1
|
Dun H, Sticco-Ivins M, Terada Y, Berning A, Lavine KJ, Kreisel D, Kopecky BJ. Cervical heterotopic heart transplantation in mice using a novel suture technique. JHLT OPEN 2025; 7:100164. [PMID: 40144858 PMCID: PMC11935459 DOI: 10.1016/j.jhlto.2024.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Background Vascularized transplantation models in mice are critical to understand mechanisms that mediate rejection and to develop new therapeutics. Standard abdominal heterotopic heart transplantation techniques employ an end-to-side suture technique and are the workhouse of transplant immunology research laboratories. Recently, cervical heterotopic heart transplantation in mice has emerged as an alternative due to several advantages but is conventionally performed by suture or cuff techniques in an end-to-end fashion. Therefore, we introduce an end-to-side anastomosis technique. Methods The donor pulmonary artery is end-to-side anastomosed to the recipient right external jugular vein, using a continuous 10-0 nylon suture. Vascular suturing is accomplished inside the vessel on the posterior wall, and then outside the vessel on the anterior wall. Finally, the donor ascending aorta is end-to-side anastomosed to the recipient common carotid artery with an identical suture technique. Results The median times for the donor heart harvest, recipient preparation, anastomoses of the pulmonary artery to the external jugular vein, and the ascending aorta to the common carotid artery were 12, 10, 12 and 11 minutes, respectively. The survival rate was 100% (n = 20). Conclusions We provide a detailed description of how to perform end-to-side anastomoses using a suture technique in the mouse cervical heart transplantation model. This procedure reconstitutes coronary blood flow in the heart graft with minimal interruption to recipient anatomy and provides an experimental platform to study transplant immunology.
Collapse
Affiliation(s)
- Hao Dun
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Maura Sticco-Ivins
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Yuriko Terada
- Department of Surgery, Washington University, St. Louis, Missouri
| | - Amber Berning
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kory J. Lavine
- Department of Medicine, Division of Cardiology, Washington University, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri
- Department of Developmental Biology, Washington University, St. Louis, Missouri
| | - Daniel Kreisel
- Department of Surgery, Washington University, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri
| | - Benjamin J. Kopecky
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
2
|
Tseng HT, Lin YW, Huang CY, Shih CM, Tsai YT, Liu CW, Tsai CS, Lin FY. Animal Models for Heart Transplantation Focusing on the Pathological Conditions. Biomedicines 2023; 11:biomedicines11051414. [PMID: 37239085 DOI: 10.3390/biomedicines11051414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiac transplant recipients face many complications due to transplant rejection. Scientists must conduct animal experiments to study disease onset mechanisms and develop countermeasures. Therefore, many animal models have been developed for research topics including immunopathology of graft rejection, immunosuppressive therapies, anastomotic techniques, and graft preservation techniques. Small experimental animals include rodents, rabbits, and guinea pigs. They have a high metabolic rate, high reproductive rate, small size for easy handling, and low cost. Additionally, they have genetically modified strains for pathological mechanisms research; however, there is a lacuna, as these research results rarely translate directly to clinical applications. Large animals, including canines, pigs, and non-human primates, have anatomical structures and physiological states that are similar to those of humans; therefore, they are often used to validate the results obtained from small animal studies and directly speculate on the feasibility of applying these results in clinical practice. Before 2023, PubMed Central® at the United States National Institute of Health's National Library of Medicine was used for literature searches on the animal models for heart transplantation focusing on the pathological conditions. Unpublished reports and abstracts from conferences were excluded from this review article. We discussed the applications of small- and large-animal models in heart transplantation-related studies. This review article aimed to provide researchers with a complete understanding of animal models for heart transplantation by focusing on the pathological conditions created by each model.
Collapse
Affiliation(s)
- Horng-Ta Tseng
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Wen Lin
- Institute of Oral Biology, National Yang Ming Chiao Tung University (Yangming Campus), Taipei 112304, Taiwan
| | - Chun-Yao Huang
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Ming Shih
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Ting Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, Defense Medical Center, Taipei 11490, Taiwan
| | - Chen-Wei Liu
- Department of Basic Medical Science, College of Medicine, University of Arizona, Phoenix, AZ 85721, USA
| | - Chien-Sung Tsai
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Surgery, Tri-Service General Hospital, Defense Medical Center, Taipei 11490, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Feng-Yen Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Abstract
Animal models provide the link between in vitro research and the first in-man application during clinical trials. They provide substantial information in preclinical studies for the assessment of new therapeutic interventions in advance of human clinical trials. However, each model has its advantages and limitations in the ability to imitate specific pathomechanisms. Therefore, the selection of an animal model for the evaluation of a specific research question or evaluation of a novel therapeutic strategy requires a precise analysis. Transplantation research is a discipline that largely benefits from the use of animal models with mouse and pig models being the most frequently used models in organ transplantation research. A suitable animal model should reflect best the situation in humans, and the researcher should be aware of the similarities as well as the limitations of the chosen model. Small animal models with rats and mice are contributing to the majority of animal experiments with the obvious advantages of these models being easy handling, low costs, and high reproductive rates. However, unfortunately, they often do not translate to clinical use. Large animal models, especially in transplantation medicine, are an important element for establishing preclinical models that do often translate to the clinic. Nevertheless, they can be costly, present increased regulatory requirements, and often are of high ethical concern. Therefore, it is crucial to select the right animal model from which extrapolations and valid conclusions can be obtained and translated into the human situation. This review provides an overview in the models frequently used in organ transplantation research.
Collapse
|
4
|
Novák J, Macháčková T, Krejčí J, Bienertová-Vašků J, Slabý O. MicroRNAs as theranostic markers in cardiac allograft transplantation: from murine models to clinical practice. Theranostics 2021; 11:6058-6073. [PMID: 33897899 PMCID: PMC8058726 DOI: 10.7150/thno.56327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Congestive heart failure affects about 23 million people worldwide, and cardiac allograft transplantation remains one of the last options for patients with terminal refractory heart failure. Besides the infectious or oncological complications, the prognosis of patients after heart transplantation is affected by acute cellular or antibody-mediated rejection and allograft vasculopathy development. Current monitoring of both conditions requires the performance of invasive procedures (endomyocardial biopsy sampling and coronary angiography or optical coherence tomography, respectively) that are costly, time-demanding, and non-comfortable for the patient. Within this narrative review, we focus on the potential pathophysiological and clinical roles of microRNAs (miRNAs, miRs) in the field of cardiac allograft transplantation. Firstly, we provide a general introduction about the status of cardiac allograft function monitoring and the discovery of miRNAs as post-transcriptional regulators of gene expression and clinically relevant biomarkers found in the extracellular fluid. After this general introduction, information from animal and human studies are summarized to underline the importance of miRNAs both in the pathophysiology of the rejection process, the possibility of its modulation by altering miRNAs levels, and last but not least, about the use of miRNAs in the clinical practice to diagnose or predict the rejection occurrence.
Collapse
Affiliation(s)
- Jan Novák
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-A18, 625 00, Brno, Czech Republic
- Second Department of Internal Medicine, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 65691, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5-A35, 625 00, Brno, Czech Republic
| | - Táňa Macháčková
- Central European Institute of Technology, Masaryk University, Kamenice 5-A35, 625 00, Brno, Czech Republic
| | - Jan Krejčí
- Department of Cardiovascular Diseases, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 65691, Brno, Czech Republic
| | - Julie Bienertová-Vašků
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-A18, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Sciences, Masaryk University, Kamenice 5-A29, 625 00, Brno, Czech Republic
| | - Ondřej Slabý
- Central European Institute of Technology, Masaryk University, Kamenice 5-A35, 625 00, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
5
|
Spitaleri G, Mendieta G, Farrero M. Translating animal models of brain death into clinical knowledge for heart transplantation. Clin Transplant 2021; 35:e14232. [PMID: 33484173 DOI: 10.1111/ctr.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Giosafat Spitaleri
- Advanced Heart Failure and Heart transplantation Unit, Hospital Clinic i Provincial, Barcelona, Spain
| | - Guiomar Mendieta
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta Farrero
- Advanced Heart Failure and Heart transplantation Unit, Hospital Clinic i Provincial, Barcelona, Spain
| |
Collapse
|
6
|
Dun H, Ye L, Zhu Y, Wong BW. Combined abdominal heterotopic heart and aorta transplant model in mice. PLoS One 2020; 15:e0230649. [PMID: 32569305 PMCID: PMC7307752 DOI: 10.1371/journal.pone.0230649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023] Open
Abstract
Background Allograft vasculopathy (AV) remains a major obstacle to long-term allograft survival. While the mouse aortic transplantation model has been proven as a useful tool for study of the pathogenesis of AV, simultaneous transplantation of the aorta alongside the transplantation of another organ may reveal more clinically relevant mechanisms that contribute to the pathogenesis of chronic allograft rejection. Therefore, we developed a combined abdominal heart and aorta transplantation model in mice which benefits from reducing animal and drug utilization, while providing an improved model to study the progressive nature of AV. Methods The middle of the infrarenal aorta of the recipient mouse was ligatured between the renal artery and its bifurcation. Proximal and distal aortotomies were performed at this site above and below the ligature, respectively, for the subsequent anastomoses of the donor aorta and heart grafts to the recipient infrarenal aorta in an end-to-side fashion. The distal anastomotic site of the recipient infrarenal aorta was connected with the outlet of the donor aorta. Uniquely, the proximal anastomotic site on the recipient infrarenal aorta was shared to connect with both the inlet of the donor aorta and the inflow tract to the donor heart. The outflow tract from the donor heart was connected to the recipient inferior vena cava (IVC). Results The median times for harvesting the heart graft, aorta graft, recipient preparation and anastomosis were 11.5, 8.0, 9.0 and 40.5 min, respectively, resulting in a total median ischemic time of 70 min. The surgery survival rate was more than 96% (29/30). Both the syngeneic C57Bl/6 aorta and heart grafts survived more than 90 days in 29 C57Bl/6 recipients. Further, Balb/c to C57Bl/6 allografts treated with anti-CD40L and CTLA4.Ig survived more than 90 days with a 100% (3/3) survival rate. (3/3). Conclusions This model is presented as a new tool for researchers to investigate transplant immunology and assess immunosuppressive strategies. It is possible to share a common anastomotic stoma on the recipient abdominal aorta to reconstruct both the aorta graft entrance and heart graft inflow tract. This allows for the study of allogeneic effects on both the aorta and heart from the same animal in a single survival surgery.
Collapse
Affiliation(s)
- Hao Dun
- Laboratory of Lymphatic Metabolism + Epigenetics, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Li Ye
- Laboratory of Lymphatic Metabolism + Epigenetics, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Yuehui Zhu
- Laboratory of Lymphatic Metabolism + Epigenetics, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Brian W. Wong
- Laboratory of Lymphatic Metabolism + Epigenetics, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
7
|
Translational Medicine in Brain Stem Death and Heart Transplantation. Transplantation 2020; 104:2258-2259. [PMID: 32150038 DOI: 10.1097/tp.0000000000003218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Gong W, Liu B, Chen J, Liu C, Shen Z. Impact of Regulatory T Cells on Innate Immune Cells in a Pre-Sensitized Heart Transplant Model. Ann Transplant 2018. [PMID: 29650945 PMCID: PMC6248278 DOI: 10.12659/aot.907598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Although our previous studies revealed the role of Tregs (regulatory T cells) and MDSCs (myeloid-derived suppressor cells) in a pre-sensitized cardiac transplant model, interplay between Tregs and NK cells, neutrophils, and macrophages remain undefined. Material/Methods Mice heart transplantation with skin pre-sensitization was performed, in which prolonged-cold ischemia time (PCI) was used for donor treatment. Syngeneic heterotopic heart transplant recipients with PCI were treated with PC61 (monoclonal anti-CD25 antibodies), adoptive cell transfer with Tregs, and rapamycin. Results We unveiled that both rapamycin treatment and adoptive transfer of Tregs could lead to a remarkable decrease of frequency of splenic Gr1+ cells (P=0.058 and P=0.016, respectively). Although administration of PC61 did not affect frequency of splenic Gr1+ cells, it dramatically increased frequency of splenic F4/80+ macrophages (P=0.052). Intriguingly, use of both exogenous PC61 and rapamycin induced a dramatic augmentation of frequency of Gr-1+ neutrophils in the grafts (PC61: P=0.00029; rapamycin: P=0.0096). Noticeably, all different regimens including PC61, rapamycin, and adoptive transfer of Tregs, consistently resulted in a remarked augmentation of frequency of F4/80+ macrophages within grafts (PC61, P=0.0013; rapamycin, P=0.015; Tregs transfer, P=0.013). Although rapamycin and adoptive transfer of Tregs did not affect frequency of NK1.1+ cells, administration of PC61 dramatically increased frequency of NK1.1+ cells within grafts (P=0.033). Conclusions Tregs depletion or Tregs induced by rapamycin or exogenous cell transfer could affect frequencies of both splenic and intragraft neutrophils, macrophages, and NK cells, but not splenic NK cells. Our data might shed light on understanding sensitized transplant biology.
Collapse
Affiliation(s)
- Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland).,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Baoqing Liu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Juntao Chen
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Chen Liu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Zhonghua Shen
- Department of Cardiac Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
9
|
Purroy C, Fairchild RL, Tanaka T, Baldwin WM, Manrique J, Madsen JC, Colvin RB, Alessandrini A, Blazar BR, Fribourg M, Donadei C, Maggiore U, Heeger PS, Cravedi P. Erythropoietin Receptor-Mediated Molecular Crosstalk Promotes T Cell Immunoregulation and Transplant Survival. J Am Soc Nephrol 2017; 28:2377-2392. [PMID: 28302753 PMCID: PMC5533236 DOI: 10.1681/asn.2016101100] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/30/2017] [Indexed: 01/14/2023] Open
Abstract
Although spontaneous kidney transplant acceptance/tolerance occurs in mice and occasionally in humans, mechanisms remain unclear. Herein we test the hypothesis that EPO, a hormone predominantly produced by the adult kidney, has immunomodulating properties that are required for spontaneous kidney graft acceptance. In vitro, in a manner dependent on the EPO receptor and CD131 on antigen-presenting cells, EPO induced the secretion of active TGFβ by antigen-presenting cells, which in turn converted naïve CD4+ T cells into functional Foxp3+ regulatory T cells (Treg). In murine transplant models, pharmacologic downregulation of kidney-derived EPO prevented spontaneous Treg generation. In a controlled, prospective cohort clinical study, EPO administration at doses used to correct anemia augmented the frequency of peripheral CD4+CD25+CD127lo T cells in humans with CKD. Furthermore, EPO directly inhibited conventional T cell proliferation in vitro via tyrosine phosphatase SHP-1-dependent uncoupling of IL-2Rβ signaling. Conversely, EPO-initiated signals facilitated Treg proliferation by augmenting IL-2Rγ signaling and maintaining constitutively quenched IL-2Rβ signaling. In additional murine transplant models, recombinant EPO administration prolonged heart allograft survival, whereas pharmacologic downregulation of kidney-derived EPO reduced the expression of TGFβ mRNA and abrogated kidney allograft acceptance. Together, our findings delineate the protolerogenic properties of EPO in inhibiting conventional T cells while simultaneously promoting Treg induction, and suggest that manipulating the EPO/EPO receptor signaling axis could be exploited to prevent and/or treat T cell-mediated pathologies, including transplant rejection.
Collapse
Affiliation(s)
- Carolina Purroy
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute and
- Nephrology Service, Complejo Hospitalario de Navarra, Pamplona, Spain
| | | | - Toshiaki Tanaka
- Department of Immunology, The Cleveland Clinic, Cleveland, Ohio
| | | | - Joaquin Manrique
- Nephrology Service, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Joren C Madsen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robert B Colvin
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota; and
| | - Miguel Fribourg
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chiara Donadei
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute and
| | - Umberto Maggiore
- Kidney and Pancreas Transplantation Unit, University Hospital of Parma, Parma, Italy
| | - Peter S Heeger
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute and
| | - Paolo Cravedi
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute and
| |
Collapse
|
10
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
11
|
Vinnakota KC, Cha CY, Rorsman P, Balaban RS, La Gerche A, Wade-Martins R, Beard DA, Jeneson JAL. Improving the physiological realism of experimental models. Interface Focus 2016; 6:20150076. [PMID: 27051507 PMCID: PMC4759746 DOI: 10.1098/rsfs.2015.0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.
Collapse
Affiliation(s)
- Kalyan C. Vinnakota
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Chae Y. Cha
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Robert S. Balaban
- Laboratory of Cardiac Energetics, National Heart Lung Blood Institute, Bethesda, MD, USA
| | - Andre La Gerche
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Daniel A. Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jeroen A. L. Jeneson
- Neuroimaging Centre, Division of Neuroscience, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|