1
|
Gupta A, Bansal R, Alashwal H, Kacar AS, Balci F, Moustafa AA. Neural Substrates of the Drift-Diffusion Model in Brain Disorders. Front Comput Neurosci 2022; 15:678232. [PMID: 35069160 PMCID: PMC8776710 DOI: 10.3389/fncom.2021.678232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Abstract
Many studies on the drift-diffusion model (DDM) explain decision-making based on a unified analysis of both accuracy and response times. This review provides an in-depth account of the recent advances in DDM research which ground different DDM parameters on several brain areas, including the cortex and basal ganglia. Furthermore, we discuss the changes in DDM parameters due to structural and functional impairments in several clinical disorders, including Parkinson's disease, Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorders, Obsessive-Compulsive Disorder (OCD), and schizophrenia. This review thus uses DDM to provide a theoretical understanding of different brain disorders.
Collapse
Affiliation(s)
- Ankur Gupta
- CNRS UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France
| | - Rohini Bansal
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hany Alashwal
- College of Information Technology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anil Safak Kacar
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Fuat Balci
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ahmed A. Moustafa
- School of Psychology & Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, NSW, Australia
- School of Psychology, Faculty of Society and Design, Bond University, Robina, QLD, Australia
- Faculty of Health Sciences, Department of Human Anatomy and Physiology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
2
|
Quiñones-Camacho LE, Fishburn FA, Belardi K, Williams DL, Huppert TJ, Perlman SB. Dysfunction in interpersonal neural synchronization as a mechanism for social impairment in autism spectrum disorder. Autism Res 2021; 14:1585-1596. [PMID: 33847461 PMCID: PMC11413982 DOI: 10.1002/aur.2513] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 01/16/2023]
Abstract
Social deficits in autism spectrum disorder (ASD) have been linked to atypical activation of the mentalizing network. This work, however, has been limited by a focus on the brain activity of a single person during computerized social tasks rather than exploring brain activity during in vivo interactions. The current study assessed neural synchronization during a conversation as a mechanism for social impairment in adults with ASD (n = 24) and matched controls (n = 26). Functional near-infrared spectroscopy (fNIRS) data were collected from the prefrontal cortex (PFC) and tempoparietal junction (TPJ). Participants self-reported on their social communication and videos of the interaction were coded for utterances and conversational turns. As expected, controls showed more neural synchrony than participants with ASD in the TPJ. Also as expected, controls showed less social communication impairment than participants with ASD. However, participants with ASD did not have fewer utterances compared with control subjects. Overall, less neural synchrony in the TPJ was associated with higher social impairment and marginally fewer utterances. Our findings advance our understanding of social difficulties in ASD by linking them to decreased neural synchronization of the TPJ. LAY SUMMARY: The coordination of brain responses is important for efficient social interactions. The current study explored the coordination of brain responses in neurotypical adults and adults with ASD to investigate if difficulties in social interactions are related to difficulties coordinating brain responses in ASD. We found that participants with ASD had more difficulties coordinating brain responses during a conversation with an interacting partner. Additionally, we found that the level of coordination in brain responses was linked to problems with social communication.
Collapse
Affiliation(s)
| | - Frank A. Fishburn
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine Belardi
- School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Diane L. Williams
- Department of Communication Sciences and Disorders, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Theodore J. Huppert
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Susan B. Perlman
- Department of Psychiatry, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Styliadis C, Leung R, Özcan S, Moulton EA, Pang E, Taylor MJ, Papadelis C. Atypical spatiotemporal activation of cerebellar lobules during emotional face processing in adolescents with autism. Hum Brain Mapp 2021; 42:2099-2114. [PMID: 33528852 PMCID: PMC8046060 DOI: 10.1002/hbm.25349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/07/2020] [Accepted: 01/09/2021] [Indexed: 01/17/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by social deficits and atypical facial processing of emotional expressions. The underlying neuropathology of these abnormalities is still unclear. Recent studies implicate cerebellum in emotional processing; other studies show cerebellar abnormalities in ASD. Here, we elucidate the spatiotemporal activation of cerebellar lobules in ASD during emotional processing of happy and angry faces in adolescents with ASD and typically developing (TD) controls. Using magnetoencephalography, we calculated dynamic statistical parametric maps across a period of 500 ms after emotional stimuli onset and determined differences between group activity to happy and angry emotions. Following happy face presentation, adolescents with ASD exhibited only left‐hemispheric cerebellar activation in a cluster extending from lobule VI to lobule V (compared to TD controls). Following angry face presentation, adolescents with ASD exhibited only midline cerebellar activation (posterior IX vermis). Our findings indicate an early (125–175 ms) overactivation in cerebellar activity only for happy faces and a later overactivation for both happy (250–450 ms) and angry (250–350 ms) faces in adolescents with ASD. The prioritized hemispheric activity (happy faces) could reflect the promotion of a more flexible and adaptive social behavior, while the latter midline activity (angry faces) may guide conforming behavior.
Collapse
Affiliation(s)
- Charis Styliadis
- Laboratory of Medical Physics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Selin Özcan
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A Moulton
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth Pang
- University of Toronto, Toronto, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Margot J Taylor
- University of Toronto, Toronto, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Autism Research Unit, Hospital for Sick Children, Toronto, Canada
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, Texas, USA.,Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA.,Department of Pediatrics, TCU and UNTHSC School of Medicine, Fort Worth, Texas, USA
| |
Collapse
|
4
|
Mazzoni N, Landi I, Ricciardelli P, Actis-Grosso R, Venuti P. "Motion or Emotion? Recognition of Emotional Bodily Expressions in Children With Autism Spectrum Disorder With and Without Intellectual Disability". Front Psychol 2020; 11:478. [PMID: 32269539 PMCID: PMC7109394 DOI: 10.3389/fpsyg.2020.00478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/02/2020] [Indexed: 01/03/2023] Open
Abstract
The recognition of emotional body movement (BM) is impaired in individuals with Autistic Spectrum Disorder ASD, yet it is not clear whether the difficulty is related to the encoding of body motion, emotions, or both. Besides, BM recognition has been traditionally studied using point-light displays stimuli (PLDs) and is still underexplored in individuals with ASD and intellectual disability (ID). In the present study, we investigated the recognition of happy, fearful, and neutral BM in children with ASD with and without ID. In a non-verbal recognition task, participants were asked to recognize pure-body-motion and visible-body-form stimuli (by means of point-light displays-PLDs and full-light displays-FLDs, respectively). We found that the children with ASD were less accurate than TD children in recognizing both the emotional and neutral BM, either when presented as FLDs or PLDs. These results suggest that the difficulty in understanding the observed BM may rely on atypical processing of BM information rather than emotion. Moreover, we found that the accuracy improved with age and IQ only in children with ASD without ID, suggesting that high level of cognitive resources can mediate the acquisition of compensatory mechanisms which develop with age.
Collapse
Affiliation(s)
- Noemi Mazzoni
- ODFLab - Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
| | - Isotta Landi
- ODFLab - Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy.,MPBA, Fondazione Bruno Kessler, Trento, Italy
| | - Paola Ricciardelli
- Department of Psychology, University of Milano - Bicocca, Milan, Italy.,Milan Centre for Neuroscience, Milan, Italy
| | - Rossana Actis-Grosso
- Department of Psychology, University of Milano - Bicocca, Milan, Italy.,Milan Centre for Neuroscience, Milan, Italy
| | - Paola Venuti
- ODFLab - Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
5
|
Weston CSE. Four Social Brain Regions, Their Dysfunctions, and Sequelae, Extensively Explain Autism Spectrum Disorder Symptomatology. Brain Sci 2019; 9:E130. [PMID: 31167459 PMCID: PMC6627615 DOI: 10.3390/brainsci9060130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a challenging neurodevelopmental disorder with symptoms in social, language, sensory, motor, cognitive, emotional, repetitive behavior, and self-sufficient living domains. The important research question examined is the elucidation of the pathogenic neurocircuitry that underlies ASD symptomatology in all its richness and heterogeneity. The presented model builds on earlier social brain research, and hypothesizes that four social brain regions largely drive ASD symptomatology: amygdala, orbitofrontal cortex (OFC), temporoparietal cortex (TPC), and insula. The amygdala's contributions to ASD largely derive from its major involvement in fine-grained intangible knowledge representations and high-level guidance of gaze. In addition, disrupted brain regions can drive disturbance of strongly interconnected brain regions to produce further symptoms. These and related effects are proposed to underlie abnormalities of the visual cortex, inferior frontal gyrus (IFG), caudate nucleus, and hippocampus as well as associated symptoms. The model is supported by neuroimaging, neuropsychological, neuroanatomical, cellular, physiological, and behavioral evidence. Collectively, the model proposes a novel, parsimonious, and empirically testable account of the pathogenic neurocircuitry of ASD, an extensive account of its symptomatology, a novel physiological biomarker with potential for earlier diagnosis, and novel experiments to further elucidate the mechanisms of brain abnormalities and symptomatology in ASD.
Collapse
|
6
|
Posar A, Visconti P. Sensory abnormalities in children with autism spectrum disorder. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2018. [DOI: 10.1016/j.jpedp.2017.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
7
|
Posar A, Visconti P. Sensory abnormalities in children with autism spectrum disorder. J Pediatr (Rio J) 2018; 94:342-350. [PMID: 29112858 DOI: 10.1016/j.jped.2017.08.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The clinical picture of children with autism spectrum disorder is characterized by deficits of social interaction and communication, as well as by repetitive interests and activities. Sensory abnormalities are a very frequent feature that often go unnoticed due to the communication difficulties of these patients. This narrative review summarizes the main features of sensory abnormalities and the respective implications for the interpretation of several signs and symptoms of autism spectrum disorder, and therefore for its management. SOURCES A search was performed in PubMed (United States National Library of Medicine) about the sensory abnormalities in subjects (particularly children) with autism spectrum disorder. SUMMARY OF THE FINDINGS Sensory symptoms are common and often disabling in children with autism spectrum disorder, but are not specific for autism, being a feature frequently described also in subjects with intellectual disability. Three main sensory patterns have been described in autism spectrum disorder: hypo-responsiveness, hyper-responsiveness, and sensory seeking; to these, some authors have added a fourth pattern: enhanced perception. Sensory abnormalities may negatively impact the life of these individuals and their families. An impairment not only of unisensory modalities but also of multisensory integration is hypothesized. CONCLUSIONS Atypical sensory reactivity of subjects with autism spectrum disorder may be the key to understand many of their abnormal behaviors, and thus it is a relevant aspect to be taken into account in their daily management in all the contexts in which they live. A formal evaluation of sensory function should be always performed in these children.
Collapse
Affiliation(s)
- Annio Posar
- IRCCS Institute of Neurological Sciences of Bologna, Child Neurology and Psychiatry Unit, Bologna, Italy; University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy.
| | - Paola Visconti
- IRCCS Institute of Neurological Sciences of Bologna, Child Neurology and Psychiatry Unit, Bologna, Italy
| |
Collapse
|
8
|
Kozhushko NJ, Nagornova ZV, Evdokimov SA, Shemyakina NV, Ponomarev VA, Tereshchenko EP, Kropotov JD. Specificity of spontaneous EEG associated with different levels of cognitive and communicative dysfunctions in children. Int J Psychophysiol 2018; 128:22-30. [PMID: 29577946 DOI: 10.1016/j.ijpsycho.2018.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 02/06/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
This study aimed to reveal electrophysiological markers of communicative and cognitive dysfunctions of different severity in children with autism spectrum disorder (ASD). Eyes-opened electroencephalograms (EEGs) of 42 children with ASD, divided into two groups according to the severity of their communicative and cognitive dysfunctions (24 with severe and 18 children with less severe ASD), and 70 age-matched controls aged 4-9 years were examined by means of spectral and group independent component (gIC) analyses. A predominance of theta and beta EEG activity in both groups of children with ASD compared to the activity in the control group was found in the global gIC together with a predominance of beta EEG activity in the right occipital region. The quantity of local gICs with enhanced slow and high-frequency EEG activity (within the frontal, temporal, and parietal cortex areas) in children 4-9 years of age might be considered a marker of cognitive and communicative dysfunction severity.
Collapse
Affiliation(s)
- Nadezhda Ju Kozhushko
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, 197376, akad. Pavlova str., 9, Saint Petersburg, Russia
| | - Zhanna V Nagornova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, pr. Torez, 44, Saint Petersburg, Russia
| | - Sergey A Evdokimov
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, 197376, akad. Pavlova str., 9, Saint Petersburg, Russia
| | - Natalia V Shemyakina
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, pr. Torez, 44, Saint Petersburg, Russia.
| | - Valery A Ponomarev
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, 197376, akad. Pavlova str., 9, Saint Petersburg, Russia
| | - Ekaterina P Tereshchenko
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, 197376, akad. Pavlova str., 9, Saint Petersburg, Russia
| | - Jury D Kropotov
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, 197376, akad. Pavlova str., 9, Saint Petersburg, Russia; Department of Psychology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Neuropsychology, Andrzej Frycz Modrzewski Krakow University, Herlinga-Grudzinskiego 1, 30-705 Kraków, Poland
| |
Collapse
|
9
|
Allen-Meares P, MacDonald M, McGee K. Autism Spectrum Disorder Updates - Relevant Information for Early Interventionists to Consider. Front Public Health 2016; 4:236. [PMID: 27840812 PMCID: PMC5083851 DOI: 10.3389/fpubh.2016.00236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/07/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by deficits in social communication skills as well as repetitive, restricted or stereotyped behaviors (1). Early interventionists are often found at the forefront of assessment, evaluation, and early intervention services for children with ASD. The role of an early intervention specialist may include assessing developmental history, providing group and individual counseling, working in partnership with families on home, school, and community environments, mobilizing school and community resources, and assisting in the development of positive early intervention strategies (2, 3). The commonality among these roles resides in the importance of providing up-to-date, relevant information to families and children. The purpose of this review is to provide pertinent up-to-date knowledge for early interventionists to help inform practice in working with individuals with ASD, including common behavioral models of intervention.
Collapse
Affiliation(s)
| | - Megan MacDonald
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
10
|
Advancing the understanding of autism disease mechanisms through genetics. Nat Med 2016; 22:345-61. [PMID: 27050589 DOI: 10.1038/nm.4071] [Citation(s) in RCA: 563] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 02/26/2016] [Indexed: 12/11/2022]
Abstract
Progress in understanding the genetic etiology of autism spectrum disorders (ASD) has fueled remarkable advances in our understanding of its potential neurobiological mechanisms. Yet, at the same time, these findings highlight extraordinary causal diversity and complexity at many levels ranging from molecules to circuits and emphasize the gaps in our current knowledge. Here we review current understanding of the genetic architecture of ASD and integrate genetic evidence, neuropathology and studies in model systems with how they inform mechanistic models of ASD pathophysiology. Despite the challenges, these advances provide a solid foundation for the development of rational, targeted molecular therapies.
Collapse
|
11
|
Sperdin HF, Schaer M. Aberrant Development of Speech Processing in Young Children with Autism: New Insights from Neuroimaging Biomarkers. Front Neurosci 2016; 10:393. [PMID: 27610073 PMCID: PMC4997090 DOI: 10.3389/fnins.2016.00393] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022] Open
Abstract
From the time of birth, a newborn is continuously exposed and naturally attracted to human voices, and as he grows, he becomes increasingly responsive to these speech stimuli, which are strong drivers for his language development and knowledge acquisition about the world. In contrast, young children with autism spectrum disorder (ASD) are often insensitive to human voices, failing to orient and respond to them. Failure to attend to speech in turn results in altered development of language and social-communication skills. Here, we review the critical role of orienting to speech in ASD, as well as the neural substrates of human voice processing. Recent functional neuroimaging and electroencephalography studies demonstrate that aberrant voice processing could be a promising marker to identify ASD very early on. With the advent of refined brain imaging methods, coupled with the possibility of screening infants and toddlers, predictive brain function biomarkers are actively being examined and are starting to emerge. Their timely identification might not only help to differentiate between phenotypes, but also guide the clinicians in setting up appropriate therapies, and better predicting or quantifying long-term outcome.
Collapse
Affiliation(s)
- Holger F. Sperdin
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva School of MedicineGeneva, Switzerland
| | - Marie Schaer
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva School of MedicineGeneva, Switzerland
- Stanford Cognitive & Systems Neuroscience Laboratory, Stanford University School of MedicinePalo Alto, CA, USA
| |
Collapse
|
12
|
Foss-Feig JH, McPartland JC, Anticevic A, Wolf J. Re-conceptualizing ASD Within a Dimensional Framework: Positive, Negative, and Cognitive Feature Clusters. J Autism Dev Disord 2016; 46:342-351. [PMID: 26267330 DOI: 10.1007/s10803-015-2539-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction of the National Institute of Mental Health's Research Domain Criteria and revision of diagnostic classification for Autism Spectrum Disorder in the latest diagnostic manual call for a new way of conceptualizing heterogeneous ASD features. We propose a novel conceptualization of ASD, borrowing from the schizophrenia literature in clustering ASD features along positive, negative, and cognitive dimensions. We argue that this dimensional conceptualization can offer improved ability to classify, diagnose, and treat, to apply and predict response to treatment, and to explore underlying neural and genetic alterations that may contribute to particular feature clusters. We suggest the proposed conceptualization can advance the field in a manner that may prove clinically and biologically useful for understanding and addressing heterogeneity within ASD.
Collapse
Affiliation(s)
- Jennifer H Foss-Feig
- Yale University Child Study Center, 230 South Frontage Rd, New Haven, CT, 06520, USA.
| | - James C McPartland
- Yale University Child Study Center, 230 South Frontage Rd, New Haven, CT, 06520, USA.
| | - Alan Anticevic
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Julie Wolf
- Yale University Child Study Center, 230 South Frontage Rd, New Haven, CT, 06520, USA
| |
Collapse
|
13
|
Deuse L, Rademacher LM, Winkler L, Schultz RT, Gründer G, Lammertz SE. Neural correlates of naturalistic social cognition: brain-behavior relationships in healthy adults. Soc Cogn Affect Neurosci 2016; 11:1741-1751. [PMID: 27496338 DOI: 10.1093/scan/nsw094] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/11/2016] [Indexed: 01/10/2023] Open
Abstract
Being able to infer the thoughts, feelings and intentions of those around us is indispensable in order to function in a social world. Despite growing interest in social cognition and its neural underpinnings, the factors that contribute to successful mental state attribution remain unclear. Current knowledge is limited because the most widely used tasks suffer from two main constraints: (i) They fail to capture individual variability due to ceiling effects and (ii) they use highly simplistic, often artificial stimuli inapt to mirror real-world socio-cognitive demands. In the present study, we address these problems by employing complex depictions of naturalistic social interactions that vary in both valence (positive vs negative) and ambiguity (high vs low). Thirty-eight healthy participants (20 female) made mental state judgments while brain responses were obtained using functional magnetic resonance imaging (fMRI). Accuracy varied based on valence and ambiguity conditions and women were more accurate than men with highly ambiguous social stimuli. Activity of the orbitofrontal cortex predicted performance in the high ambiguity condition. The results shed light on subtle differences in mentalizing abilities and associated neural activity.
Collapse
Affiliation(s)
- L Deuse
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany .,JARA - Translational Brain Medicine, Aachen and Jülich, Nordrhein-Westfalen, Germany
| | - L M Rademacher
- Department of Psychiatry and Psychotherapy, Social Neuroscience Lab, University of Lübeck, 23538, Lübeck, Germany
| | - L Winkler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,JARA - Translational Brain Medicine, Aachen and Jülich, Nordrhein-Westfalen, Germany
| | - R T Schultz
- Center for Autism Research, The Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - G Gründer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,JARA - Translational Brain Medicine, Aachen and Jülich, Nordrhein-Westfalen, Germany
| | - S E Lammertz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,JARA - Translational Brain Medicine, Aachen and Jülich, Nordrhein-Westfalen, Germany
| |
Collapse
|
14
|
Transitional Wearable Companions: A Novel Concept of Soft Interactive Social Robots to Improve Social Skills in Children with Autism Spectrum Disorder. Int J Soc Robot 2016. [DOI: 10.1007/s12369-016-0373-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Kaushik G, Zarbalis KS. Prenatal Neurogenesis in Autism Spectrum Disorders. Front Chem 2016; 4:12. [PMID: 27014681 PMCID: PMC4791366 DOI: 10.3389/fchem.2016.00012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/26/2016] [Indexed: 11/26/2022] Open
Abstract
An ever-increasing body of literature describes compelling evidence that a subset of young children on the autism spectrum show abnormal cerebral growth trajectories. In these cases, normal cerebral size at birth is followed by a period of abnormal growth and starting in late childhood often by regression compared to unaffected controls. Recent work has demonstrated an abnormal increase in the number of neurons of the prefrontal cortex suggesting that cerebral size increase in autism is driven by excess neuronal production. In addition, some affected children display patches of abnormal laminar positioning of cortical projection neurons. As both cortical projection neuron numbers and their correct layering within the developing cortex requires the undisturbed proliferation of neural progenitors, it appears that neural progenitors lie in the center of the autism pathology associated with early brain overgrowth. Consequently, autism spectrum disorders associated with cerebral enlargement should be viewed as birth defects of an early embryonic origin with profound implications for their early diagnosis, preventive strategies, and therapeutic intervention.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Pathology and Laboratory Medicine, University of California at DavisSacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for ChildrenSacramento, CA, USA
| | - Konstantinos S Zarbalis
- Department of Pathology and Laboratory Medicine, University of California at DavisSacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for ChildrenSacramento, CA, USA
| |
Collapse
|
16
|
|
17
|
Torgerson CM, Quinn C, Dinov I, Liu Z, Petrosyan P, Pelphrey K, Haselgrove C, Kennedy DN, Toga AW, Van Horn JD. Interacting with the National Database for Autism Research (NDAR) via the LONI Pipeline workflow environment. Brain Imaging Behav 2016; 9:89-103. [PMID: 25666423 DOI: 10.1007/s11682-015-9354-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Under the umbrella of the National Database for Clinical Trials (NDCT) related to mental illnesses, the National Database for Autism Research (NDAR) seeks to gather, curate, and make openly available neuroimaging data from NIH-funded studies of autism spectrum disorder (ASD). NDAR has recently made its database accessible through the LONI Pipeline workflow design and execution environment to enable large-scale analyses of cortical architecture and function via local, cluster, or "cloud"-based computing resources. This presents a unique opportunity to overcome many of the customary limitations to fostering biomedical neuroimaging as a science of discovery. Providing open access to primary neuroimaging data, workflow methods, and high-performance computing will increase uniformity in data collection protocols, encourage greater reliability of published data, results replication, and broaden the range of researchers now able to perform larger studies than ever before. To illustrate the use of NDAR and LONI Pipeline for performing several commonly performed neuroimaging processing steps and analyses, this paper presents example workflows useful for ASD neuroimaging researchers seeking to begin using this valuable combination of online data and computational resources. We discuss the utility of such database and workflow processing interactivity as a motivation for the sharing of additional primary data in ASD research and elsewhere.
Collapse
Affiliation(s)
- Carinna M Torgerson
- Laboratory of Neuro Imaging and The Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, 2001 North Soto Street - SSB1-Room 102, Los Angeles, CA, 90032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Carter Leno V, Naples A, Cox A, Rutherford H, McPartland JC. Common and distinct modulation of electrophysiological indices of feedback processing by autistic and psychopathic traits. Soc Neurosci 2015; 11:455-66. [PMID: 26471250 DOI: 10.1080/17470919.2015.1108223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Both autism spectrum disorder (ASD) and psychopathy are primarily characterized by social dysfunction; overlapping phenotypic features may reflect altered function in common brain mechanisms. The current study examined the degree to which neural response to social and nonsocial feedback is modulated by autistic versus psychopathic traits in a sample of typically developing adults (N = 31, 11 males, 18-52 years). Event-related potentials were recorded whilst participants completed a behavioral task and received feedback on task performance. Both autistic and psychopathic traits were associated with alterations in the neural correlates of feedback processing. Sensitivity to specific forms of feedback (social, nonsocial, positively valenced, negatively valenced) differed between the two traits. Autistic traits were associated with decreased sensitivity to social feedback. In contrast, the antisocial domain of psychopathic traits was associated with an overall decrease in sensitivity to feedback, and the interpersonal manipulation domain was associated with preserved processing of positively valenced feedback. Results suggest distinct alterations within specific mechanisms of feedback processing may underlie similar difficulties in social behavior.
Collapse
Affiliation(s)
| | - Adam Naples
- a Yale School of Medicine , Child Study Center , New Haven , CT , USA
| | - Anthony Cox
- a Yale School of Medicine , Child Study Center , New Haven , CT , USA
| | - Helena Rutherford
- a Yale School of Medicine , Child Study Center , New Haven , CT , USA
| | | |
Collapse
|
19
|
Machado C, Rodríguez R, Estévez M, Leisman G, Melillo R, Chinchilla M, Portela L. Anatomic and Functional Connectivity Relationship in Autistic Children During Three Different Experimental Conditions. Brain Connect 2015; 5:487-96. [PMID: 26050707 DOI: 10.1089/brain.2014.0335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A group of 21 autistic children were studied for determining the relationship between the anatomic (AC) versus functional (FC) connectivity, considering short-range and long-range brain networks. AC was assessed by the DW-MRI technique and FC by EEG coherence calculation, in three experimental conditions: basal, watching a popular cartoon with audio (V-A), and with muted audio track (VwA). For short-range connections, basal records, statistical significant correlations were found for all EEG bands in the left hemisphere, but no significant correlations were found for fast EEG frequencies in the right hemisphere. For the V-A condition, significant correlations were mainly diminished for the left hemisphere; for the right hemisphere, no significant correlations were found for the fast EEG frequency bands. For the VwA condition, significant correlations for the rapid EEG frequencies mainly disappeared for the right hemisphere. For long-range connections, basal records showed similar correlations for both hemispheres. For the right hemisphere, significant correlations incremented to all EEG bands for the V-A condition, but these significant correlations disappeared for the fast EEG frequencies in the VwA condition. It appears that in a resting-state condition, AC is better associated with functional connectivity for short-range connections in the left hemisphere. The V-A experimental condition enriches the AC and FC association for long-range connections in the right hemisphere. This might be related to an effective connectivity improvement due to full video stimulation (visual and auditory). An impaired audiovisual interaction in the right hemisphere might explain why significant correlations disappeared for the fast EEG frequencies in the VwA experimental condition.
Collapse
Affiliation(s)
- Calixto Machado
- 1 Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery , Havana, Cuba
| | - Rafael Rodríguez
- 2 International Center for Neurological Restoration , Havana, Cuba
| | - Mario Estévez
- 1 Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery , Havana, Cuba
| | - Gerry Leisman
- 3 The National Institute for Brain & Rehabilitation Sciences , Nazareth, Israel .,4 Biomechanics Laboratory, O.R.T.-Braude College of Engineering , Karmiel, Israel .,5 Facultad Manuel Fajardo, University of the Medical Sciences , Havana, Cuba
| | - Robert Melillo
- 6 Institute for Brain and Rehabilitation Science , Gilbert, Arizona
| | - Mauricio Chinchilla
- 1 Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery , Havana, Cuba
| | - Liana Portela
- 1 Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery , Havana, Cuba
| |
Collapse
|
20
|
QEEG spectral and coherence assessment of autistic children in three different experimental conditions. J Autism Dev Disord 2015; 45:406-24. [PMID: 24048514 PMCID: PMC4309919 DOI: 10.1007/s10803-013-1909-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We studied autistics by quantitative EEG spectral and coherence analysis during three experimental conditions: basal, watching a cartoon with audio (V–A), and with muted audio band (VwA). Significant reductions were found for the absolute power spectral density (PSD) in the central region for delta and theta, and in the posterior region for sigma and beta bands, lateralized to the right hemisphere. When comparing VwA versus the V–A in the midline regions, we found significant decrements of absolute PSD for delta, theta and alpha, and increments for the beta and gamma bands. In autistics, VwA versus V–A tended to show lower coherence values in the right hemisphere. An impairment of visual and auditory sensory integration in autistics might explain our results.
Collapse
|
21
|
McPartland JC, Jeste SS. Connectivity in context: emphasizing neurodevelopment in autism spectrum disorder. Biol Psychiatry 2015; 77:772-4. [PMID: 25843335 DOI: 10.1016/j.biopsych.2015.02.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 12/31/2022]
Affiliation(s)
| | - Shafali S Jeste
- UCLA Center for Autism Research and Treatment, UCLA David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
22
|
Rolison MJ, Naples AJ, McPartland JC. Interactive social neuroscience to study autism spectrum disorder. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2015; 88:17-24. [PMID: 25745371 PMCID: PMC4345534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Individuals with autism spectrum disorder (ASD) demonstrate difficulty with social interactions and relationships, but the neural mechanisms underlying these difficulties remain largely unknown. While social difficulties in ASD are most apparent in the context of interactions with other people, most neuroscience research investigating ASD have provided limited insight into the complex dynamics of these interactions. The development of novel, innovative "interactive social neuroscience" methods to study the brain in contexts with two interacting humans is a necessary advance for ASD research. Studies applying an interactive neuroscience approach to study two brains engaging with one another have revealed significant differences in neural processes during interaction compared to observation in brain regions that are implicated in the neuropathology of ASD. Interactive social neuroscience methods are crucial in clarifying the mechanisms underlying the social and communication deficits that characterize ASD.
Collapse
Affiliation(s)
| | | | - James C. McPartland
- Yale Child Study Center, New Haven, Connecticut,James C. McPartland, PhD, Yale Child Study Center, 230 South Frontage Road, New Haven, CT 06520; Tele: 203-785-7179; Fax: 203-737-4197;
| |
Collapse
|
23
|
Klin A, Shultz S, Jones W. Social visual engagement in infants and toddlers with autism: early developmental transitions and a model of pathogenesis. Neurosci Biobehav Rev 2015; 50:189-203. [PMID: 25445180 PMCID: PMC4355308 DOI: 10.1016/j.neubiorev.2014.10.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 11/20/2022]
Abstract
Efforts to determine and understand the causes of autism are currently hampered by a large disconnect between recent molecular genetics findings that are associated with the condition and the core behavioral symptoms that define the condition. In this perspective piece, we propose a systems biology framework to bridge that gap between genes and symptoms. The framework focuses on basic mechanisms of socialization that are highly-conserved in evolution and are early-emerging in development. By conceiving of these basic mechanisms of socialization as quantitative endophenotypes, we hope to connect genes and behavior in autism through integrative studies of neurodevelopmental, behavioral, and epigenetic changes. These changes both lead to and are led by the accomplishment of specific social adaptive tasks in a typical infant's life. However, based on recent research that indicates that infants later diagnosed with autism fail to accomplish at least some of these tasks, we suggest that a narrow developmental period, spanning critical transitions from reflexive, subcortically-controlled visual behavior to interactional, cortically-controlled and social visual behavior be prioritized for future study. Mapping epigenetic, neural, and behavioral changes that both drive and are driven by these early transitions may shed a bright light on the pathogenesis of autism.
Collapse
Affiliation(s)
- Ami Klin
- Marcus Autism Center, Children's Healthcare of Atlanta & Emory University School of Medicine, 1920 Briarcliff Rd NE, Atlanta, GA 30329, United States.
| | - Sarah Shultz
- Marcus Autism Center, Children's Healthcare of Atlanta & Emory University School of Medicine, 1920 Briarcliff Rd NE, Atlanta, GA 30329, United States
| | - Warren Jones
- Marcus Autism Center, Children's Healthcare of Atlanta & Emory University School of Medicine, 1920 Briarcliff Rd NE, Atlanta, GA 30329, United States
| |
Collapse
|
24
|
Orosco LA, Ross AP, Cates SL, Scott SE, Wu D, Sohn J, Pleasure D, Pleasure SJ, Adamopoulos IE, Zarbalis KS. Loss of Wdfy3 in mice alters cerebral cortical neurogenesis reflecting aspects of the autism pathology. Nat Commun 2014; 5:4692. [PMID: 25198012 PMCID: PMC4159772 DOI: 10.1038/ncomms5692] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/15/2014] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are complex and heterogeneous developmental disabilities affecting an ever-increasing number of children worldwide. The diverse manifestations and complex, largely genetic aetiology of ASDs pose a major challenge to the identification of unifying neuropathological features. Here we describe the neurodevelopmental defects in mice that carry deleterious alleles of the Wdfy3 gene, recently recognized as causative in ASDs. Loss of Wdfy3 leads to a regionally enlarged cerebral cortex resembling early brain overgrowth described in many children on the autism spectrum. In addition, affected mouse mutants display migration defects of cortical projection neurons, a recognized cause of epilepsy, which is significantly comorbid with autism. Our analysis of affected mouse mutants defines an important role for Wdfy3 in regulating neural progenitor divisions and neural migration in the developing brain. Furthermore, Wdfy3 is essential for cerebral expansion and functional organization while its loss-of-function results in pathological changes characteristic of ASDs.
Collapse
Affiliation(s)
- Lori A Orosco
- 1] Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, California 95817, USA [2] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA
| | - Adam P Ross
- 1] Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, California 95817, USA [2] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA
| | - Staci L Cates
- 1] Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, California 95817, USA [2] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA
| | - Sean E Scott
- 1] Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, California 95817, USA [2] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA
| | - Dennis Wu
- 1] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA [2] Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California 95616, USA
| | - Jiho Sohn
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA
| | - David Pleasure
- 1] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA [2] Departments of Neurology and Pediatrics, University of California at Davis, Sacramento, California 95817, USA
| | - Samuel J Pleasure
- Department of Neurology, Programs in Neuroscience, Developmental and Stem Cell Biology, UCSF Institute for Regeneration Medicine, University of California at San Francisco, Sandler Neurosciences Center, Box 3206, 675 Nelson Rising Lane, Room 214, San Francisco, California 94158, USA
| | - Iannis E Adamopoulos
- 1] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA [2] Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California 95616, USA
| | - Konstantinos S Zarbalis
- 1] Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, California 95817, USA [2] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, California 95817, USA
| |
Collapse
|
25
|
Weinger PM, Zemon V, Soorya L, Gordon J. Low-contrast response deficits and increased neural noise in children with autism spectrum disorder. Neuropsychologia 2014; 63:10-8. [PMID: 25107679 DOI: 10.1016/j.neuropsychologia.2014.07.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 06/13/2014] [Accepted: 07/28/2014] [Indexed: 11/26/2022]
Abstract
A battery of short-duration neurophysiological tests were designed and implemented using visual evoked potentials (VEPs) to examine specific neural mechanisms in children with and without autism spectrum disorder (ASD). Contrast-sweep conditions (bright or dark isolated-checks) were used to elicit steady-state VEPs to examine the integrity of ON/OFF pathways. Children with ASD displayed deficits in low-contrast responses at the stimulus frequency of 12.5 Hz, notably under conditions that emphasized activity in the magnocellular pathway. Signal-to-noise ratios were weaker in the ASD group, particularly for the OFF pathway. There were no group differences in the amplitude of responses. In addition, the ASD group displayed significantly higher levels of neural noise than controls. For the response at the stimulus frequency, the ASD group produced a relatively constant level of noise across the contrast range tested, with higher levels than controls at low contrasts and approximately equal levels of noise at moderate to high contrasts.
Collapse
Affiliation(s)
- Paige M Weinger
- Icahn School of Medicine at Mount Sinai Seaver Autism Center, Psychiatry One Gustave Levy Place, Box 1230 Atran Building E Level, Room 22, New York, NY 10029, United States.
| | | | - Latha Soorya
- Rush University Medical Center, Chicago, Illinois, United States
| | | |
Collapse
|
26
|
Funahashi Y, Karashima C, Hoshiyama M. Compensatory Postural Sway While Seated Posture During Tasks in Children with Autism Spectrum Disorder. Occup Ther Int 2014; 21:166-75. [DOI: 10.1002/oti.1375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023] Open
Affiliation(s)
- Yoshimi Funahashi
- Department of Occupational Therapy, Graduate School of Medicine, School of Health Sciences; Nagoya University; 1-1-20 Daiko-minami, Higashi-ku Nagoya 461-8673 Japan
| | - Chieko Karashima
- Department of Occupational Therapy, Graduate School of Medicine, School of Health Sciences; Nagoya University; 1-1-20 Daiko-minami, Higashi-ku Nagoya 461-8673 Japan
| | - Minoru Hoshiyama
- Department of Occupational Therapy, Graduate School of Medicine, School of Health Sciences; Nagoya University; 1-1-20 Daiko-minami, Higashi-ku Nagoya 461-8673 Japan
| |
Collapse
|
27
|
Neurobiological abnormalities in the first few years of life in individuals later diagnosed with autism spectrum disorder: a review of recent data. Behav Neurol 2014; 2014:210780. [PMID: 24825948 PMCID: PMC4006615 DOI: 10.1155/2014/210780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/23/2013] [Indexed: 02/07/2023] Open
Abstract
Background. Despite the widely-held understanding that the biological changes that lead to autism usually occur during prenatal life, there has been relatively little research into the functional development of the brain during early infancy in individuals later diagnosed with autism spectrum disorder (ASD). Objective. This review explores the studies over the last three years which have investigated differences in various brain regions in individuals with ASD or who later go on to receive a diagnosis of ASD. Methods. We used PRISMA guidelines and selected published articles reporting any neurological abnormalities in very early childhood in individuals with or later diagnosed with ASD. Results. Various brain regions are discussed including the amygdala, cerebellum, frontal cortex, and lateralised abnormalities of the temporal cortex during language processing. This review discusses studies investigating head circumference, electrophysiological markers, and interhemispheric synchronisation. All of the recent findings from the beginning of 2009 across these different aspects of defining neurological abnormalities are discussed in light of earlier findings. Conclusions. The studies across these different areas reveal the existence of atypicalities in the first year of life, well before ASD is reliably diagnosed. Cross-disciplinary approaches are essential to elucidate the pathophysiological sequence of events that lead to ASD.
Collapse
|
28
|
Damiano CR, Mazefsky CA, White SW, Dichter GS. Future directions for research in autism spectrum disorders. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY : THE OFFICIAL JOURNAL FOR THE SOCIETY OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY, AMERICAN PSYCHOLOGICAL ASSOCIATION, DIVISION 53 2014; 43:828-43. [PMID: 25216048 PMCID: PMC4163956 DOI: 10.1080/15374416.2014.945214] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This article suggests future directions for research aimed at improving our understanding of the etiology and pathophysiology of autism spectrum disorder (ASD) as well as pharmacologic and psychosocial interventions for ASD across the lifespan. The past few years have witnessed unprecedented transformations in the understanding of ASD neurobiology, genetics, early identification, and early intervention. However, recent increases in ASD prevalence estimates highlight the urgent need for continued efforts to translate novel ASD discoveries into effective interventions for all individuals with ASD. In this article we highlight promising areas for ongoing and new research expected to quicken the pace of scientific discovery and ultimately the translation of research findings into accessible and empirically supported interventions for those with ASD. We highlight emerging research in the following domains as particularly promising and pressing: (a) preclinical models, (b) experimental therapeutics, (c) early identification and intervention, (d) psychiatric comorbidities and the Research Domain Criteria initiative, (e) ecological momentary assessment, (f) neurotechnologies, and (g) the needs of adults with ASD. Increased research emphasis in these areas has the potential to hasten the translation of knowledge on the etiological mechanisms of ASD to psychosocial and biological interventions to reduce the burden of ASD on affected individuals and their families.
Collapse
Affiliation(s)
- Cara R. Damiano
- Department of Psychology, University of North Carolina, Chapel Hill, NC
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC
| | - Carla A. Mazefsky
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Susan W. White
- Department of Psychology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Gabriel S. Dichter
- Department of Psychology, University of North Carolina, Chapel Hill, NC
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
29
|
Mavel S, Nadal-Desbarats L, Blasco H, Bonnet-Brilhault F, Barthélémy C, Montigny F, Sarda P, Laumonnier F, Vourc′h P, Andres CR, Emond P. 1H–13C NMR-based urine metabolic profiling in autism spectrum disorders. Talanta 2013; 114:95-102. [DOI: 10.1016/j.talanta.2013.03.064] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/16/2013] [Accepted: 03/25/2013] [Indexed: 01/04/2023]
|
30
|
Aoki Y, Abe O, Nippashi Y, Yamasue H. Comparison of white matter integrity between autism spectrum disorder subjects and typically developing individuals: a meta-analysis of diffusion tensor imaging tractography studies. Mol Autism 2013; 4:25. [PMID: 23876131 PMCID: PMC3726469 DOI: 10.1186/2040-2392-4-25] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant brain connectivity, especially with long-distance underconnectivity, has been recognized as a candidate pathophysiology of autism spectrum disorders. However, a number of diffusion tensor imaging studies investigating people with autism spectrum disorders have yielded inconsistent results. METHODS To test the long-distance underconnectivity hypothesis, we performed a systematic review and meta-analysis of diffusion tensor imaging studies in subjects with autism spectrum disorder. Diffusion tensor imaging studies comparing individuals with autism spectrum disorders with typically developing individuals were searched using MEDLINE, Web of Science and EMBASE from 1980 through 1 August 2012. Standardized mean differences were calculated as an effect size of the tracts. RESULTS A comprehensive literature search identified 25 relevant diffusion tensor imaging studies comparing autism spectrum disorders and typical development with regions-of-interest methods. Among these, 14 studies examining regions of interest with suprathreshold sample sizes were included in the meta-analysis. A random-effects model demonstrated significant fractional anisotropy reductions in the corpus callosum (P = 0.023, n = 387 (autism spectrum disorders/typically developing individuals: 208/179)), left uncinate fasciculus (P = 0.011, n = 242 (117/125)), and left superior longitudinal fasciculus (P = 0.016, n = 182 (96/86)), and significant increases of mean diffusivity in the corpus callosum (P = 0.006, n = 254 (129/125)) and superior longitudinal fasciculus bilaterally (P = 0.031 and 0.011, left and right, respectively, n = 109 (51/58)), in subjects with autism spectrum disorders compared with typically developing individuals with no significant publication bias. CONCLUSION The current meta-analysis of diffusion tensor imaging studies in subjects with autism spectrum disorders emphasizes important roles of the superior longitudinal fasciculus, uncinate fasciculus, and corpus callosum in the pathophysiology of autism spectrum disorders and supports the long-distance underconnectivity hypothesis.
Collapse
Affiliation(s)
- Yuta Aoki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | |
Collapse
|
31
|
GC-MS-based urine metabolic profiling of autism spectrum disorders. Anal Bioanal Chem 2013; 405:5291-300. [DOI: 10.1007/s00216-013-6934-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 01/05/2023]
|
32
|
Schwartzer JJ, Careaga M, Onore CE, Rushakoff JA, Berman RF, Ashwood P. Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice. Transl Psychiatry 2013; 3:e240. [PMID: 23481627 PMCID: PMC3625915 DOI: 10.1038/tp.2013.16] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is becoming increasingly apparent that the causes of autism spectrum disorders (ASD) are due to both genetic and environmental factors. Animal studies provide important translational models for elucidating specific genetic or environmental factors that contribute to ASD-related behavioral deficits. For example, mouse research has demonstrated a link between maternal immune activation and the expression of ASD-like behaviors. Although these studies have provided insights into the potential causes of ASD, they are limited in their ability to model the important interactions between genetic variability and environmental insults. This is of particular concern given the broad spectrum of severity observed in the human population, suggesting that subpopulations may be more susceptible to the adverse effects of particular environmental insults. It is hypothesized that the severity of effects of maternal immune activation on ASD-like phenotypes is influenced by the genetic background in mice. To test this, pregnant dams of two inbred strains (that is, C57BL/6J and BTBR T(+)tf/J) were exposed to the viral mimic polyinosinic-polycytidylic acid (polyI:C), and their offspring were tested for the presence and severity of ASD-like behaviors. To identify differences in immune system regulation, spleens were processed and measured for alterations in induced cytokine responses. Strain-treatment interactions were observed in social approach, ultrasonic vocalization, repetitive grooming and marble burying behaviors. Interestingly, persistent dysregulation of adaptive immune system function was only observed in BTBR mice. Data suggest that behavioral and immunological effects of maternal immune activation are strain-dependent in mice.
Collapse
Affiliation(s)
- J J Schwartzer
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95618, USA.
| | - M Careaga
- The M.I.N.D. Institute, University of California, Davis, CA, USA,Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - C E Onore
- The M.I.N.D. Institute, University of California, Davis, CA, USA,Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - J A Rushakoff
- Department of Neurological Surgery, University of California, Davis. One Shields Avenue, Davis, CA, USA
| | - R F Berman
- The M.I.N.D. Institute, University of California, Davis, CA, USA,Department of Neurological Surgery, University of California, Davis. One Shields Avenue, Davis, CA, USA
| | - P Ashwood
- The M.I.N.D. Institute, University of California, Davis, CA, USA,Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| |
Collapse
|
33
|
Harrill JA, Robinette BL, Freudenrich T, Mundy WR. Use of high content image analyses to detect chemical-mediated effects on neurite sub-populations in primary rat cortical neurons. Neurotoxicology 2013; 34:61-73. [DOI: 10.1016/j.neuro.2012.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/10/2012] [Accepted: 10/24/2012] [Indexed: 12/28/2022]
|
34
|
Bhattacharya A, Klann E. The molecular basis of cognitive deficits in pervasive developmental disorders. Learn Mem 2012; 19:434-43. [PMID: 22904374 DOI: 10.1101/lm.025007.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Persons with pervasive developmental disorders (PDD) exhibit a range of cognitive deficits that hamper their quality of life, including difficulties involving communication, sociability, and perspective-taking. In recent years, a variety of studies in mice that model genetic syndromes with a high risk of PDD have provided insights into the underlying molecular mechanisms associated with these disorders. What is less appreciated is how the molecular anomalies affect neuronal and circuit function to give rise to the cognitive deficits associated with PDD. In this review, we describe genetic mutations that cause PDD and discuss how they alter fundamental social and cognitive processes. We then describe efforts to correct cognitive impairments associated with these disorders and identify areas of further inquiry in the search for molecular targets for therapeutics for PDD.
Collapse
Affiliation(s)
- Aditi Bhattacharya
- Center for Neural Science, New York University, New York, New York 10003, USA
| | | |
Collapse
|
35
|
Abstract
A new study has found that neural sensitivity to eye gaze in early infancy is associated with subsequent development of autism. This discovery provides a much-needed biomarker for autism spectrum disorder prior to emergence of behavioral symptoms.
Collapse
Affiliation(s)
- Kevin A Pelphrey
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT 06519, USA.
| | | |
Collapse
|