditioned medium (CM) (CST and SST groups) and 50μl PBS containing 2×106 rat bone marrow-derived mesenchymal stem cells (rBMMSCs) (CCT and SCT groups). Two weeks after treatment, tracheal responsiveness, immunologic responses and recruitment of rBMMSCs into the lung as well as pathological changes were evaluated. RESULTS A high degree of tracheal responsiveness, total white blood cell and percentages of eosinophil and neutrophil was significantly recorded in all sensitized groups rather than of controls (p<0.001 to p<0.05). Of interest, all above-mentioned parameters decreased significantly in SST and notably SCT groups as compared to S group (p<0.001 to p<0.05). The results revealed decrease number of blood CD3+CD4+ and concurrent increase in CD3+CD8+ in all sensitized rats as compared to control (p<0.001 to p<0.05). Noticeably, no significant modulatory effects of either cell or CM administration were achieved on the CD3+CD4+ and CD3+CD8+ populations in non-asthmatic rats. Moreover, the number of CD3+CD4+ in SST and SCT groups tended to increase, which coincided with a decreased manner of CD3+CD8+ populations as compared with S group (p<0.001 to p<0.05). However, the CD3+CD4+ cells in SCT rats were significantly higher than the group SST (p<0.01) whereas CD3+CD8+ cells diminished simultaneously (p<0.001). Real-time PCR analysis further showed that both CM and particularly MSCs changed the expression of interleukin (IL)-4 and IL-10 in the asthmatic groups to the near level of control rats (p<0.001 to p<0.05). Histopathological analysis revealed a profound reduction of lungs injuries in asthmatic rats when received CM and peculiarly mesenchymal stem cells (p<0.01 to p<0.05). CONCLUSION Our study shed light on the superior effects of rBMMSCs, rather than CM, in attenuating of chronic asthmatic changes in the rat model.
Collapse
|
10
|
Dothel G, Raschi E, Rimondini R, De Ponti F. Mesenchymal stromal cell-based therapy: Regulatory and translational aspects in gastroenterology. World J Gastroenterol 2016; 22:9057-9068. [PMID: 27895395 PMCID: PMC5107589 DOI: 10.3748/wjg.v22.i41.9057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
The past decade has witnessed an outstanding scientific production focused towards the possible clinical applications of mesenchymal stromal cells (MSCs) in autoimmune and chronic inflammatory diseases. This raised the need of novel standards to adequately address quality, efficacy and safety issues of this advanced therapy. The development of a streamlined regulation is currently hampered by the complexity of analyzing dynamic biological entities rather than chemicals. Although numerous pieces of evidence show efficacy in reducing intestinal inflammation, some inconsistencies between the mechanisms of action of rodent vs human MSCs suggest caution before assigning translational value to preclinical studies. Preliminary evidence from clinical trials showed efficacy of MSCs in the treatment of fistulizing Crohn's disease (CD), and preparations of heterologous MSCs for CD treatment are currently tested in ongoing clinical trials. However, safety issues, especially in long-term treatment, still require solid clinical data. In this regard, standardized guidelines for appropriate dosing and methods of infusion could enhance the likelihood to predict more accurately the number of responders and the duration of remission periods. In addition, elucidating MSC mechanisms of action could lead to novel and more reliable formulations such as those derived from the MSCs themselves (e.g., supernatants).
Collapse
|
11
|
Tian J, Li Z, Han Y, Jiang T, Song X, Jiang G. The progress of early growth response factor 1 and leukemia. Intractable Rare Dis Res 2016; 5:76-82. [PMID: 27195189 PMCID: PMC4869586 DOI: 10.5582/irdr.2015.01049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Early growth response gene-1 (EGR1) widely exists in the cell nucleus of such as, zebrafish, mice, chimpanzees and humans, an it also can be observed in the cytoplasm of some tumors. EGR1 was named just after its brief and rapid expression of different stimuli. Accumulating studies have extensively demonstrated that the widespread dysregulation of EGR1 is involved in hematological malignancies such as human acute myeloid leukemia (AML), chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B cell lymphoma. With the deep research on EGR1, its expression, function and regulatory mechanism has been gradually elucidated, and provides more possibilities for treatment strategies of patients with leukemia. Herein, we summarize the roles of EGR1 in its biological function and relationship with leukemia.
Collapse
Affiliation(s)
- Jing Tian
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, Ji'nan University, Ji'nan, Shandong, China
| | - Ziwei Li
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, Ji'nan University, Ji'nan, Shandong, China
| | - Yang Han
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, Ji'nan University, Ji'nan, Shandong, China
| | - Tao Jiang
- Graduate School of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiaoming Song
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China
| | - Guosheng Jiang
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, Ji'nan University, Ji'nan, Shandong, China
- Address correspondence to: Dr. Guosheng Jiang, Key Laboratory for rare & uncommon diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, NO.18877 of Jingshi Road, Ji'nan, Shandong, China. E-mail:
| |
Collapse
|
12
|
Prologo JD, Hawkins M, Gilliland C, Chinnadurai R, Harkey P, Chadid T, Lee Z, Brewster L. Interventional stem cell therapy. Clin Radiol 2016; 71:307-11. [PMID: 26874660 DOI: 10.1016/j.crad.2016.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/26/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022]
Abstract
The ability to deliver cells in appropriate doses to their targeted site of action is a well-known obstacle to optimising stem cell therapy. Systemic administration of cells results in pulmonary "trapping," which significantly decreases the number of available circulating cells to impact underlying disorders. Directed delivery of stem cells in interventional radiology may provide an additional option for bypassing the lungs, as well as introduce novel potential avenues for decreasing doses required to effect cellular therapy, efficiently obtain local paracrine effects, and/or to simplify targeting strategies.
Collapse
Affiliation(s)
- J D Prologo
- Division of Interventional Radiology and Image Guided Medicine, Emory University School of Medicine, 1364 Clifton Rd NE, Suite AG05, Atlanta, GA 30322, USA.
| | - M Hawkins
- Division of Interventional Radiology and Image Guided Medicine, Emory University School of Medicine, 1364 Clifton Rd NE, Suite AG05, Atlanta, GA 30322, USA
| | - C Gilliland
- Division of Interventional Radiology and Image Guided Medicine, Emory University School of Medicine, 1364 Clifton Rd NE, Suite AG05, Atlanta, GA 30322, USA
| | - R Chinnadurai
- Department of Hematology and Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365B Clifton Rd NE, Suite B506, Atlanta, GA 30322, USA
| | - P Harkey
- Division of Musculoskeletal Radiology, Emory University School of Medicine, 1364 Clifton Rd NE, Suite AG05, Atlanta, GA 30322, USA
| | - T Chadid
- Department of Surgery, Emory University School of Medicine, 1364 Clifton Rd NE, Suite H100, Atlanta, GA 30322, USA
| | - Z Lee
- Department of Radiology, Case Western Reserve University College of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Luke Brewster
- Department of Surgery, Emory University School of Medicine, 1364 Clifton Rd NE, Suite H100, Atlanta, GA 30322, USA; Department of Surgical and Research Services, Atlanta Veterans Medical Center, 1670 Clairmont Road, Decatur, GA 30033, USA
| |
Collapse
|
13
|
Manieri NA, Mack MR, Himmelrich MD, Worthley DL, Hanson EM, Eckmann L, Wang TC, Stappenbeck TS. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis. J Clin Invest 2015; 125:3606-18. [PMID: 26280574 DOI: 10.1172/jci81423] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/08/2015] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy is an emerging field of regenerative medicine; however, it is often unclear how these cells mediate repair. Here, we investigated the use of MSCs in the treatment of intestinal disease and modeled abnormal repair by creating focal wounds in the colonic mucosa of prostaglandin-deficient mice. These wounds developed into ulcers that infiltrated the outer intestinal wall. We determined that penetrating ulcer formation in this model resulted from increased hypoxia and smooth muscle wall necrosis. Prostaglandin I₂ (PGI₂) stimulated VEGF-dependent angiogenesis to prevent penetrating ulcers. Treatment of mucosally injured WT mice with a VEGFR inhibitor resulted in the development of penetrating ulcers, further demonstrating that VEGF is critical for mucosal repair. We next used this model to address the role of transplanted colonic MSCs (cMSCs) in intestinal repair. Compared with intravenously injected cMSCs, mucosally injected cMSCs more effectively prevented the development of penetrating ulcers, as they were more efficiently recruited to colonic wounds. Importantly, mucosally injected cMSCs stimulated angiogenesis in a VEGF-dependent manner. Together, our results reveal that penetrating ulcer formation results from a reduction of local angiogenesis and targeted injection of MSCs can optimize transplantation therapy. Moreover, local MSC injection has potential for treating diseases with features of abnormal angiogenesis and repair.
Collapse
|
14
|
Almeida-Porada G, Soland M, Boura J, Porada CD. Regenerative medicine: prospects for the treatment of inflammatory bowel disease. Regen Med 2014; 8:631-44. [PMID: 23998755 DOI: 10.2217/rme.13.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This article reviews the current understanding of the processes driving the development and progression of inflammatory bowel disease (IBD), discusses how the dynamic crosstalk between resident microorganisms, host cells and the immune system is required in order to maintain immune homeostasis, and considers innovative strategies that allow the modification or modulation of the intestinal microorganismal community as a potential approach for treating IBD. This article next rationalizes the use of cell-based regenerative medicine as treatment for IBD, discusses the obstacles hindering its success, summarizes some of the results of recent clinical trials employing these therapies, and discusses ongoing work to enhance mesenchymal stem/stromal cells, making them better suited to the task of repairing the damage within the IBD gut.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157-1083, USA.
| | | | | | | |
Collapse
|
15
|
Manieri NA, Drylewicz MR, Miyoshi H, Stappenbeck TS. Igf2bp1 is required for full induction of Ptgs2 mRNA in colonic mesenchymal stem cells in mice. Gastroenterology 2012; 143:110-21.e10. [PMID: 22465430 PMCID: PMC3383944 DOI: 10.1053/j.gastro.2012.03.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/16/2012] [Accepted: 03/20/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Prostaglandin-endoperoxide synthase (Ptgs)2 is an enzyme involved in prostaglandin production during the response to mucosal damage. Its expression is regulated, in part, by messenger RNA (mRNA)-binding proteins that control the stability of Ptgs2 mRNA. We used a precise system of colonic injury and repair to identify Ptgs2 mRNA-binding proteins. METHODS We used endoscopy-guided mucosal excision to create focal injury sites in colons of mice. Wound beds from wild-type, Ptgs2(-/-), Ptgs2(+/-), and Myd88(-/-) mice were analyzed at 2-day intervals after injury for aspects of repair and Ptgs2 expression. We used cultured colonic mesenchymal stem cells (cMSCs) that express Ptgs2 to identify and analyze molecules that regulate Ptgs2 expression. RESULTS Ptgs2(-/-) mice had defects in wound repair, validating the biopsy technique as a system to study the regulation of Ptgs2. Ptgs2(+/-) mice had similar defects in wound healing, so full induction of Ptgs2 is required for wound repair. In wild-type mice, levels of Ptgs2 mRNA increased significantly in the wound bed 2 and 4 days after injury; the highest levels of Ptgs2 were observed in cMSCs. In a functional short hairpin RNA knockdown screen, we identified Igf2bp1, a VICKZ (Vg1 RNA binding protein, Insulin-like growth factor II mRNA binding protein 1, Coding region determinant-binding protein, KH domain containing protein overexpressed in cancer, and Zipcode-binding protein-1) mRNA-binding protein, as a regulator of Ptgs2 expression in cMSCs. Igf2bp1 also interacted physically with Ptgs2 mRNA. Igf2bp1 expression was induced exclusively in wound-bed cMSCs, and full induction of Ptgs2 and Igf2bp1 during repair required Myd88. CONCLUSIONS We identified Igf2bp1 as a regulator of Ptgs2 mRNA in mice. Igf2bp1 is required for full induction of Ptgs2 mRNA in cMSCs.
Collapse
|
16
|
Tayman C, Uckan D, Kilic E, Ulus AT, Tonbul A, Murat Hirfanoglu I, Helvacioglu F, Haltas H, Koseoglu B, Tatli MM. Mesenchymal stem cell therapy in necrotizing enterocolitis: a rat study. Pediatr Res 2011; 70:489-94. [PMID: 21772224 DOI: 10.1203/pdr.0b013e31822d7ef2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We evaluated the potential therapeutic use of exogenous human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in an experimental rat model of necrotizing enterocolitis (NEC). Thirty-six newborn Sprague-Dawley rats were randomly divided into three groups: NEC, NEC + hBM-MSC, and a control (control and control + hBM-MSC). NEC was induced by enteral formula feeding, exposure to hypoxia-hyperoxia, and cold stress. After NEC was induced, iron-labeled hBM-MSCs were administered by intraperitoneal injection. All pups were killed on the fourth day following injection, and the terminal ileum was excised for a histopathological and immunohistochemical evaluation. The pups in the NEC + hBM-MSC group showed significant weight gains and improvements in their clinical sickness scores (p < 0.01). Bowel damage severity observed in the histopathological evaluation was significantly lower in the NEC + hBM-MSC group than that in the NEC group (p = 0.012). The number of MSCs homing to the bowel was significantly higher in the NEC + hBM-MSC group than that in the control + hBM-MSC group. In conclusion, this is the first study that has evaluated the effectiveness of hBM-MSCs in a neonatal rat NEC model. MSCs reduced histopathological damage significantly.
Collapse
Affiliation(s)
- Cüneyt Tayman
- Department of Neonatology, Fatih University Faculty of Medicine, Ankara 06510, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jeon MS, Hong SS. [Preclinical experience in stem cell therapy for digestive tract diseases]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2011; 58:133-8. [PMID: 21960100 DOI: 10.4166/kjg.2011.58.3.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Adult stem cells are multipotent and self-renewing cells that contain several functions; i) migration and homing potential: stem cells can migrate to injured and inflamed tissues. ii) differentiation potential: stem cells which migrated to injured tissues can be differentiated into multiple cell types for repairing and regenerating the tissues. iii) immunomodulatory properties: stem cells, especially mesenchymal stem cells can suppress immune system such as inflammation. All those characteristics might be useful for the treatment of the digestive tract diseases which are complex and encompass a broad spectrum of different pathogenesis. Preclinical stem cell therapy showed some promising results, especially in liver failure, pancreatitis, sepsis, and inflammatory bowel disease. If we can understand more about the mechanism of stem cell action, stem cell therapy can become a promising alternative treatment for refractory digestive disease in the near future. In this review, we summarized current preclinical experiences in diseases of the digestive tract using stem cells. (Korean J Gastroenterol 2011;58:133-138).
Collapse
Affiliation(s)
- Myung Shin Jeon
- Clinical Research Center, School of Medicine, Inha University, Incheon, Korea
| | | |
Collapse
|