1
|
Wang J, Liu P, Lin Y, Zhang X, Lin L, Wu F, Fu Y, Wu D, Ren X, Huang H, Yang X, Liu J. The role of mitochondrial dysfunction in the association between trace metals and QTc prolongation in the aged population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175791. [PMID: 39216753 DOI: 10.1016/j.scitotenv.2024.175791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
This study delves into the relationship between environmental metal exposure and QT interval corrected for heart rate (QTc) prolongation, a critical marker for cardiovascular risk in the elderly. Although the interplay between metal exposure and QTc prolongation is important for predicting sudden cardiac death, it remains underexplored. Our analysis of 6478 participants from the Shenzhen aging-related disorder cohort involved measuring urinary concentrations of 22 trace metals and using mitochondrial DNA copy number (mtDNA-CN) as an indicator of mitochondrial dysfunction. Utilizing Bayesian kernel machine regression, and structural equation modeling, we assessed the effects of mixed trace metals on QTc prolongation. Our findings indicated a direct association between certain metals (Sb, Cu, Zn) and a 7 % increase in QTc prolongation risk, while Li, V, and Rb were associated with a 5 % reduction in risk. Elevated levels of V, Ti, and Cr corresponded to higher mtDNA-CN. Notably, restricted cubic splines revealed a U-shaped, nonlinear relationship between mtDNA-CN and QTc prolongation. After adjusting for metal exposure, an inverse correlation was observed between mtDNA-CN and QTc prolongation, suggesting mitochondrial dysfunction as a partial mediator.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Public Health, Guangdong Medical University, Dongguan, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Peiyi Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yankui Lin
- Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen, China
| | - Xia Zhang
- School of Public Health, Guangdong Medical University, Dongguan, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lingling Lin
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Fengqi Wu
- Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen, China
| | - Ying Fu
- Community Health Service Management Center, Shenzhen Luohu Hospital Group, Shenzhen, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haiyan Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianjun Liu
- School of Public Health, Guangdong Medical University, Dongguan, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| |
Collapse
|
2
|
Zhu W, Bian X, Lv J. From genes to clinical management: A comprehensive review of long QT syndrome pathogenesis and treatment. Heart Rhythm O2 2024; 5:573-586. [PMID: 39263612 PMCID: PMC11385408 DOI: 10.1016/j.hroo.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Background Long QT syndrome (LQTS) is a rare cardiac disorder characterized by prolonged ventricular repolarization and increased risk of ventricular arrhythmias. This review summarizes current knowledge of LQTS pathogenesis and treatment strategies. Objectives The purpose of this study was to provide an in-depth understanding of LQTS genetic and molecular mechanisms, discuss clinical presentation and diagnosis, evaluate treatment options, and highlight future research directions. Methods A systematic search of PubMed, Embase, and Cochrane Library databases was conducted to identify relevant studies published up to April 2024. Results LQTS involves mutations in ion channel-related genes encoding cardiac ion channels, regulatory proteins, and other associated factors, leading to altered cellular electrophysiology. Acquired causes can also contribute. Diagnosis relies on clinical history, electrocardiographic findings, and genetic testing. Treatment strategies include lifestyle modifications, β-blockers, potassium channel openers, device therapy, and surgical interventions. Conclusion Advances in understanding LQTS have improved diagnosis and personalized treatment approaches. Challenges remain in risk stratification and management of certain patient subgroups. Future research should focus on developing novel pharmacological agents, refining device technologies, and conducting large-scale clinical trials. Increased awareness and education are crucial for early detection and appropriate management of LQTS.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueyan Bian
- Department of Pediatrics, Lixia District People's Hospital, Jinan, Shandong, China
| | - Jianli Lv
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
3
|
Iacobucci GJ, Popescu GK. Calcium- and calmodulin-dependent inhibition of NMDA receptor currents. Biophys J 2024; 123:277-293. [PMID: 38140727 PMCID: PMC10870176 DOI: 10.1016/j.bpj.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023] Open
Abstract
Calcium ions (Ca2+) reduce NMDA receptor currents through several distinct mechanisms. Among these, calmodulin (CaM)-dependent inhibition (CDI) accomplishes rapid, reversible, and incomplete reduction of the NMDA receptor currents in response to elevations in intracellular Ca2+. Quantitative and mechanistic descriptions of CDI of NMDA receptor-mediated signals have been marred by variability originating, in part, from differences in the conditions and metrics used to evaluate this process across laboratories. Recent ratiometric approaches to measure the magnitude and kinetics of NMDA receptor CDI have facilitated rapid insights into this phenomenon. Notably, the kinetics and magnitude of NMDA receptor CDI depend on the degree of saturation of its CaM binding sites, which represent the bona fide calcium sensor for this type of inhibition, the kinetics and magnitude of the Ca2+ signal, which depends on the biophysical properties of the NMDA receptor or of adjacent Ca2+ sources, and on the relative distribution of Ca2+ sources and CaM molecules. Given that all these factors vary widely during development, across cell types, and with physiological and pathological states, it is important to understand how NMDA receptor CDI develops and how it contributes to signaling in the central nervous system. Here, we review briefly these recent advances and highlight remaining questions about the structural and kinetic mechanisms of NMDA receptor CDI. Given that pathologies can arise from several sources, including mutations in the NMDA receptor and in CaM, understanding how CaM responds to intracellular Ca2+ signals to initiate conformational changes in NMDA receptors, and mapping the structural domains responsible will help to envision novel therapeutic strategies to neuropsychiatric diseases, which presently have limited available treatments.
Collapse
Affiliation(s)
- Gary J Iacobucci
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York.
| |
Collapse
|
4
|
Martínez-Barrios E, Grassi S, Brión M, Toro R, Cesar S, Cruzalegui J, Coll M, Alcalde M, Brugada R, Greco A, Ortega-Sánchez ML, Barberia E, Oliva A, Sarquella-Brugada G, Campuzano O. Molecular autopsy: Twenty years of post-mortem diagnosis in sudden cardiac death. Front Med (Lausanne) 2023; 10:1118585. [PMID: 36844202 PMCID: PMC9950119 DOI: 10.3389/fmed.2023.1118585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
In the forensic medicine field, molecular autopsy is the post-mortem genetic analysis performed to attempt to unravel the cause of decease in cases remaining unexplained after a comprehensive forensic autopsy. This negative autopsy, classified as negative or non-conclusive, usually occurs in young population. In these cases, in which the cause of death is unascertained after a thorough autopsy, an underlying inherited arrhythmogenic syndrome is the main suspected cause of death. Next-generation sequencing allows a rapid and cost-effectives genetic analysis, identifying a rare variant classified as potentially pathogenic in up to 25% of sudden death cases in young population. The first symptom of an inherited arrhythmogenic disease may be a malignant arrhythmia, and even sudden death. Early identification of a pathogenic genetic alteration associated with an inherited arrhythmogenic syndrome may help to adopt preventive personalized measures to reduce risk of malignant arrhythmias and sudden death in the victim's relatives, at risk despite being asymptomatic. The current main challenge is a proper genetic interpretation of variants identified and useful clinical translation. The implications of this personalized translational medicine are multifaceted, requiring the dedication of a specialized team, including forensic scientists, pathologists, cardiologists, pediatric cardiologists, and geneticists.
Collapse
Affiliation(s)
- Estefanía Martínez-Barrios
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital de Barcelona, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, Netherlands
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Simone Grassi
- Forensic Medical Sciences, Department of Health Science, University of Florence, Florence, Italy
| | - María Brión
- Family Heart Disease Unit, Cardiology Service, Santiago de Compostela University Hospital, Santiago de Compostela, Spain
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Rocío Toro
- Medicine Department, School of Medicine, University of Cádiz, Cádiz, Spain
| | - Sergi Cesar
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital de Barcelona, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, Netherlands
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - José Cruzalegui
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital de Barcelona, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, Netherlands
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mònica Coll
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Cardiovascular Genetics Center, Institut d’Investigacions Biomèdiques de Girona (IDIBGI), University of Girona, Girona, Spain
| | - Mireia Alcalde
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Cardiovascular Genetics Center, Institut d’Investigacions Biomèdiques de Girona (IDIBGI), University of Girona, Girona, Spain
| | - Ramon Brugada
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Cardiovascular Genetics Center, Institut d’Investigacions Biomèdiques de Girona (IDIBGI), University of Girona, Girona, Spain
- Cardiology Department, Hospital Josep Trueta, Girona, Spain
| | - Andrea Greco
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - María Luisa Ortega-Sánchez
- Forensic Pathology Department, Institut de Medicina Legal i Ciències Forenses de Catalunya (IMLCFC), Barcelona, Spain
- School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - Eneko Barberia
- Forensic Pathology Department, Institut de Medicina Legal i Ciències Forenses de Catalunya (IMLCFC), Barcelona, Spain
- School of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain
| | - Antonio Oliva
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Georgia Sarquella-Brugada
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital de Barcelona, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, Netherlands
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
| | - Oscar Campuzano
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Cardiovascular Genetics Center, Institut d’Investigacions Biomèdiques de Girona (IDIBGI), University of Girona, Girona, Spain
| |
Collapse
|
5
|
Alahmadi A, Davies A, Royle J, Goodwin L, Cresswell K, Arain Z, Vigo M, Jay C. An explainable algorithm for detecting drug-induced QT-prolongation at risk of torsades de pointes (TdP) regardless of heart rate and T-wave morphology. Comput Biol Med 2021; 131:104281. [PMID: 33636421 DOI: 10.1016/j.compbiomed.2021.104281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/23/2022]
Abstract
Torsade de points (TdP), a life-threatening arrhythmia that can increase the risk of sudden cardiac death, is associated with drug-induced QT-interval prolongation on the electrocardiogram (ECG). While many modern ECG machines provide automated measurements of the QT-interval, these automated QT values are usually correct only for a noise-free normal sinus rhythm, in which the T-wave morphology is well defined. As QT-prolonging drugs often affect the morphology of the T-wave, automated QT measurements taken under these circumstances are easily invalidated. An additional challenge is that the QT-value at risk of TdP varies with heart rate, with the slower the heart rate, the greater the risk of TdP. This paper presents an explainable algorithm that uses an understanding of human visual perception and expert ECG interpretation to automate the detection of QT-prolongation at risk of TdP regardless of heart rate and T-wave morphology. It was tested on a large number of ECGs (n=5050) with variable QT-intervals at varying heart rates, acquired from a clinical trial that assessed the effect of four known QT-prolonging drugs versus placebo on healthy subjects. The algorithm yielded a balanced accuracy of 0.97, sensitivity of 0.94, specificity of 0.99, F1-score of 0.88, ROC (AUC) of 0.98, precision-recall (AUC) of 0.88, and Matthews correlation coefficient (MCC) of 0.88. The results indicate that a prolonged ventricular repolarisation area can be a significant risk predictor of TdP, and detection of this is potentially easier and more reliable to automate than measuring the QT-interval distance directly. The proposed algorithm can be visualised using pseudo-colour on the ECG trace, thus intuitively 'explaining' how its decision was made, which results of a focus group show may help people to self-monitor QT-prolongation, as well as ensuring clinicians can validate its results.
Collapse
Affiliation(s)
- Alaa Alahmadi
- Department of Computer Science, The University of Manchester, Manchester, UK.
| | - Alan Davies
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK.
| | - Jennifer Royle
- Digital Experimental Cancer Medicine Team, CRUK Manchester Institute, And the Christie NHS Foundation, Manchester, UK.
| | - Leanna Goodwin
- Digital Experimental Cancer Medicine Team, CRUK Manchester Institute, And the Christie NHS Foundation, Manchester, UK.
| | - Katharine Cresswell
- Cancer Precision Medicine and Cancer Prevention and Early Detection, NIHR Manchester Biomedical Research Centre (BRC), Manchester University NHS Foundation Trust, Manchester, UK.
| | - Zahra Arain
- Cancer Precision Medicine and Cancer Prevention and Early Detection, NIHR Manchester Biomedical Research Centre (BRC), Manchester University NHS Foundation Trust, Manchester, UK.
| | - Markel Vigo
- Department of Computer Science, The University of Manchester, Manchester, UK.
| | - Caroline Jay
- Department of Computer Science, The University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Alahmadi A, Davies A, Vigo M, Jay C. Pseudo-colouring an ECG enables lay people to detect QT-interval prolongation regardless of heart rate. PLoS One 2020; 15:e0237854. [PMID: 32853262 PMCID: PMC7451551 DOI: 10.1371/journal.pone.0237854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
Drug-induced long QT syndrome (diLQTS), characterized by a prolongation of the QT-interval on the electrocardiogram (ECG), is a serious adverse drug reaction that can cause the life-threatening arrhythmia Torsade de Points (TdP). Self-monitoring for diLQTS could therefore save lives, but detecting it on the ECG is difficult, particularly at high and low heart rates. In this paper, we evaluate whether using a pseudo-colouring visualisation technique and changing the coordinate system (Cartesian vs. Polar) can support lay people in identifying QT-prolongation at varying heart rates. Four visualisation techniques were evaluated using a counterbalanced repeated measures design including Cartesian no-colouring, Cartesian pseudo-colouring, Polar no-colouring and Polar pseudo-colouring. We used a multi-reader, multi-case (MRMC) receiver operating characteristic (ROC) study design within a psychophysical paradigm, along with eye-tracking technology. Forty-three lay participants read forty ECGs (TdP risk n = 20, no risk n = 20), classifying each QT-interval as normal/abnormal, and rating their confidence on a 6-point scale. The results show that introducing pseudo-colouring to the ECG significantly increased accurate detection of QT-interval prolongation regardless of heart rate, T-wave morphology and coordinate system. Pseudo-colour also helped to reduce reaction times and increased satisfaction when reading the ECGs. Eye movement analysis indicated that pseudo-colour helped to focus visual attention on the areas of the ECG crucial to detecting QT-prolongation. The study indicates that pseudo-colouring enables lay people to visually identify drug-induced QT-prolongation regardless of heart rate, with implications for the more rapid identification and management of diLQTS.
Collapse
Affiliation(s)
- Alaa Alahmadi
- Department of Computer Science, The University of Manchester, Manchester, United Kingdom
| | - Alan Davies
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - Markel Vigo
- Department of Computer Science, The University of Manchester, Manchester, United Kingdom
| | - Caroline Jay
- Department of Computer Science, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Wang H, Yang X, Guo Y, Shui L, Li S, Bai Y, Liu Y, Zeng M, Xia J. HERG1 promotes esophageal squamous cell carcinoma growth and metastasis through TXNDC5 by activating the PI3K/AKT pathway. J Exp Clin Cancer Res 2019; 38:324. [PMID: 31331361 PMCID: PMC6647263 DOI: 10.1186/s13046-019-1284-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/19/2019] [Indexed: 02/05/2023] Open
Abstract
Background The human ether a-go-go-related gene 1 (HERG1) is involved in tumor progression; however, its role in esophageal squamous cell carcinoma (ESCC) is not well studied. This study investigated HERG1 function in ESCC progression and elucidated the underlying mechanisms. Methods The prognostic value of HERG1 was determined by immunohistochemistry in ESCC biopsies. Cell growth and proliferation were analyzed by colony formation and methyl thiazolyl tetrazolium assays. Cell migration and invasion were analyzed by wound healing and Boyden transwell assays. Epithelial-mesenchymal transition (EMT) was evaluated by immunoblotting and quantitative polymerase chain reaction (qPCR). A xenograft mouse model was used to validate the tumorigenic and metastatic roles of HERG1 in vivo. Results HERG1 expression was overall higher in ESCC tissues compared to adjacent non-tumor tissues. A retrospective analysis of 349 patients with ESCC (stages I–IV) confirmed increased HERG1 expression was associated with disease progression and higher mortality rate. The overall survival of the patients was significantly worse when their tumors displayed higher HERG1 expression. HERG1 knockdown reduced tumor growth and metastasis in athymic mice. HERG1 affected the proliferation, migration, and invasion of two ESCC cell lines (TE-1 and KYSE-30). Changes in HERG1 expression affected the expression of cell cycle- and EMT-related proteins; these effects were reversed by altering the expression of thioredoxin domain-containing protein 5 (TXNDC5), which is also associated with the clinicopathological characteristics of patients with ESCC and is relevant to HERG1 in pathological biopsies. Additionally, HERG1 expression altered phosphoinositide 3-kinase (PI3K) and AKT phosphorylation, thereby affecting TXNDC5 expression. Conclusions HERG1 contributes to poor prognosis in patients with ESCC by promoting ESCC cell proliferation, migration, and invasion via TXNDC5 through the PI3K/AKT signaling pathway. Our findings provided novel insights into the pathology of ESCC and role of HERG1 in tumor progression, suggesting that targeting HERG1 has potential diagnostic and therapeutic value for ESCC treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1284-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongqiang Wang
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, Zhejiang Province Zhoushan Hospital, Zhoushan, China
| | - Xuchun Yang
- Department of Oncology, Zhejiang Province Zhoushan Hospital, Zhoushan, China
| | - Yan Guo
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Shui
- Department of Oncology, West China Hospital, West China Medical Center, Sichuan University, Chengdu, China
| | - Shi Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifeng Bai
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Liu
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ming Zeng
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianling Xia
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
8
|
Staudt GE, Watkins SC. Anesthetic Considerations for Pediatric Patients With Congenital Long QT Syndrome. J Cardiothorac Vasc Anesth 2018; 33:2030-2038. [PMID: 30553610 DOI: 10.1053/j.jvca.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Genevieve E Staudt
- Department of Anesthesiology, Vanderbilt University School of Medicine, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN.
| | - Scott C Watkins
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL
| |
Collapse
|
9
|
Longo UG, Risi Ambrogioni L, Ciuffreda M, Maffulli N, Denaro V. Sudden cardiac death in young athletes with long QT syndrome: the role of genetic testing and cardiovascular screening. Br Med Bull 2018; 127:43-53. [PMID: 29931253 DOI: 10.1093/bmb/ldy017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Sudden cardiac death (SCD) of young athletes during competition or training is a tragic event. The long QT syndrome (LQTS) is an arrythmogenic disorder characterized by prolonged ventricular repolarization leading to torsade de pointes evident at electrocardiogram (ECG). Implantable cardioverter defibrillator is an option to revert ventricular fibrillation to sinus rhythm, although the implantation may result in denial of sports participations to the athlete. The authors reviewed the current literature on LQTS in young athletes, to clarify the role of different screening technologies to prevent SCD. SOURCES OF DATA A systematic review of the literature was performed applying the PRISMA guidelines according to the PRISMA checklist and algorithm. A comprehensive search of PubMed, Medline, CINAHL, Cochrane, Embase and Google Scholar databases using various combinations of the keywords: 'QT', 'syndrome', 'screening', 'young', 'athletes', 'genetic', 'electrocardiogram', 'echocardiography' and 'prevention' were used. AREAS OF AGREEMENT Young athletes with LQTS are at greater risk of SCD. AREAS OF CONTROVERSY Different detection screening technologies, including ECG monitoring and genetic testing, are recommended, even though their role is not fully understood. GROWING POINTS ECG and genetic testing screening programmes could reduce the incidence of SCD, and they may positively impact on the health and safety of young athletes during sport. AREAS TIMELY FOR DEVELOPING RESEARCH Further studies should analyze other modalities of screening to allow early detection of cardiovascular conditions to prevent SCD in young athletes.
Collapse
Affiliation(s)
- Umile Giuseppe Longo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, Rome, Italy
| | - Laura Risi Ambrogioni
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, Rome, Italy
| | - Mauro Ciuffreda
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, Rome, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, University of Salerno School of Medicine and Surgery, Salerno, Italy.,Department of Orthopaedic and Trauma Surgery, Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, 275 Bancroft Road, London, UK
| | - Vincenzo Denaro
- Department of Musculoskeletal Disorders, University of Salerno School of Medicine and Surgery, Salerno, Italy
| |
Collapse
|
10
|
Perissinotti LL, De Biase PM, Guo J, Yang PC, Lee MC, Clancy CE, Duff HJ, Noskov SY. Determinants of Isoform-Specific Gating Kinetics of hERG1 Channel: Combined Experimental and Simulation Study. Front Physiol 2018; 9:207. [PMID: 29706893 PMCID: PMC5907531 DOI: 10.3389/fphys.2018.00207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/23/2018] [Indexed: 12/22/2022] Open
Abstract
IKr is the rapidly activating component of the delayed rectifier potassium current, the ion current largely responsible for the repolarization of the cardiac action potential. Inherited forms of long QT syndrome (LQTS) (Lees-Miller et al., 1997) in humans are linked to functional modifications in the Kv11.1 (hERG) ion channel and potentially life threatening arrhythmias. There is little doubt now that hERG-related component of IKr in the heart depends on the tetrameric (homo- or hetero-) channels formed by two alternatively processed isoforms of hERG, termed hERG1a and hERG1b. Isoform composition (hERG1a- vs. the b-isoform) has recently been reported to alter pharmacologic responses to some hERG blockers and was proposed to be an essential factor pre-disposing patients for drug-induced QT prolongation. Very little is known about the gating and pharmacological properties of two isoforms in heart membranes. For example, how gating mechanisms of the hERG1a channels differ from that of hERG1b is still unknown. The mechanisms by which hERG 1a/1b hetero-tetramers contribute to function in the heart, or what role hERG1b might play in disease are all questions to be answered. Structurally, the two isoforms differ only in the N-terminal region located in the cytoplasm: hERG1b is 340 residues shorter than hERG1a and the initial 36 residues of hERG1b are unique to this isoform. In this study, we combined electrophysiological measurements for HEK cells, kinetics and structural modeling to tease out the individual contributions of each isoform to Action Potential formation and then make predictions about the effects of having various mixture ratios of the two isoforms. By coupling electrophysiological data with computational kinetic modeling, two proposed mechanisms of hERG gating in two homo-tetramers were examined. Sets of data from various experimental stimulation protocols (HEK cells) were analyzed simultaneously and fitted to Markov-chain models (M-models). The minimization procedure presented here, allowed assessment of suitability of different Markov model topologies and the corresponding parameters that describe the channel kinetics. The kinetics modeling pointed to key differences in the gating kinetics that were linked to the full channel structure. Interactions between soluble domains and the transmembrane part of the channel appeared to be critical determinants of the gating kinetics. The structures of the full channel in the open and closed states were compared for the first time using the recent Cryo-EM resolved structure for full open hERG channel and an homology model for the closed state, based on the highly homolog EAG1 channel. Key potential interactions which emphasize the importance of electrostatic interactions between N-PAS cap, S4-S5, and C-linker are suggested based on the structural analysis. The derived kinetic parameters were later used in higher order models of cells and tissue to track down the effect of varying the ratios of hERG1a and hERG1b on cardiac action potentials and computed electrocardiograms. Simulations suggest that the recovery from inactivation of hERG1b may contribute to its physiologic role of this isoform in the action potential. Finally, the results presented here contribute to the growing body of evidence that hERG1b significantly affects the generation of the cardiac Ikr and plays an important role in cardiac electrophysiology. We highlight the importance of carefully revisiting the Markov models previously proposed in order to properly account for the relative abundance of the hERG1 a- and b- isoforms.
Collapse
Affiliation(s)
- Laura L Perissinotti
- Centre for Molecular Simulations, Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Pablo M De Biase
- Centre for Molecular Simulations, Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Jiqing Guo
- Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pei-Chi Yang
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Miranda C Lee
- Centre for Molecular Simulations, Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Henry J Duff
- Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sergei Y Noskov
- Centre for Molecular Simulations, Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Huo J, Guo X, Lu Q, Qiang H, Liu P, Bai L, Huang CLH, Zhang Y, Ma A. NS1643 enhances ionic currents in a G604S-WT hERG co-expression system associated with long QT syndrome 2. Clin Exp Pharmacol Physiol 2017; 44:1125-1133. [PMID: 28741726 DOI: 10.1111/1440-1681.12820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
Affiliation(s)
- JianHua Huo
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| | - Xueyan Guo
- Shaanxi Provincial People's Hospital; Xi'an Shaanxi China
| | - Qun Lu
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| | - Hua Qiang
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| | - Ping Liu
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| | - Ling Bai
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| | | | - Yanmin Zhang
- Department of Pediatric Cardiology; Childrens Research Institute; affiliate children's hospital of Xi'an Jiaotong University; Xi'an Shaanxi China
| | - Aiqun Ma
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| |
Collapse
|
12
|
Madan N, Carvalho KS. Neurological Complications of Cardiac Disease. Semin Pediatr Neurol 2017; 24:3-13. [PMID: 28779863 DOI: 10.1016/j.spen.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article focuses on the complex interactions between the cardiovascular and neurologic systems. Initially, we focus on neurological complications in children with congenital heart disease both secondary to the underlying cardiac disease and complications of interventions. We later discuss diagnosis and management of common syncope syndromes with emphasis on vasovagal syncope. We also review the diagnosis, classification, and management of children and adolescents with postural orthostatic tachycardia syndrome. Lastly, we discuss long QT syndrome and sudden unexpected death in epilepsy (SUDEP), reviewing advances in genetics and current knowledge of pathophysiology of these conditions. This article attempts to provide an overview of these disorders with focus on pathophysiology, advances in molecular genetics, and current medical interventions.
Collapse
Affiliation(s)
- Nandini Madan
- From the Section of Cardiology, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA.
| | - Karen S Carvalho
- Section of Neurology, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
13
|
Kliegman RM, Bordini BJ, Basel D, Nocton JJ. How Doctors Think: Common Diagnostic Errors in Clinical Judgment-Lessons from an Undiagnosed and Rare Disease Program. Pediatr Clin North Am 2017; 64:1-15. [PMID: 27894438 DOI: 10.1016/j.pcl.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The scientific process of analysis and deduction is frequently, often subconsciously, used by physicians to develop a differential diagnosis based on patients' symptoms. Common disorders are most frequently diagnosed in general practice. Rare diseases are uncommon and frequently remain undiagnosed for many years. Cognitive errors in clinical judgment delay definitive diagnosis. Whole-exome sequencing has helped identify the cause of undiagnosed or rare diseases in up to 40% of children. This article provides experiences with an undiagnosed or rare disease program, where detailed data accumulation and a multifaceted analytical approach assisted in diagnosing atypical presentations of common disorders.
Collapse
Affiliation(s)
- Robert M Kliegman
- Department of Pediatrics, Medical College of Wisconsin, Children's Hospital of Wisconsin, 999 North 92nd Street, Suite C450, Milwaukee, WI 53226, USA.
| | - Brett J Bordini
- Department of Pediatrics, Medical College of Wisconsin, Children's Hospital of Wisconsin, 999 North 92nd Street, Suite C450, Milwaukee, WI 53226, USA
| | - Donald Basel
- Department of Pediatrics, Medical College of Wisconsin, Children's Hospital of Wisconsin, 999 North 92nd Street, Suite C450, Milwaukee, WI 53226, USA
| | - James J Nocton
- Department of Pediatrics, Medical College of Wisconsin, Children's Hospital of Wisconsin, 999 North 92nd Street, Suite C450, Milwaukee, WI 53226, USA
| |
Collapse
|
14
|
Lawton B, Goldstein H, Tagg A, Davis T. Syncope: Not for the faint hearted. Emerg Med Australas 2016; 28:254-5. [DOI: 10.1111/1742-6723.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ben Lawton
- Emergency Department; Lady Cilento Children's Hospital; Brisbane Queensland Australia
- School of Medicine, University of Queensland; Brisbane Queensland Australia
- Emergency Department; Logan Hospital; Logan City Queensland Australia
| | - Henry Goldstein
- Emergency Department; Lady Cilento Children's Hospital; Brisbane Queensland Australia
- School of Medicine, University of Queensland; Brisbane Queensland Australia
| | - Andrew Tagg
- Emergency Department; Footscray Hospital; Melbourne Victoria Australia
| | - Tessa Davis
- Executive Unit; Royal Prince Alfred Hospital; Sydney New South Wales Australia
| |
Collapse
|
15
|
Campuzano O, Sarquella-Brugada G, Brugada R, Brugada J. Genetics of channelopathies associated with sudden cardiac death. Glob Cardiol Sci Pract 2015; 2015:39. [PMID: 26566530 PMCID: PMC4625210 DOI: 10.5339/gcsp.2015.39] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022] Open
Abstract
Recent technological advances in cardiology have resulted in new guidelines for the diagnosis, treatment and prevention of diseases. Despite these improvements, sudden death remains one of the main challenges to clinicians because the majority of diseases associated with sudden cardiac death are characterized by incomplete penetrance and variable expressivity. Hence, patients may be unaware of their illness, and physical activity can be the trigger for syncope as first symptom of the disease. Most common causes of sudden cardiac death are congenital alterations and structural heart diseases, although a significant number remain unexplained after comprehensive autopsy. In these unresolved cases, channelopathies are considered the first potential cause of death. Since all these diseases are of genetic origin, family members could be at risk, despite being asymptomatic. Genetics has also benefited from technological advances, and genetic testing has been incorporated into the sudden death field, identifying the cause in clinically affected patients, asymptomatic family members and post-mortem cases without conclusive diagnosis. This review focuses on recent advances in the genetics of channelopathies associated with sudden cardiac death.
Collapse
Affiliation(s)
- Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona – IDIBGI, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Spain
| | | | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona – IDIBGI, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Spain
| | - Josep Brugada
- Unit of Arrhythmias, Hospital Sant Joan de Deu, University of Barcelona, Spain
- Unit of Arrhythmias, Hospital Clinic de Barcelona, University of Barcelona, Spain
| |
Collapse
|