1
|
Farshbafnadi M, Razi S, Rezaei N. Transplantation. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
2
|
|
3
|
Fitch Z, Schmitz R, Kwun J, Hering B, Madsen J, Knechtle SJ. Transplant research in nonhuman primates to evaluate clinically relevant immune strategies in organ transplantation. Transplant Rev (Orlando) 2019; 33:115-129. [PMID: 31027947 PMCID: PMC6599548 DOI: 10.1016/j.trre.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
Abstract
Research in transplant immunology using non-human primate (NHP) species to evaluate immunologic strategies to prevent rejection and prolong allograft survival has yielded results that have translated successfully into human organ transplant patient management. Other therapies have not proceeded to human translation due to failure in NHP testing, arguably sparing humans the futility and risk of such testing. The NHP transplant models are ethically necessary for drug development in this field and provide the closest analogue to human transplant patients available. The refinement of this resource with respect to colony MHC typing, reagent and assay development, and availability to the research community has greatly enhanced knowledge about transplant immunology and drug development.
Collapse
Affiliation(s)
- Zachary Fitch
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA; Center for Transplantation Sciences, Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, White 510c, 55 Fruit Street, Boston, MA, USA
| | - Robin Schmitz
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Jean Kwun
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Bernhard Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Joren Madsen
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Stuart J Knechtle
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Emerging approaches and technologies in transplantation: the potential game changers. Cell Mol Immunol 2019; 16:334-342. [PMID: 30760918 DOI: 10.1038/s41423-019-0207-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 12/27/2022] Open
Abstract
Newly emerging technologies are rapidly changing conventional approaches to organ transplantation. In the modern era, the key challenges to transplantation include (1) how to best individualize and possibly eliminate the need for life-long immunosuppression and (2) how to expand the donor pool suitable for human transplantation. This article aims to provide readers with an updated review of three new technologies that address these challenges. First, single-cell RNA sequencing technology is rapidly evolving and has recently been employed in settings related to transplantation. The new sequencing data indicate an unprecedented cellular heterogeneity within organ transplants, as well as exciting new molecular signatures involved in alloimmune responses. Second, sophisticated nanotechnology platforms provide a means of therapeutically delivering immune modulating reagents to promote transplant tolerance. Tolerogenic nanoparticles with regulatory molecules and donor antigens are capable of targeting host immune responses with tremendous precision, which, in some cases, results in donor-specific tolerance. Third, CRISPR/Cas9 gene editing technology has the potential to precisely remove immunogenic molecules while inserting desirable regulatory molecules. This technology is particularly useful in generating genetically modified pigs for xenotransplantation to solve the issue of the shortage of human organs. Collectively, these new technologies are positioning the transplant community for major breakthroughs that will significantly advance transplant medicine.
Collapse
|
5
|
Wagar LE, DiFazio RM, Davis MM. Advanced model systems and tools for basic and translational human immunology. Genome Med 2018; 10:73. [PMID: 30266097 PMCID: PMC6162943 DOI: 10.1186/s13073-018-0584-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
There are fundamental differences between humans and the animals we typically use to study the immune system. We have learned much from genetically manipulated and inbred animal models, but instances in which these findings have been successfully translated to human immunity have been rare. Embracing the genetic and environmental diversity of humans can tell us about the fundamental biology of immune cell types and the elasticity of the immune system. Although people are much more immunologically diverse than conventionally housed animal models, tools and technologies are now available that permit high-throughput analysis of human samples, including both blood and tissues, which will give us deep insights into human immunity in health and disease. As we gain a more detailed picture of the human immune system, we can build more sophisticated models to better reflect this complexity, both enabling the discovery of new immunological mechanisms and facilitating translation into the clinic.
Collapse
Affiliation(s)
- Lisa E Wagar
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Robert M DiFazio
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
De Novo Circulating Antidonor's Cell Antibodies During Induced Acute Rejection of Allogeneic Myofibers in Myogenic Cell Transplantation: A Study in Nonhuman Primates. Transplant Direct 2018. [PMID: 29536029 PMCID: PMC5828687 DOI: 10.1097/txd.0000000000000740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Transplantation of myogenic cells has potential applications in the treatment of muscle pathologies. Excluding purely autologous cell transplantation, graft viability depends on an adequate control of acute rejection (AR). To contribute in understanding AR in this context, we analyzed whether de novo circulating antibodies against donor’s cells are detected during induced AR of graft-derived myofibers in nonhuman primates. Methods We allotransplanted satellite cell-derived myoblasts in macaques immunosuppressed with tacrolimus. To induce AR of graft-derived myofibers, we administered tacrolimus for 4 weeks to allow complete myofiber formation, and then we stopped tacrolimus administration. Cell-grafted sites were biopsied at tacrolimus withdrawal and then every 2 weeks and analyzed by histology until AR completion. Blood samples were taken before immunosuppression, at tacrolimus withdrawal and then every 2 weeks to detect antibodies against the donor’s cells by flow cytometry. Results There was an increase of antibodies against the donor’s cells related to AR in all monkeys. This increase was variable in intensity, and preceded, coincided or followed the histological evidence of AR (focal accumulations of lymphocytes) and/or the loss of myofibers of donor origin, and remained until the end of the follow-up (up to 8 weeks after tacrolimus withdrawal). Conclusions Flow cytometry detection of de novo circulating antibodies against the donor’s cells was consistently associated with AR. A clear increase in this antibody detection indicated current or recent AR. Smaller increases in comparison to the preimmunosuppression values were not associated with AR.
Collapse
|
7
|
Pilat N, Granofszky N, Wekerle T. Combining Adoptive Treg Transfer with Bone Marrow Transplantation for Transplantation Tolerance. CURRENT TRANSPLANTATION REPORTS 2017; 4:253-261. [PMID: 29201599 PMCID: PMC5691126 DOI: 10.1007/s40472-017-0164-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The mixed chimerism approach is an exceptionally potent strategy for the induction of donor-specific tolerance in organ transplantation and so far the only one that was demonstrated to work in the clinical setting. Regulatory T cells (Tregs) have been shown to improve chimerism induction in experimental animal models. This review summarizes the development of innovative BMT protocols using therapeutic Treg transfer for tolerance induction. RECENT FINDINGS Treg cell therapy promotes BM engraftment in reduced conditioning protocols in both, mice and non-human primates. In mice, transfer of polyclonal recipient Tregs was sufficient to substitute cytotoxic recipient conditioning. Treg therapy prevented chronic rejection of skin and heart allografts related to tissue-specific antigen disparities, in part by promoting intragraft Treg accumulation. SUMMARY Adoptive Treg transfer is remarkably effective in facilitating BM engraftment in reduced-intensity protocols in mice and non-human primates. Furthermore, it promotes regulatory mechanisms that prevent chronic rejection.
Collapse
Affiliation(s)
- Nina Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Nicolas Granofszky
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
8
|
Korczak-Kowalska G, Stelmaszczyk-Emmel A, Bocian K, Kiernozek E, Drela N, Domagała-Kulawik J. Expanding Diversity and Common Goal of Regulatory T and B Cells. II: In Allergy, Malignancy, and Transplantation. Arch Immunol Ther Exp (Warsz) 2017; 65:523-535. [PMID: 28470464 PMCID: PMC5688211 DOI: 10.1007/s00005-017-0471-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/19/2017] [Indexed: 01/03/2023]
Abstract
Regulation of immune response was found to play an important role in the course of many diseases such as autoimmune diseases, allergy, malignancy, organ transplantation. The studies on immune regulation focus on the role of regulatory cells (Tregs, Bregs, regulatory myeloid cells) in these disorders. The number and function of Tregs may serve as a marker of disease activity. As in allergy, the depletion of Tregs is observed and the results of allergen-specific immunotherapy could be measured by an increase in the population of IL-10+ regulatory cells. On the basis of the knowledge of anti-cancer immune response regulation, new directions in therapy of tumors are introduced. As the proportion of regulatory cells is increased in the course of neoplasm, the therapeutic action is directed at their inhibition. The depletion of Tregs may be also achieved by an anti-check-point blockade, anti-CD25 agents, and inhibition of regulatory cell recruitment to the tumor site by affecting chemokine pathways. However, the possible favorable role of Tregs in cancer development is considered and the plasticity of immune regulation should be taken into account. The new promising direction of the treatment based on regulatory cells is the prevention of transplant rejection. A different way of production and implementation of classic Tregs as well as other cell types such as double-negative cells, Bregs, CD4+ Tr1 cells are tested in ongoing trials. On the basis of the results of current studies, we could show in this review the significance of therapies based on regulatory cells in different disorders.
Collapse
Affiliation(s)
- Grażyna Korczak-Kowalska
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Bocian
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ewelina Kiernozek
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Nadzieja Drela
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|