1
|
Rao JS, Pruett TL. Immunology of the transplanted cryopreserved kidney. Cryobiology 2023; 110:1-7. [PMID: 36640932 DOI: 10.1016/j.cryobiol.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Transplantation has substituted dysfunctional organs with healthy organs from donors to significantly lower morbidity and mortality associated with end-stage organ disease. Since the advent of transplantation, the promise of functional replacement has attracted an exponential mismatch between organ supply and demand. Theoretical proposals to counter the increasing needs have either been to create a source through genetic engineering of porcine donors for xenotransplantation (with more potent immunosuppression protocols) or recreate one's organ in a pig using interspecies blastocyst complementation for exogenic organ transplantation (without immunosuppression). Another promising avenue has been organ banking through cryopreservation for transplantation. Although ice free preservation and acceptable early function following rewarming is critical for success in transplantation, the immunological response that predominantly defines short- and long-term graft survival has failed to captivate attention to date. It is well sorted that thermal and metabolic stress incurred at 4 °C during recovery and reperfusion of organs for clinical transplantation has varying impact on graft survival. Considering the magnitude of cellular imbalance and injury at sub-zero/ultralow temperatures in addition to the chemical toxicity of cryoprotective agents (CPA), it is essential to assess and address the immunological response associated following transplantation to maximize the success of cryopreservation.
Collapse
Affiliation(s)
- Joseph Sushil Rao
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, USA; Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| | - Timothy L Pruett
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Woud WW, Arykbaeva AS, Alwayn IP, Baan CC, Minnee RC, Hoogduijn MJ, Boer K. Extracellular Vesicles Released During Normothermic Machine Perfusion Are Associated With Human Donor Kidney Characteristics. Transplantation 2022; 106:2360-2369. [PMID: 35749756 PMCID: PMC9698093 DOI: 10.1097/tp.0000000000004215] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) are tissue-specific particles released by cells containing valuable diagnostic information in the form of various biomolecules. The characterization of EVs released by kidney grafts during normothermic machine perfusion (NMP) may present a promising avenue to assess graft status before transplantation. METHODS We phenotyped and determined the concentrations of EVs in the perfusate of 8 discarded expanded-criteria donor human kidneys during 6 h of NMP. Perfusate samples were taken at 0/60/180/360 min and examined with nanoparticle tracking analysis and imaging flow cytometry (IFCM). Using IFCM, EVs were identified by their expression of common EV markers CD9, CD63, and CD81 (tetraspanins) in combination with either platelet endothelial cell adhesion molecule (CD31), pan-leukocyte protein (CD45), or carboxyfluorescein succiminidyl ester (CFSE) fluorescence. RESULTS Nanoparticle tracking analysis measurements revealed the release of nanoparticles <400 nm into the perfusate during NMP. With IFCM, tetraspanin protein signatures of the released nanoparticles were characterized, and the majority (~75%) of CFSE+ EVs were found to be CD81+, whereas ~16% were CD9+ and ~8% CD63+. Correlation analysis of concentrations of identified EV subsets with crude donor characteristics and NMP viability characteristics revealed significant correlations with cold ischemia time, donor age, and renal flow. CONCLUSIONS Our findings demonstrate that discarded expanded-criteria donor kidney grafts release distinct EV subsets during NMP. Because these subsets correlate with well-established indicators of transplant outcome, EVs might represent new potential candidates for assessment of kidney graft quality.
Collapse
Affiliation(s)
- Wouter W. Woud
- Department of Internal Medicine, University Medical Center Rotterdam, Erasmus MC Transplant Institute, Rotterdam, The Netherlands
| | - Asel S. Arykbaeva
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Ian P.J. Alwayn
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Carla C. Baan
- Department of Internal Medicine, University Medical Center Rotterdam, Erasmus MC Transplant Institute, Rotterdam, The Netherlands
| | - Robert C. Minnee
- Division of Hepato-Pancreato-Biliary and Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam,The Netherlands
| | - Martin J. Hoogduijn
- Department of Internal Medicine, University Medical Center Rotterdam, Erasmus MC Transplant Institute, Rotterdam, The Netherlands
| | - Karin Boer
- Department of Internal Medicine, University Medical Center Rotterdam, Erasmus MC Transplant Institute, Rotterdam, The Netherlands
| |
Collapse
|
3
|
van Leeuwen LL, Leuvenink HGD, Olinga P, Ruigrok MJR. Shifting Paradigms for Suppressing Fibrosis in Kidney Transplants: Supplementing Perfusion Solutions With Anti-fibrotic Drugs. Front Med (Lausanne) 2022; 8:806774. [PMID: 35083254 PMCID: PMC8784659 DOI: 10.3389/fmed.2021.806774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Great efforts have been made toward addressing the demand for donor kidneys. One of the most promising approaches is to use kidneys from donation after circulatory death donors. These kidneys, however, suffer from more severe ischemia and reperfusion injury than those obtained via donation after brain death and are thus more prone to develop interstitial fibrosis and tubular atrophy. Even though machine perfusion is increasingly used to reduce ischemia and reperfusion injury, there are no effective treatments available to ameliorate interstitial fibrosis and tubular atrophy, forcing patients to resume dialysis, undergo re-transplantation, or suffer from premature death. Safe and effective anti-fibrotic therapies are therefore greatly desired. We propose a new therapeutic approach in which machine perfusion solutions are supplemented with anti-fibrotic compounds. This allows the use of higher concentrations than those used in humans whilst eliminating side effects in other organs. To the authors' knowledge, no one has reviewed whether such an approach could reduce interstitial fibrosis and tubular atrophy; we therefore set out to explore its merit. In this review, we first provide background information on ischemia and reperfusion injury as well as interstitial fibrosis and tubular atrophy, after which we describe currently available approaches for preserving donor kidneys. We then present an evaluation of selected compounds. To identify promising compounds, we analyzed publications describing the effects of anti-fibrotic molecules in precision-cut kidneys slices, which are viable explants that can be cultured ex vivo for up to a few days whilst retaining functional and structural features. LY2109761, galunisertib, imatinib, nintedanib, and butaprost were shown to exert anti-fibrotic effects in slices within a relatively short timeframe (<48 h) and are therefore considered to be excellent candidates for follow-up ex vivo machine perfusion studies.
Collapse
Affiliation(s)
- L. Leonie van Leeuwen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Mitchel J. R. Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
4
|
Hussain B, Kasinath V, Madsen JC, Bromberg J, Tullius SG, Abdi R. Intra-Organ Delivery of Nanotherapeutics for Organ Transplantation. ACS NANO 2021; 15:17124-17136. [PMID: 34714050 PMCID: PMC9050969 DOI: 10.1021/acsnano.1c04707] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Targeted delivery of therapeutics through the use of nanoparticles (NPs) has emerged as a promising method that increases their efficacy and reduces their side effects. NPs can be tailored to localize to selective tissues through conjugation to ligands that bind cell-specific receptors. Although the vast majority of nanodelivery platforms have focused on cancer therapy, efforts have begun to introduce nanotherapeutics to the fields of immunology as well as transplantation. In this review, we provide an overview from a clinician's perspective of current nanotherapeutic strategies to treat solid organ transplants with NPs during the time interval between organ harvest from the donor and placement into the recipient, an innovative technology that can provide major benefits to transplant patients. The use of ex vivo normothermic machine perfusion (NMP), which is associated with preserving the function of the organ following transplantation, also provides an ideal opportunity for a localized, sustained, and controlled delivery of nanotherapeutics to the organ during this critical time period. Here, we summarize previous endeavors to improve transplantation outcomes by treating the organ with NPs prior to placement in the recipient. Investigations in this burgeoning field of research are promising, but more extensive studies are needed to overcome the physiological challenges to achieving effective nanotherapeutic delivery to transplanted organs discussed in this review.
Collapse
Affiliation(s)
- Bilal Hussain
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Vivek Kasinath
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joren C. Madsen
- Department of Surgery and Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan Bromberg
- Departments of Surgery and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stefan G. Tullius
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Reza Abdi
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
5
|
Vallant N, Wolfhagen N, Sandhu B, Hamaoui K, Cook T, Pusey C, Papalois V. A Comparison of Pulsatile Hypothermic and Normothermic Ex Vivo Machine Perfusion in a Porcine Kidney Model. Transplantation 2021; 105:1760-1770. [PMID: 33560723 DOI: 10.1097/tp.0000000000003599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Hypothermic machine perfusion (HMP) is a well-established method for deceased donor kidney preservation. Normothermic machine perfusion (NMP) might offer similar or greater advantages. We compared the 2 methods in an ex vivo perfusion model using 34 porcine kidneys. METHODS Thirty kidneys were stored on ice for 24 h before undergoing 4 h of HMP (n = 15) or NMP (n = 15) followed by 2 h of normothermic ex vivo reperfusion with whole blood. Four kidneys underwent 28 h of cold static storage followed by 2 h of normothermic ex vivo reperfusion. During the 2 h of normothermic ex vivo reperfusion, perfusate flow rates, urinary output, and oxygen consumption rates were compared between all groups. RESULTS Porcine kidneys after HMP showed significantly higher urinary output (5.31 ± 2.06 versus 2.44 ± 1.19 mL/min; P = 0.002), oxygen consumption (22.71 ± 6.27 versus 11.83 ± 1.29 mL/min; P = 0.0016), and perfusate flow rates (46.24 ± 12.49 versus 26.16 ± 4.57 mL/min; P = 0.0051) than kidneys after NMP. TUNEL staining of tissue sections showed significantly higher rates of apoptosis in kidneys after NMP (P = 0.027). CONCLUSIONS In our study, the direct comparison of HMP and NMP kidney perfusion in a translational model demonstrated superiority of HMP; however, further in vivo studies would be needed to validate those results.
Collapse
Affiliation(s)
- Natalie Vallant
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Nienke Wolfhagen
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Bynvant Sandhu
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Karim Hamaoui
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Terence Cook
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Charles Pusey
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Vassilios Papalois
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Potential Applications of Extracellular Vesicles in Solid Organ Transplantation. Cells 2020; 9:cells9020369. [PMID: 32033489 PMCID: PMC7072603 DOI: 10.3390/cells9020369] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in cell-to-cell communication by delivering coding and non-coding RNA species and proteins to target cells. Recently, the therapeutic potential of EVs has been shown to extend to the field of solid organ transplantations. Mesenchymal stromal cell-derived EVs (MSC-EVs) in particular have been proposed as a new tool to improve graft survival, thanks to the modulation of tolerance toward the graft, and to their anti-fibrotic and pro-angiogenic effects. Moreover, MSC-EVs may reduce ischemia reperfusion injury, improving the recovery from acute damage. In addition, EVs currently considered helpful tools for preserving donor organs when administered before transplant in the context of hypothermic or normothermic perfusion machines. The addition of EVs to the perfusion solution, recently proposed for kidney, lung, and liver grafts, resulted in the amelioration of donor organ viability and functionality. EVs may therefore be of therapeutic interest in different aspects of the transplantation process for increasing the number of available organs and improving their long-term survival.
Collapse
|
7
|
Nanoparticle Release by Extended Criteria Donor Kidneys During Normothermic Machine Perfusion. Transplantation 2019; 103:e110-e111. [PMID: 31033854 DOI: 10.1097/tp.0000000000002642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
The Benefits of Hypothermic Machine Preservation and Short Cold Ischemia Times in Deceased Donor Kidneys. Transplantation 2019; 102:1344-1350. [PMID: 29570164 DOI: 10.1097/tp.0000000000002188] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Hypothermic machine perfusion (HMP) of deceased donor kidneys is associated with better outcome when compared to static cold storage (CS). Nevertheless, there is little evidence whether kidneys with short cold ischemia time (CIT) also benefit from HMP and whether HMP can safely extend CIT. METHODS We analyzed prospectively collected data from the Machine Preservation Trial, an international randomized controlled trial. Seven hundred fifty-two consecutive renal transplants were included: 1 kidney of each of the 376 donors was preserved by HMP, the contralateral organ was preserved by CS. RESULTS The mean CIT was 3:05 PM (SD, 4:58 AM). A subgroup analysis was performed, groups were based on CIT duration: 0 to 10 hours, 10 to 15 hours, 15 to 20 hours, or 20 hours or longer. Delayed graft function (DGF) incidence in the subgroup with up to 10 hours CIT was 6.0% (N = 3/50) in the HMP arm and 28.1% (N = 18/64) in the CS arm (univariable P = 0.002; multivariable odds ratio [OR], 0.02; P = 0.007). Cold ischemia time remained an independent risk factor for DGF for machine perfused kidneys recovered from donation after brain death donors (OR, 1.06; 95% confidence interval [CI], 1.017-1.117; P = 0.008), donation after circulatory death donors (OR, 1.13; 95% CI, 1.035-1.233; P = 0.006) and expanded criteria donors (OR, 1.14; 95% CI, 1.057-1.236; P = 0.001). CONCLUSIONS In conclusion, HMP resulted in remarkably lower rates of DGF in renal grafts that were transplanted after a short CIT. Also, CIT remained an independent risk factor for DGF in HMP-preserved kidneys.
Collapse
|
9
|
Ritschl PV, Günther J, Hofhansel L, Kühl AA, Sattler A, Ernst S, Friedersdorff F, Ebner S, Weiss S, Bösmüller C, Weissenbacher A, Oberhuber R, Cardini B, Öllinger R, Schneeberger S, Biebl M, Denecke C, Margreiter C, Resch T, Aigner F, Maglione M, Pratschke J, Kotsch K. Graft Pre-conditioning by Peri-Operative Perfusion of Kidney Allografts With Rabbit Anti-human T-lymphocyte Globulin Results in Improved Kidney Graft Function in the Early Post-transplantation Period-a Prospective, Randomized Placebo-Controlled Trial. Front Immunol 2018; 9:1911. [PMID: 30197644 PMCID: PMC6117415 DOI: 10.3389/fimmu.2018.01911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction: Although prone to a higher degree of ischemia reperfusion injury (IRI), the use of extended criteria donor (ECD) organs has become reality in transplantation. We therefore postulated that peri-operative perfusion of renal transplants with anti-human T-lymphocyte globulin (ATLG) ameliorates IRI and results in improved graft function. Methods: We performed a randomized, single-blinded, placebo-controlled trial involving 50 kidneys (KTx). Prior to implantation organs were perfused and incubated with ATLG (AP) (n = 24 kidney). Control organs (CP) were perfused with saline only (n = 26 kidney). Primary endpoint was defined as graft function reflected by serum creatinine at day 7 post transplantation (post-tx). Results: AP-KTx recipients illustrated significantly better graft function at day 7 post-tx as reflected by lower creatinine levels, whereas no treatment effect was observed after 12 months surveillance. During the early hospitalization phase, 16 of the 26 CP-KTx patients required dialysis during the first 7 days post-tx, whereas only 10 of the 24 AP-KTx patients underwent dialysis. No treatment-specific differences were detected for various lymphocytes subsets in the peripheral blood of patients. Additionally, mRNA analysis of 0-h biopsies post incubation with ATLG revealed no changes of intragraft inflammatory expression patterns between AP and CP organs. Conclusion: We here present the first clinical study on peri-operative organ perfusion with ATLG illustrating improved graft function in the early period post kidney transplantation. Clinical Trial Registration:www.ClinicalTrials.gov, NCT03377283
Collapse
Affiliation(s)
- Paul V Ritschl
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,BIH Charité Clinical Scientist Program, Berlin Institute of Health, Berlin, Germany
| | - Julia Günther
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Lena Hofhansel
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Anja A Kühl
- iPATH.Berlin-Immunopathology for Experimental Models, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arne Sattler
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Ernst
- Biostatistics Unit, Clinical Research Unit, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Susanne Ebner
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sascha Weiss
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Bösmüller
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Annemarie Weissenbacher
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Cardini
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Öllinger
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Biebl
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Denecke
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Margreiter
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Resch
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Aigner
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Manuel Maglione
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Pratschke
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katja Kotsch
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Ravaioli M, Baldassare M, Vasuri F, Pasquinelli G, Laggetta M, Valente S, De Pace V, Neri F, Siniscalchi A, Zanfi C, Bertuzzo VR, Caraceni P, Trerè D, Longobardi P, Pinna AD. Strategies to Restore Adenosine Triphosphate (ATP) Level After More than 20 Hours of Cold Ischemia Time in Human Marginal Kidney Grafts. Ann Transplant 2018; 23:34-44. [PMID: 29326416 PMCID: PMC6248038 DOI: 10.12659/aot.905406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The persisting organ shortage in the field of transplantation recommends the use of marginal kidneys which poorly tolerate ischemic damage. Adenosine triphosphate (ATP) depletion during cold ischemia time (CIT) is considered crucial for graft function. We tested different strategies of kidney perfusion before transplantation in the attempt to improve the technique. Material/Methods Twenty human discarded kidneys from donors after brain death and with at least 20 hours of CIT were randomized to the following experimental groups (treatment time three-hours at 4°C): a) static cold storage (CS); b) static cold hyperbaric oxygenation (Hyp); c) hypothermic perfusion (PE); d) hypothermic perfusion in hyperbaric oxygenation (PE-Hyp); and e) hypothermic oxygenated perfusion (PE-O2). Results Histological results showed that perfusion with or without oxygen did not produce any endothelial damage. A depletion of ATP content following the preservation procedure was observed in CS, PE, and Hyp, while PE-Hyp and PE-O2 were associated with a net increase of ATP content with respect to baseline level. In addition, PE-Hyp was associated with a significant downregulation of endothelial isoform of nitric oxide synthase (eNOS) gene expression and of hypoxia inducible factor-1α (HIF-1α). Conclusions Hyperbaric or normobaric oxygenation with perfusion improves organ metabolic preservation compared to other methods. This approach may prevent the onset of delayed graft function, but clinical trials are needed to confirm this.
Collapse
Affiliation(s)
- Matteo Ravaioli
- Department of General Surgery and Transplantation, University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Maurizio Baldassare
- Department of Medical and Surgical Sciences, Center for Applied Biomedical Research (C.R.B.A.), University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Francesco Vasuri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Gianandrea Pasquinelli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Maristella Laggetta
- Department of Medical and Surgical Sciences, Center for Applied Biomedical Research (C.R.B.A.), University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Sabrina Valente
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Vanessa De Pace
- Department of General Surgery and Transplantation, University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Flavia Neri
- Department of General Surgery and Transplantation, University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Antonio Siniscalchi
- Department of General Surgery and Transplantation, University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Chiara Zanfi
- Department of General Surgery and Transplantation, University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Valentina R Bertuzzo
- Department of General Surgery and Transplantation, University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Paolo Caraceni
- Department of Medical and Surgical Sciences, University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Davide Trerè
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Pasquale Longobardi
- Institute for Life Sciences, Superior School for Advanced Studies Sant'Anna, Pisa, Italy
| | - Antonio D Pinna
- Department of General Surgery and Transplantation, University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW This article summarizes novel developments in hypothermic machine perfusion (HMP) as an organ preservation modality for kidneys recovered from deceased donors. RECENT FINDINGS HMP has undergone a renaissance in recent years. This renewed interest has arisen parallel to a shift in paradigms; not only optimal preservation of an often marginal quality graft is required, but also improved graft function and tools to predict the latter are expected from HMP. The focus of attention in this field is currently drawn to the protection of endothelial integrity by means of additives to the perfusion solution, improvement of the HMP solution, choice of temperature, duration of perfusion, and machine settings. HMP may offer the opportunity to assess aspects of graft viability before transplantation, which can potentially aid preselection of grafts based on characteristics such as perfusate biomarkers, as well as measurement of machine perfusion dynamics parameters. SUMMARY HMP has proven to be beneficial as a kidney preservation method for all types of renal grafts, most notably those retrieved from extended criteria donors. Large numbers of variables during HMP, such as duration, machine settings and additives to the perfusion solution are currently being investigated to improve renal function and graft survival. In addition, the search for biomarkers has become a focus of attention to predict graft function posttransplant.
Collapse
|
12
|
Short, Cool, and Well Oxygenated - HOPE for Kidney Transplantation in a Rodent Model. Ann Surg 2017; 264:815-822. [PMID: 27584571 DOI: 10.1097/sla.0000000000001766] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES The aim of this study was to investigate novel and easily applicable preservation perfusion techniques in kidney grafts obtained from donors after circulatory death (DCD). BACKGROUND A novel perfusion approach, hypothermic oxygenated perfusion (HOPE), used for DCD liver grafts, is based on cold perfusion for 1 hour by an oxygenated solution before implantation. Here, we aimed to test HOPE in a rodent model of kidney grafts associated with substantial warm ischemia. METHODS Rat kidneys were exposed to 30 minutes in situ warm ischemia, without application of heparin. Kidneys were removed and cold stored for 4 and 18 hours, mimicking DCD organ procurement and conventional preservation. In additional experiments, kidneys were normothermically perfused with oxygenated blood for 1 hour after cold storage. In a third group, kidneys were perfused by HOPE for 1 hour after cold storage. In each group, orthotopic kidney transplantation was performed after recipient nephrectomy. RESULTS HOPE-treated DCD kidneys showed dramatically better function after transplantation, than cold-stored grafts in terms of nuclear injury, macrophage activation, endothelium activation, tubulus damage, and graft function. A short period of warm oxygenated perfusion before implantation improved graft quality as compared with cold storage, but was significantly less effective in all endpoints compared with HOPE. The effect of HOPE was dependent on perfusate oxygenation in the cold. CONCLUSIONS HOPE of DCD kidneys was superior to other clinically used preservation approaches, consistent to earlier results in livers. On the basis of this, we assume a strong and generalized effect on solid organ viability by HOPE before transplantation. These results justify a clinical trial.
Collapse
|
13
|
Patel K, Atkinson C, Tran D, Nadig SN. Nanotechnological Approaches to Immunosuppression and Tolerance Induction. CURRENT TRANSPLANTATION REPORTS 2017; 4:159-168. [PMID: 29057203 DOI: 10.1007/s40472-017-0146-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Several preclinical studies have engineered nanoparticles for immune regulation, and have shown promising results in the fields of autoimmunity and cancer. In solid organ transplantation, the use of nanoparticle-based immune regulation has only just begun to emerge but holds significant promise for the improvement of our current standard of care immunosuppressive regimens. In this review, we will shed light on the current status of nanoparticle-engineered immunotherapeutics, and the potential application of these technologies to the field of organ transplantation. Further we discuss different strategies for delivery and potential cellular targeting moieties that could be utilized to obviate the need for high dose systemic immunosuppressive regimens. RECENT FINDINGS Recent studies have shown the potential of immunosuppressive laden nanoparticles to increase bioavailability, drug release, and specifically target immune cell compartments as methods to provide recipient immunosuppressive sparing strategies. SUMMARY Nanoparticle centered immunosuppressive strategies hold the potential to usher in a new era in transplant recipient management and could hold the key to minimizing off-target effects of immunosuppressants, along with prolonging transplant survival.
Collapse
Affiliation(s)
- Kunal Patel
- Department of Surgery, Division of Transplantation, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery, Division of Transplantation, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Carl Atkinson
- Department of Surgery, Division of Transplantation, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery, Division of Transplantation, Medical University of South Carolina, Charleston, South Carolina, USA
- South Carolina Investigators in Transplantation, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Danh Tran
- Department of Surgery, Division of Transplantation, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery, Division of Transplantation, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Satish N Nadig
- Department of Surgery, Division of Transplantation, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery, Division of Transplantation, Medical University of South Carolina, Charleston, South Carolina, USA
- South Carolina Investigators in Transplantation, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
14
|
Minor T, Sutschet K, Witzke O, Paul A, Gallinat A. Prediction of renal function upon reperfusion by ex situ controlled oxygenated rewarming. Eur J Clin Invest 2016; 46:1024-1030. [PMID: 27718228 PMCID: PMC6120142 DOI: 10.1111/eci.12687] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/05/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Post-transplant function of suboptimal kidney grafts can be improved but not accurately predicted by hypothermic machine perfusion. Therefore, a new concept of ex situ pre-implantation machine perfusion with controlled rewarming up to subnormothermic temperatures was developed and evaluated. MATERIALS AND METHODS Porcine kidneys (n = 6/group) were retrieved before or 30 min after cardiac arrest of the donor and subjected to 18 h of static cold storage. In some cases, 90 min of machine-controlled oxygenated rewarming (COR) was added thereafter. Functional integrity was evaluated in all kidneys by subsequent normothermic reperfusion in vitro. After supplementation of the preservation solution (Custodiol-N solution + 5 g/L dextran 40) with 10 mg/dL creatinine, ex situ renal function was assessed by monitoring urine output, urinary creatinine and creatinine clearance at 20 °C. Functional integrity was evaluated in all kidneys by normothermic reperfusion. RESULTS COR resulted in a more than twofold improvement of postreperfusion creatinine clearance, oxygen consumption and enzyme release upon reperfusion, when compared with static cold storage. Predictive discrimination between kidneys with good or impaired function upon reperfusion based on parameters during perfusion at 4 °C was only moderate. This improved significantly at 20 °C. Correlation with renal clearance upon reperfusion was weak for vascular resistance at 8° (r2 = 0·2) and 20 °C (r2 = 0·41). Best correlation was found for clearance measurements at 20° (r2 = 0·81). CONCLUSIONS Reconditioning by controlled oxygenated rewarming up to 20 °C improves renal function after reperfusion and can be utilized to assess graft integrity of predamaged donor kidneys.
Collapse
Affiliation(s)
- Thomas Minor
- Department for Surgical Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Katja Sutschet
- Surgical Research Division, University Clinic of Surgery, Bonn, Germany
| | - Oliver Witzke
- Clinic for Infectiology University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Paul
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anja Gallinat
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
Nashan B, Abbud-Filho M, Citterio F. Prediction, prevention, and management of delayed graft function: where are we now? Clin Transplant 2016; 30:1198-1208. [PMID: 27543840 DOI: 10.1111/ctr.12832] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2016] [Indexed: 12/28/2022]
Abstract
Delayed graft function (DGF) remains a major barrier to improved outcomes after kidney transplantation. High-risk transplant recipients can be identified, but no definitive prediction model exists. Novel biomarkers to predict DGF in the first hours post-transplant, such as neutrophil gelatinase-associated lipocalin (NGAL), are under investigation. Donor management to minimize the profound physiological consequences of brain death is highly complex. A hormonal resuscitation package to manage the catecholamine "storm" that follows brain death is recommended. Donor pretreatment with dopamine prior to procurement lowers the rate of DGF. Hypothermic machine perfusion may offer a significant reduction in the rate of DGF vs simple cold storage, but costs need to be evaluated. Surgically, reducing warm ischemia time may be advantageous. Research into recipient preconditioning options has so far not generated clinically helpful interventions. Diagnostic criteria for DGF vary, but requirement for dialysis and/or persistent high serum creatinine is likely to remain key to diagnosis until current work on early biomarkers has progressed further. Management centers on close monitoring of graft (non)function and physiological parameters. With so many unanswered questions, substantial reductions in the toll of DGF in the near future seem unlikely but concentrated research on many levels offers long-term promise.
Collapse
Affiliation(s)
- Björn Nashan
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Mario Abbud-Filho
- Department of Nephrology, Medical School FAMERP, Director Organ Transplantation Center Foundation FUNFARME, São José do Rio Preto, SP, Brazil
| | - Franco Citterio
- Department of Surgery, Renal Transplantation, Catholic University, Rome, Italy
| |
Collapse
|