1
|
Lambert B, MacLean AL, Fletcher AG, Combes AN, Little MH, Byrne HM. Bayesian inference of agent-based models: a tool for studying kidney branching morphogenesis. J Math Biol 2018; 76:1673-1697. [PMID: 29392399 PMCID: PMC5906521 DOI: 10.1007/s00285-018-1208-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/02/2018] [Indexed: 12/11/2022]
Abstract
The adult mammalian kidney has a complex, highly-branched collecting duct epithelium that arises as a ureteric bud sidebranch from an epithelial tube known as the nephric duct. Subsequent branching of the ureteric bud to form the collecting duct tree is regulated by subcellular interactions between the epithelium and a population of mesenchymal cells that surround the tips of outgrowing branches. The mesenchymal cells produce glial cell-line derived neurotrophic factor (GDNF), that binds with RET receptors on the surface of the epithelial cells to stimulate several subcellular pathways in the epithelium. Such interactions are known to be a prerequisite for normal branching development, although competing theories exist for their role in morphogenesis. Here we introduce the first agent-based model of ex vivo kidney uretic branching. Through comparison with experimental data, we show that growth factor-regulated growth mechanisms can explain early epithelial cell branching, but only if epithelial cell division depends in a switch-like way on the local growth factor concentration; cell division occurring only if the driving growth factor level exceeds a threshold. We also show how a recently-developed method, "Approximate Approximate Bayesian Computation", can be used to infer key model parameters, and reveal the dependency between the parameters controlling a growth factor-dependent growth switch. These results are consistent with a requirement for signals controlling proliferation and chemotaxis, both of which are previously identified roles for GDNF.
Collapse
Affiliation(s)
- Ben Lambert
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Adam L MacLean
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, UK
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Alexander N Combes
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia
- Murdoch Childrens Research Institute, Flemington Rd, Parkville, Melbourne, VIC, 3052, Australia
| | - Melissa H Little
- Murdoch Childrens Research Institute, Flemington Rd, Parkville, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, UK
| |
Collapse
|
2
|
Moon KH, Ko IK, Yoo JJ, Atala A. Kidney diseases and tissue engineering. Methods 2015; 99:112-9. [PMID: 26134528 DOI: 10.1016/j.ymeth.2015.06.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/12/2015] [Accepted: 06/25/2015] [Indexed: 02/08/2023] Open
Abstract
Kidney disease is a worldwide public health problem. Renal failure follows several disease stages including acute and chronic kidney symptoms. Acute kidney injury (AKI) may lead to chronic kidney disease (CKD), which can progress to end-stage renal disease (ESRD) with a mortality rate. Current treatment options are limited to dialysis and kidney transplantation; however, problems such as donor organ shortage, graft failure and numerous complications remain a concern. To address this issue, cell-based approaches using tissue engineering (TE) and regenerative medicine (RM) may provide attractive approaches to replace the damaged kidney cells with functional renal specific cells, leading to restoration of normal kidney functions. While development of renal tissue engineering is in a steady state due to the complex composition and highly regulated functionality of the kidney, cell therapy using stem cells and primary kidney cells has demonstrated promising therapeutic outcomes in terms of restoration of renal functions in AKI and CKD. In this review, basic components needed for successful renal kidney engineering are discussed, and recent TE and RM approaches to treatment of specific kidney diseases will be presented.
Collapse
Affiliation(s)
- Kyung Hyun Moon
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA; Department of Urology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
3
|
|