1
|
Naaz A, Turnquist HR, Gorantla VS, Little SR. Drug delivery strategies for local immunomodulation in transplantation: Bridging the translational gap. Adv Drug Deliv Rev 2024; 213:115429. [PMID: 39142608 DOI: 10.1016/j.addr.2024.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Drug delivery strategies for local immunomodulation hold tremendous promise compared to current clinical gold-standard systemic immunosuppression as they could improve the benefit to risk ratio of life-saving or life-enhancing transplants. Such strategies have facilitated prolonged graft survival in animal models at lower drug doses while minimizing off-target effects. Despite the promising outcomes in preclinical animal studies, progression of these strategies to clinical trials has faced challenges. A comprehensive understanding of the translational barriers is a critical first step towards clinical validation of effective immunomodulatory drug delivery protocols proven for safety and tolerability in pre-clinical animal models. This review overviews the current state-of-the-art in local immunomodulatory strategies for transplantation and outlines the key challenges hindering their clinical translation.
Collapse
Affiliation(s)
- Afsana Naaz
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15213, United States.
| | - Heth R Turnquist
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States.
| | - Vijay S Gorantla
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States; Departments of Surgery, Ophthalmology and Bioengineering, Wake Forest School of Medicine, Wake Forest Institute of Regenerative Medicine, Winston Salem, NC, 27101, United States.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
2
|
Tseng HT, Lin YW, Huang CY, Shih CM, Tsai YT, Liu CW, Tsai CS, Lin FY. Animal Models for Heart Transplantation Focusing on the Pathological Conditions. Biomedicines 2023; 11:biomedicines11051414. [PMID: 37239085 DOI: 10.3390/biomedicines11051414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiac transplant recipients face many complications due to transplant rejection. Scientists must conduct animal experiments to study disease onset mechanisms and develop countermeasures. Therefore, many animal models have been developed for research topics including immunopathology of graft rejection, immunosuppressive therapies, anastomotic techniques, and graft preservation techniques. Small experimental animals include rodents, rabbits, and guinea pigs. They have a high metabolic rate, high reproductive rate, small size for easy handling, and low cost. Additionally, they have genetically modified strains for pathological mechanisms research; however, there is a lacuna, as these research results rarely translate directly to clinical applications. Large animals, including canines, pigs, and non-human primates, have anatomical structures and physiological states that are similar to those of humans; therefore, they are often used to validate the results obtained from small animal studies and directly speculate on the feasibility of applying these results in clinical practice. Before 2023, PubMed Central® at the United States National Institute of Health's National Library of Medicine was used for literature searches on the animal models for heart transplantation focusing on the pathological conditions. Unpublished reports and abstracts from conferences were excluded from this review article. We discussed the applications of small- and large-animal models in heart transplantation-related studies. This review article aimed to provide researchers with a complete understanding of animal models for heart transplantation by focusing on the pathological conditions created by each model.
Collapse
Affiliation(s)
- Horng-Ta Tseng
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Wen Lin
- Institute of Oral Biology, National Yang Ming Chiao Tung University (Yangming Campus), Taipei 112304, Taiwan
| | - Chun-Yao Huang
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Ming Shih
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Ting Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, Defense Medical Center, Taipei 11490, Taiwan
| | - Chen-Wei Liu
- Department of Basic Medical Science, College of Medicine, University of Arizona, Phoenix, AZ 85721, USA
| | - Chien-Sung Tsai
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Surgery, Tri-Service General Hospital, Defense Medical Center, Taipei 11490, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Feng-Yen Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Yu W, Ye F, Yuan X, Ma Y, Mao C, Li X, Li J, Dai C, Qian F, Li J, Fan X, Zhou Y, Wang D, Guo Z, An H, Zhang M, Chen D, Xia S. A phase I/II clinical trial on the efficacy and safety of NKT cells combined with gefitinib for advanced EGFR-mutated non-small-cell lung cancer. BMC Cancer 2021; 21:877. [PMID: 34332557 PMCID: PMC8325186 DOI: 10.1186/s12885-021-08590-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, have achieved good efficacy in EGFR mutation-positive non-small-cell lung cancer (NSCLC) patients, but eventual drug resistance is inevitable. Thus, new TKI-based combination therapies should be urgently explored to extend the overall survival time of these patients. CD8 + CD56+ natural killer T (NKT) cells are a natural and unique subset of lymphocytes in humans that present characteristics of T and NK cells and exert cytotoxicity on tumour cells in a granzyme B-dependent manner. The aim of this trial was to explore the efficacy and safety of CD8 + CD56+ NKT cell immunotherapy combined with gefitinib in patients with advanced EGFR-mutated NSCLC. Methods The study was designed as a prospective, randomized, controlled, open-label, phase I/II trial that includes 30 patients with EGFR mutation-positive stage III/IV NSCLC. All patients will be randomized in blocks at a 1:1 ratio and treated with gefitinib 250 mg/day monotherapy or combination therapy with allogeneic CD8 + CD56+ NKT cell infusions twice per month for 12 cycles or until disease progression occurs. The effectiveness of this treatment will be evaluated based on by progression-free survival (PFS), the time to progression (TTP), overall response rate (ORR), disease control rate (DCR) and overall survival (OS). The safety of the trail is being assessed based on adverse events (AEs). Recruitment and data collection, which started in December 2017, are ongoing. Discussion Although immunotherapy, including programmed death-1/programmed death-1 ligand (PD-1/PD-L1) immunotherapy, has been used for NSCLC treatment with or without EGFR-TKIs, its clear efficacy still has not been shown. Assessing the safety and therapeutic potential of allogeneic CD8 + CD56+ NKT killer cells in combination with EGFR-TKIs in NSCLC will be of great interest. Trial registration This trial (Phase I/II Trails of NKT Cell in Combination With Gefitinib For Non Small Cell Lung Cancer) was registered on 21 November 2017 with www.chictr.org.cn, ChiCTR-IIR-17013471. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08590-1.
Collapse
Affiliation(s)
- Wanjun Yu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fei Ye
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Yuan
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yali Ma
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jian Li
- Department of Respiratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chunhua Dai
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fenhong Qian
- Department of Respiratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Junrong Li
- Department of Epidemiology and Biostatistics, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiujuan Fan
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuepeng Zhou
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Huazhang An
- Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Beijing, China.
| | - Deyu Chen
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
4
|
Hundrieser J, Hein R, Pokoyski C, Brinkmann A, Düvel H, Dinkel A, Trautewig B, Siegert JF, Römermann D, Petersen B, Schwinzer R. Role of human and porcine MHC DRB1 alleles in determining the intensity of individual human anti-pig T-cell responses. Xenotransplantation 2019; 26:e12523. [PMID: 31074044 DOI: 10.1111/xen.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Differences in quality and strength of immune responses between individuals are mainly due to polymorphisms in major histocompatibility complex (MHC) molecules. Focusing on MHC class-II, we asked whether the intensity of human anti-pig T-cell responses is influenced by genetic variability in the human HLA-DRB1 and/or the porcine SLA-DRB1 locus. METHODS ELISpot assays were performed using peripheral blood mononuclear cells (PBMCs) from 62 HLA-DRB1-typed blood donors as responder and the porcine B cell line L23 as stimulator cells. Based on the frequency of IFN-γ-secreting cells, groups of weak, medium, and strong responder individuals were defined. Mixed lymphocyte reaction (MLR) assays were performed to study the stimulatory capacity of porcine PBMCs expressing different SLA-DRB1 alleles. RESULTS Concerning the MHC class-II configuration of human cells, we found a significant overrepresentation of HLA-DRB1*01 alleles in the medium/strong responder group as compared to individuals showing weak responses to stimulation with L23 cells. Evaluation of the role of MHC class-II variability in porcine stimulators revealed that cells expressing SLA-DRB1*06 alleles triggered strong proliferation in approximately 70% of humans. Comparison of amino acid sequences indicated that strong human anti-pig reactivity may be associated with a high rate of similarity between human and pig HLA/SLA-DRB1 alleles. CONCLUSION Variability in human and porcine MHC determines the intensity of individual human anti-pig T-cell responses. MHC typing and cross-matching of prospective recipients of xenografts and donor pigs could be relevant to select for donor-recipient combinations with minimal anti-porcine immunity.
Collapse
Affiliation(s)
- Joachim Hundrieser
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Rabea Hein
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Claudia Pokoyski
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Antje Brinkmann
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Heike Düvel
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Astrid Dinkel
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Britta Trautewig
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Janina-Franziska Siegert
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Dorothee Römermann
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Reinhard Schwinzer
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
No Evidence for Cross-reactivity of Virus-specific Antibodies With HLA Alloantigens. Transplantation 2018; 102:1844-1849. [DOI: 10.1097/tp.0000000000002369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Wehmeier C, Hönger G, Cun H, Amico P, Hirt-Minkowski P, Georgalis A, Hopfer H, Dickenmann M, Steiger J, Schaub S. Donor Specificity but Not Broadness of Sensitization Is Associated With Antibody-Mediated Rejection and Graft Loss in Renal Allograft Recipients. Am J Transplant 2017; 17:2092-2102. [PMID: 28245084 DOI: 10.1111/ajt.14247] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 01/25/2023]
Abstract
Panel-reactive antibodies are widely regarded as an important immunological risk factor for rejection and graft loss. The broadness of sensitization against HLA is most appropriately measured by the "calculated population-reactive antibodies" (cPRA) value. In this study, we investigated whether cPRA represent an immunological risk in times of sensitive and accurate determination of pretransplantation donor-specific HLA antibodies (DSA). Five hundred twenty-seven consecutive transplantations were divided into four groups: cPRA 0% (n = 250), cPRA 1-50% (n = 129), cPRA 51-100% (n = 43), and DSA (n = 105). Patients without DSA were considered as normal risk and received standard immunosuppression without T cell-depleting induction. Patients with DSA received an enhanced induction therapy and maintenance immunosuppression. Surveillance biopsies were performed at 3 and 6 months. Median follow-up was 5.7 years. Among the three cPRA groups, there were no differences regarding the 1-year incidence of ABMR (p = 0.16) and TCMR (p = 0.75). The 5-year allograft survival rates were similar and around 87% (p = 0.28). The estimated glomerular filtration rate at last follow-up was 50-53 mL/min (p = 0.45). On multivariable Cox proportional hazard analysis, the strongest independent predictor for ABMR and (death-censored) graft survival was pretransplantation DSA. cPRA were not predictive for ABMR, TCMR, or (death-censored) graft survival. We conclude that with current DSA assignment, the broadness of sensitization measured by cPRA does not imply an immunological risk.
Collapse
Affiliation(s)
- C Wehmeier
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - G Hönger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland.,HLA-Diagnostic and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Transplantation Immunology and Nephrology, Department of Biomedicine, University Basel, Basel, Switzerland
| | - H Cun
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - P Amico
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland.,HLA-Diagnostic and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - P Hirt-Minkowski
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - A Georgalis
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - H Hopfer
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | - M Dickenmann
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - J Steiger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - S Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland.,HLA-Diagnostic and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Transplantation Immunology and Nephrology, Department of Biomedicine, University Basel, Basel, Switzerland
| |
Collapse
|
7
|
Yang K, Adin C, Shen Q, Lee LJ, Yu L, Fadda P, Samogyi A, Ham K, Xu L, Gilor C, Ziouzenkova O. Aldehyde dehydrogenase 1 a1 regulates energy metabolism in adipocytes from different species. Xenotransplantation 2017; 24. [PMID: 28718514 DOI: 10.1111/xen.12318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/09/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Survival and longevity of xenotransplants depend on immune function and ability to integrate energy metabolism between cells from different species. However, mechanisms for interspecies cross talk in energy metabolism are not well understood. White adipose tissue stores energy and is capable of mobilization and dissipation of energy as heat (thermogenesis) by adipocytes expressing uncoupling protein 1 (Ucp1). Both pathways are under the control of vitamin A metabolizing enzymes. Deficient retinoic acid production in aldehyde dehydrogenase 1 A1 (Aldh1a1) knockout adipocytes (KO) inhibits adipogenesis and increases thermogenesis. Here we test the role Aldh1a1 in regulation of lipid metabolism in xenocultures. METHODS Murine wide-type (WT) and KO pre-adipocytes were encapsulated into a poly-L-lysine polymer that allows exchange of humoral factors <32kD via nanopores. Encapsulated murine adipocytes were co-incubated with primary differentiated canine adipocytes. Then, expression of adipogenic and thermogenic genes in differentiated canine adipocytes was detected by real-time polymerase chain reaction (PCR). The regulatory factors in WT and KO cells were identified by comparison of secretome using proteomics and in transcriptome by gene microarray. RESULTS Co-culture of encapsulated mouse KO vs WT adipocytes increased expression of peroxisome proliferator-activated receptor gamma (Pparg), but reduced expression of its target genes fatty acid binding protein 4 (Fabp4), and adipose triglyceride lipase (Atgl) in canine adipocytes, suggesting inhibition of PPARγ activation. Co-culture with KO adipocytes also induced expression of Ucp1 in canine adipocytes compared to expression in WT adipocytes. Cumulatively, murine KO compared to WT adipocytes decreased lipid accumulation in canine adipocytes. Comparative proteomics revealed significantly higher levels of vitamin A carriers, retinol binding protein 4 (RBP4), and lipokalin 2 (LCN2) in KO vs WT adipocytes. CONCLUSIONS Our data demonstrate the functional exchange of regulatory factors between adipocytes from different species for regulation of energy balance. RBP4 and LCN2 appear to be involved in the transport of retinoids for regulation of lipid accumulation and thermogenesis in xenocultures. While the rarity of thermogenic adipocytes in humans and dogs precludes their use for autologous transplantation, our study demonstrates that xenotransplantation of engineered cells could be a potential solution for the reduction in obesity in dogs and a strategy for translation to patients.
Collapse
Affiliation(s)
- Kefeng Yang
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA.,Department of Nutrition, School of Medical, Shanghai Jiao Tong University, Shanghai, China
| | - Christopher Adin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Qiwen Shen
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Ly James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Lianbo Yu
- Department of Statistics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Arpad Samogyi
- Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, USA
| | - Kathleen Ham
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - Lu Xu
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA.,Department of Minimally Invasive Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chen Gilor
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | | |
Collapse
|
8
|
Kenney LL, Shultz LD, Greiner DL, Brehm MA. Humanized Mouse Models for Transplant Immunology. Am J Transplant 2016; 16:389-97. [PMID: 26588186 PMCID: PMC5283075 DOI: 10.1111/ajt.13520] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 01/25/2023]
Abstract
Our understanding of the molecular pathways that control immune responses, particularly immunomodulatory molecules that control the extent and duration of an immune response, have led to new approaches in the field of transplantation immunology to induce allograft survival. These molecular pathways are being defined precisely in murine models and translated into clinical practice; however, many of the newly available drugs are human-specific reagents. Furthermore, many species-specific differences exist between mouse and human immune systems. Recent advances in the development of humanized mice, namely, immunodeficient mice engrafted with functional human immune systems, have led to the availability of a small animal model for the study of human immune responses. Humanized mice represent an important preclinical model system for evaluation of new drugs and identification of the mechanisms underlying human allograft rejection without putting patients at risk. This review highlights recent advances in the development of humanized mice and their use as preclinical models for the study of human allograft responses.
Collapse
Affiliation(s)
- Laurie L Kenney
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605
| | | | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605,Corresponding Author: Dale L. Greiner, PhD, University of Massachusetts Medical School, 368 Plantation Street, AS7-2051, Worcester, MA 01605, Office: 508-856-1911, Fax: 508-856-4093,
| | - Michael A. Brehm
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605
| |
Collapse
|