1
|
Wu K, Xu J, Jia Z, Wang J, Wang Z, Feng J, Zhu X, Liu Q, Wang B, Li M, Pang Y, Zou J. Phylogeny and expression of ADAM10 and ADAM17 homologs in lamprey. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:321-334. [PMID: 36964830 DOI: 10.1007/s10695-023-01184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/10/2023] [Indexed: 05/04/2023]
Abstract
The ADAMs (a disintegrin and metalloproteinase) play regulatory roles in cell adhesion, migration and proteolysis. To explore the origin and evolution of ADAMs, this study identified the homologs of adam10 and adam17 in Lampetra morii and Lampetra japonica. Sequence analysis revealed that they share the same genomic structures with their counterparts in jawed vertebrates. The putative proteins possess conserved motifs, including a furin cut site (RXXR) for precursor processing, an enzyme catalytic motif (HEXGEHXXGXXH) for hydrolysis, and a Ca2+-binding motif (CGNXXXEXGEXCD) for stabilizing protein structure. In addition, a substrate recognition domain is present at the membrane-proximal region of lamprey ADAM17. The cytoplasmic region of lamprey ADAM10 contains a potential threonine phosphorylation site which has been shown to be activated by protein kinase C (PKC) in mammals. Both the adam10 and adam17 genes were constitutively expressed in the brain, kidney, and gills and were differentially regulated in the primary blood leukocytes by lipopolysaccharide (LPS) and pokeweed mitogen (PWM). Adam10 was induced by LPS but not PWM; conversely, adam17 was induced by PWM but not LPS. Taken together, our results suggest that the activation pathways and functions of ADAM10 and ADAM17 are conserved in agnathans.
Collapse
Affiliation(s)
- Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Bangjie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Mingjie Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yue Pang
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China.
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
3
|
Sun W, Zhang H, Wang H, Chiu YG, Wang M, Ritchlin CT, Kiernan A, Boyce BF, Xing L. Targeting Notch-Activated M1 Macrophages Attenuates Joint Tissue Damage in a Mouse Model of Inflammatory Arthritis. J Bone Miner Res 2017; 32:1469-1480. [PMID: 28256007 PMCID: PMC5489377 DOI: 10.1002/jbmr.3117] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/14/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
Expression levels of Notch signaling molecules are increased in synovium from patients with rheumatoid arthritis (RA). However, it is not known which cell type(s) in RA synovium have Notch activation or if they play a pathogenetic role in RA. Here, we used Hes1-GFP/TNF-transgenic (TNF-Tg) mice to investigate the role of cells with active Notch signaling (GFP+) in RA. The number of GFP+ cells was significantly increased in synovium in Hes1-GFP/TNF-Tg mice and about 60% of them were F4/80+ macrophages expressing the inflammatory macrophage (M1) marker. TNF-Tg mice transplanted with Hes1-GFP/TNF-Tg bone marrow (BM) had significantly more GFP+ cells in their synovium than in BM. Intraarticular injection of Hes1-GFP/TNF-Tg or Hes1-GFP+ BM macrophages into WT and TNF-Tg mice showed the highest synovial GFP+ cells in the TNF-Tg mice that received Hes1-GFP/TNF-Tg cells. Thapsigargin (THAP), a Notch inhibitor, decreased TNF-induced M1 and increased M2 numbers and reduced joint lesion, synovial M1s, and GFP+ cells in Hes1-GFP/TNF-Tg mice. THAP did not affect M1s from mice carrying a constitutively active Notch1. Thus, the main cells with activated Notch signaling in the inflamed synovium of TNF-Tg mice are M1s derived from BM and targeting them may represent a new therapeutic approach for patients with inflammatory arthritis. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hua Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yahui Grace Chiu
- Allergy/Immunology and Rheumatology Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Mengmeng Wang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher T Ritchlin
- Allergy/Immunology and Rheumatology Division, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research (CMSR), University of Rochester Medical Center, Rochester, NY, USA
| | - Amy Kiernan
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research (CMSR), University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research (CMSR), University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|