1
|
Poddar A, Ahmady F, Prithviraj P, Luwor RB, Shukla R, Polash SA, Li H, Ramakrishna S, Kannourakis G, Jayachandran A. Advances in CRISPR/Cas systems-based cell and gene therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:161-183. [PMID: 39266181 DOI: 10.1016/bs.pmbts.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Cell and gene therapy are innovative biomedical strategies aimed at addressing diseases at their genetic origins. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) systems have become a groundbreaking tool in cell and gene therapy, offering unprecedented precision and versatility in genome editing. This chapter explores the role of CRISPR in gene editing, tracing its historical development and discussing biomolecular formats such as plasmid, RNA, and protein-based approaches. Next, we discuss CRISPR delivery methods, including viral and non-viral vectors, followed by examining the various engineered CRISPR variants for their potential in gene therapy. Finally, we outline emerging clinical applications, highlighting the advancements in CRISPR for breakthrough medical treatments.
Collapse
Affiliation(s)
- Arpita Poddar
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia; RMIT University, VIC, Australia
| | - Farah Ahmady
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia
| | - Rodney B Luwor
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia; The University of Melbourne, Parkville, VIC, Australia; Huagene Institute, Kecheng Science and Technology Park, Pukou, Nanjing, P.R. China
| | | | | | | | | | - George Kannourakis
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia.
| |
Collapse
|
2
|
Paul PK, Das R, Drow T, Nylen EA, de Souza AH, Wang Z, Wood MW, Davis DB, Bjorling DE, Galipeau J. Islet allografts expressing a PD-L1 and IDO fusion protein evade immune rejection and reverse preexisting diabetes in immunocompetent mice without systemic immunosuppression. Am J Transplant 2022; 22:2571-2585. [PMID: 35897156 PMCID: PMC9804298 DOI: 10.1111/ajt.17162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/19/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023]
Abstract
Allogeneic islet transplantation is a promising experimental therapy for poorly controlled diabetes. Despite pharmacological immunosuppression, long-term islet engraftment remains elusive. Here, we designed a synthetic fusion transgene coupling PD-L1 and indoleamine dioxygenase [hereafter PIDO] whose constitutive expression prevents immune destruction of genetically engineered islet allograft transplanted in immunocompetent mice. PIDO expressing murine islets maintain robust dynamic insulin secretion in vitro and when transplanted in allogeneic hyperglycemic murine recipients reverse pre-existing streptozotocin-induced and autoimmune diabetes in the absence of pharmacological immunosuppression for more than 50 and 8 weeks, respectively, and is dependent on host CD4 competence. Additionally, PIDO expression in allografts preserves endocrine functional viability of islets and promotes a localized tolerogenic milieu characterized by the suppression of host CD8 T cell and phagocyte recruitment and accumulation of FOXP3+ Tregs. Furthermore, in the canine model of xenogeneic islet transplantation, muscle implanted PIDO-expressing porcine islets displayed physiological glucose-responsive insulin secretion competency in euglycemic recipient for up to 20 weeks. In conclusion, the PIDO transgenic technology enables host CD4+ T cell-modulated immune evasiveness and long-term functional viability of islet allo- and xenografts in immune-competent recipients without the need for pharmacological immune suppression and would allow for improved outcomes for tissue transplantation.
Collapse
Affiliation(s)
- Pradyut K Paul
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rahul Das
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Travis Drow
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emily A Nylen
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Arnaldo Henrique de Souza
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zunyi Wang
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael W Wood
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dawn B Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Dale E Bjorling
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW The use of genetically modified donor pigs has been integral to recent major advances in xenograft survival in preclinical nonhuman primate models. CRISPR-Cas9 gene editing technology has dramatically accelerated the development of multimodified pigs. This review examines the current and projected impact of CRISPR-Cas9-mediated donor modification on preventing rejection and potentially promoting tolerance of porcine xenografts. RECENT FINDINGS CRISPR-Cas9 has been used to engineer several genetic modifications relevant to xenotransplantation into pigs, including glycosyltransferase knockouts (GGTA1, CMAH, β4GALNT2, A3GALT2 and combinations thereof), other knockouts (SLA-I, ULBP1, PERV and GHR), and one knock-in (anti-CD2 monoclonal antibody transgene knocked into GGTA1). Although the use of these pigs as donors in preclinical nonhuman primate models has been limited to a single study to date, in-vitro analysis of their cells has provided invaluable information. For example, deletion of three of the glycosyltransferases progressively decreased the binding and cytotoxicity of preexisting immunoglobulin G and immunoglobulin M in human sera, suggesting that this 'triple-KO' pig could be a platform for clinical xenotransplantation. SUMMARY CRISPR-Cas9 enables the rapid generation of gene-edited pigs containing multiple tailored genetic modifications that are anticipated to have a positive impact on the efficacy and safety of pig-to-human xenotransplantation.
Collapse
|
4
|
Sekijima M, Sahara H, Shimizu A, Iwanaga T, Murokawa T, Ariyoshi Y, Pomposelli T, Maharlooei MK, Sykes M, Yamada K. Preparation of hybrid porcine thymus containing non-human primate thymic epithelial cells in miniature swine. Xenotransplantation 2019; 26:e12543. [PMID: 31293016 PMCID: PMC6908759 DOI: 10.1111/xen.12543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/26/2019] [Accepted: 06/04/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND We have achieved greater than a 6-month survival of a life-supporting kidney co-transplanted with a vascularized thymic graft into non-human primates (NHPs). Although we have achieved pig-specific unresponsiveness in vitro, immunosuppression was not able to be fully weaned. Studies in mice and humanized mice suggest that a hybrid pig thymus (Hyb-thy)-containing host thymic epithelial cells (TECs) can optimize intra-thymic selection, achieving xenograft tolerance with improved reconstitution of T-cell function. METHODS We have tested the feasibility of the preparation of a Hyb-thy that contains NHP TECs in the donor thymic grafts. We first prepared the Hyb-thy in the donor pigs 2-3 weeks before xeno-Tx. We performed six cases of Hyb-thy preparation in six juvenile miniature swine. Two pigs received non-manipulated cynomolgus monkey thymic cells that were isolated from an excised atrophic thymus via injection into their thymic lobes (Group 1). The remaining four received thymic cells that were isolated from non-atrophic thymic glands (Groups 2 and 3). Pigs in Group 2 received unmanipulated thymic cells in one thymic lobe, as well as CD2-positive cell-depleted TEC-enriched cells in the contralateral lobe. Pigs in Group 3 received TEC-enriched cells alone. RESULTS All thymus-injected pigs received tacrolimus and rapamycin until endpoint (POD16). We detected cynomolgus monkey TEC networks in pig thymus from Groups 1 and 3, while pigs in Group 2 rejected the thymic cells. We demonstrated the preparation of Hyb-thy in pigs using tacrolimus plus rapamycin therapy. CONCLUSIONS Our results suggest that the enrichment of TEC from the excised NHP thymus facilitated NHP TEC engraftment in pig thymus.
Collapse
Affiliation(s)
- Mitsuhiro Sekijima
- Division of Organ Replacement and Xenotransplantation
Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima
University, Japan
| | - Hisashi Sahara
- Division of Organ Replacement and Xenotransplantation
Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima
University, Japan
- Columbia University Center for Translational Immunology,
Department of Surgery, Columbia University, New York, NY
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical
School, Tokyo, Japan
| | - Takehiro Iwanaga
- Division of Organ Replacement and Xenotransplantation
Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima
University, Japan
| | - Takahiro Murokawa
- Division of Organ Replacement and Xenotransplantation
Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima
University, Japan
| | - Yuichi Ariyoshi
- Division of Organ Replacement and Xenotransplantation
Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima
University, Japan
| | - Thomas Pomposelli
- Columbia University Center for Translational Immunology,
Department of Surgery, Columbia University, New York, NY
| | - Mohsen Khosravi Maharlooei
- Columbia University Center for Translational Immunology,
Department of Surgery, Columbia University, New York, NY
| | - Megan Sykes
- Columbia University Center for Translational Immunology,
Department of Surgery, Columbia University, New York, NY
| | - Kazuhiko Yamada
- Columbia University Center for Translational Immunology,
Department of Surgery, Columbia University, New York, NY
| |
Collapse
|
5
|
Nomura S, Ariyoshi Y, Watanabe H, Pomposelli T, Takeuchi K, Garcia G, Tasaki M, Ayares D, Sykes M, Sachs D, Johnson R, Yamada K. Transgenic expression of human CD47 reduces phagocytosis of porcine endothelial cells and podocytes by baboon and human macrophages. Xenotransplantation 2019; 27:e12549. [PMID: 31495971 DOI: 10.1111/xen.12549] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/12/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Our initial studies utilizing a galactosyl-α1-3-galactosyltransferase gene knockout (GalTKO) pig-to-baboon renal transplant model demonstrated that the early development of nephrotic syndrome has been a significant obstacle to the long-term survival of baboon recipients. We have recently documented that sphingomyelin phosphodiesterase-3 (SMPDL3b) and CD80 expressed on podocytes in porcine kidney grafts contribute to this complication. We have hypothesized that one regulator of immune function is CD47 and that incompatibilities in CD47 between pig and baboon could potentially affect macrophage function, increasing the susceptibility of the kidney grafts to immunologically induced injury. METHODS In order to address this hypothesis in vitro, we isolated and cultured porcine podocytes and ECs from GalTKO alone, human CD47 (hCD47)/hCD55 expressing transgenic (Tg) GalTKO swine, and GalTKO hCD46/hCD55 Tg swine along with baboon or human macrophages. RESULTS We found that baboon macrophages phagocytosed porcine ECs in a similar manner to human macrophages, and this response was significantly reduced when porcine ECs and podocytes expressed hCD47/hCD55 but not hCD46/hCD55 without hCD47. Furthermore, masking hCD47 by anti-hCD47 antibody on hCD47/hCD55Tg ECs restored phagocytosis. These results are consistent with the hypothesis that CD47 incompatibility plays an important role in promoting macrophage phagocytosis of endogenous cells from the transplanted kidney. CONCLUSIONS The similar levels of phagocytosis of porcine cells by baboon and human macrophages suggest that the expression of hCD47Tg on glomerular cells in donor porcine kidneys may prove to be a key strategy for preventing proteinuria following kidney xenotransplantation in a pig-to-human as well as a pig-to-baboon model.
Collapse
Affiliation(s)
- Shunichiro Nomura
- Columbia Center for Translational Immunology (CCTI)/Surgery, Columbia University Medical Center, New York, NY, USA
| | - Yuichi Ariyoshi
- Columbia Center for Translational Immunology (CCTI)/Surgery, Columbia University Medical Center, New York, NY, USA
| | - Hironosuke Watanabe
- Columbia Center for Translational Immunology (CCTI)/Surgery, Columbia University Medical Center, New York, NY, USA
| | - Thomas Pomposelli
- Columbia Center for Translational Immunology (CCTI)/Surgery, Columbia University Medical Center, New York, NY, USA
| | - Kazuhiro Takeuchi
- Columbia Center for Translational Immunology (CCTI)/Surgery, Columbia University Medical Center, New York, NY, USA
| | - Gabriela Garcia
- Department of Medicine, University of Colorado Hospital- Renal Clinic/Nephrology, Aurora, CO, USA
| | - Masayuki Tasaki
- Department of Urology, Graduate School of Medicine, Niigata University, Niigata, Japan
| | | | - Megan Sykes
- Columbia Center for Translational Immunology (CCTI)/Surgery, Columbia University Medical Center, New York, NY, USA
| | - David Sachs
- Columbia Center for Translational Immunology (CCTI)/Surgery, Columbia University Medical Center, New York, NY, USA
| | - Richard Johnson
- Department of Medicine, University of Colorado Hospital- Renal Clinic/Nephrology, Aurora, CO, USA
| | - Kazuhiko Yamada
- Columbia Center for Translational Immunology (CCTI)/Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Fisicaro N, Salvaris EJ, Philip GK, Wakefield MJ, Nottle MB, Hawthorne WJ, Cowan PJ. Fok
I‐dCas9 mediates high‐fidelity genome editing in pigs. Xenotransplantation 2019; 27:e12551. [DOI: 10.1111/xen.12551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/02/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Nella Fisicaro
- Immunology Research Centre St Vincent’s Hospital Melbourne Melbourne Vic. Australia
| | - Evelyn J. Salvaris
- Immunology Research Centre St Vincent’s Hospital Melbourne Melbourne Vic. Australia
| | - Gayle K. Philip
- Melbourne Bioinformatics University of Melbourne Melbourne Vic. Australia
| | - Matthew J. Wakefield
- Melbourne Bioinformatics University of Melbourne Melbourne Vic. Australia
- Walter and Eliza Hall Institute Melbourne Vic. Australia
| | - Mark B. Nottle
- Robinson Research Institute & Adelaide Medical School University of Adelaide Adelaide SA Australia
| | - Wayne J. Hawthorne
- Department of Surgery, Westmead Clinical School Westmead Hospital, University of Sydney Sydney NSW Australia
- The Centre for Transplant and Renal Research Westmead Institute for Medical Research Westmead NSW Australia
| | - Peter J. Cowan
- Immunology Research Centre St Vincent’s Hospital Melbourne Melbourne Vic. Australia
- Department of Medicine University of Melbourne Melbourne Vic. Australia
| |
Collapse
|
7
|
Baakdhah T, van der Kooy D. Expansion of retinal stem cells and their progeny using cell microcarriers in a bioreactor. Biotechnol Prog 2019; 35:e2800. [DOI: 10.1002/btpr.2800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/10/2019] [Accepted: 02/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Tahani Baakdhah
- Institute of Medical ScienceUniversity of Toronto Toronto Ontario Canada
| | - Derek van der Kooy
- Institute of Medical ScienceUniversity of Toronto Toronto Ontario Canada
- Department of Molecular GeneticsUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|
8
|
O'Brien SJ, Ekman MB, Manek S, Galandiuk S. CRISPR-mediated gene editing for the surgeon scientist. Surgery 2019; 166:129-137. [PMID: 30922545 DOI: 10.1016/j.surg.2019.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Tremendous advances have occurred in gene editing during the past 20 years with the development of a number of systems. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9) system represents an exciting area of research. This review examines both the relevant studies pertaining to the history, current status, and modifications of this system, in comparison with other gene-editing systems and future applications, and limitations of the CRISPR-Cas9 gene-editing system, with a focus on applications of relevance to the surgeon scientist. The CRISPR-Cas9 system was described initially in 2012 for gene editing in bacteria and then in human cells, and since then, a number of modifications have improved the efficiency and specificity of gene editing. Clinical studies have been limited because further research is required to verify its safety in patients. Some clinical trials in oncology have opened, and early studies have shown that gene editing may have a particular role in the field of organ transplantation and in the care of trauma patients. Gene editing is likely to play an important role in future research in many aspects of the surgery arena.
Collapse
Affiliation(s)
- Stephen J O'Brien
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY
| | - Matthew B Ekman
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY
| | - Stephen Manek
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY
| | - Susan Galandiuk
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW This review describes recent progress in tolerance-inducing strategies across xenogeneic immunological barriers as well as the potential benefit of a tolerance strategy for islets and kidney xenotransplantation. RECENT FINDINGS Using advanced gene editing technologies, xenotransplantation from multitransgenic alpha-1,3-galactosyltransferase knockout pigs has demonstrated marked prolongation of renal xenograft survival, ranging from days to greater than several months for life-supporting kidneys, and more than 2 years in a heterotopic nonlife-supporting cardiac xenograft model. Continuous administration of multiple immunosuppressive drugs has been required and attempts to taper immunosuppression have been unsuccessful. It appears likely that low levels of T cell dependent antibodies and activation of innate responses are responsible for xenograft loss. Mixed chimerism and thymic transplantation approaches have achieved xenogeneic tolerance in pig-to-mouse models and both have recently been extended to pig-to-baboon models. Encouraging results have been reported, including persistence of macrochimerism, prolonged pig skin graft survival, donor-specific unresponsiveness in vitro and detection of recent T cell emigrants in vivo. SUMMARY Although tolerance induction in vivo has not yet been achieved in pig-to-baboon models, recent results are encouraging that this goal will be attainable through genetic engineering of porcine donors.
Collapse
|
10
|
Madsen JC. Advances in the immunology of heart transplantation. J Heart Lung Transplant 2017; 36:1299-1305. [PMID: 29173391 DOI: 10.1016/j.healun.2017.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Joren C Madsen
- Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Cowan PJ, Tector AJ. The Resurgence of Xenotransplantation. Am J Transplant 2017; 17:2531-2536. [PMID: 28397351 DOI: 10.1111/ajt.14311] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/21/2017] [Accepted: 04/01/2017] [Indexed: 01/25/2023]
Abstract
There has been an upsurge of interest in xenotransplantation in recent years. This resurgence can attributed to a combination of factors. First, there has been a dramatic improvement in efficacy in several preclinical models, with maximum xenograft survival times increasing to 950 days for islets, 945 days for hearts, and 310 days for kidneys. Second, the rapid development of genome editing technology (particularly the advent of clustered regularly interspaced short palindromic repeats/Cas9) has revolutionized the capacity to generate new donor pigs with multiple protective genetic modifications; what once took many years to achieve can now be performed in months, with much greater precision and scope. Third, the specter of porcine endogenous retrovirus (PERV) has receded significantly. There has been no evidence of PERV transmission in clinical trials and preclinical models, and improved screening methods and new options for the treatment or even elimination of PERV are now available. Balancing these positive developments are several remaining challenges, notably the heavy and often clinically inapplicable immunosuppression required to prevent xenograft rejection. Nonetheless, the potential for xenotransplantation as a solution to the shortage of human organs and tissues for transplantation continues to grow.
Collapse
Affiliation(s)
- P J Cowan
- Immunology Research Centre, St Vincent's Hospital Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia
| | - A J Tector
- School of Medicine, University of Alabama, Birmingham, AL
| |
Collapse
|
12
|
|
13
|
Nottle MB, Salvaris EJ, Fisicaro N, McIlfatrick S, Vassiliev I, Hawthorne WJ, O'Connell PJ, Brady JL, Lew AM, Cowan PJ. Targeted insertion of an anti-CD2 monoclonal antibody transgene into the GGTA1 locus in pigs using FokI-dCas9. Sci Rep 2017; 7:8383. [PMID: 28814758 PMCID: PMC5559588 DOI: 10.1038/s41598-017-09030-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
Xenotransplantation from pigs has been advocated as a solution to the perennial shortage of donated human organs and tissues. CRISPR/Cas9 has facilitated the silencing of genes in donor pigs that contribute to xenograft rejection. However, the generation of modified pigs using second-generation nucleases with much lower off-target mutation rates than Cas9, such as FokI-dCas9, has not been reported. Furthermore, there have been no reports on the use of CRISPR to knock protective transgenes into detrimental porcine genes. In this study, we used FokI-dCas9 with two guide RNAs to integrate a 7.1 kilobase pair transgene into exon 9 of the GGTA1 gene in porcine fetal fibroblasts. The modified cells lacked expression of the αGal xenoantigen, and secreted an anti-CD2 monoclonal antibody encoded by the transgene. PCR and sequencing revealed precise integration of the transgene into one allele of GGTA1, and a small deletion in the second allele. The cells were used for somatic cell nuclear transfer to generate healthy male knock-in piglets, which did not express αGal and which contained anti-CD2 in their serum. We have therefore developed a versatile high-fidelity system for knocking transgenes into the pig genome for xenotransplantation purposes.
Collapse
Affiliation(s)
- Mark B Nottle
- Robinson Research Institute & Adelaide School of Medicine, University of Adelaide, Adelaide, Australia
| | - Evelyn J Salvaris
- Immunology Research Centre, St. Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Nella Fisicaro
- Immunology Research Centre, St. Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Stephen McIlfatrick
- Robinson Research Institute & Adelaide School of Medicine, University of Adelaide, Adelaide, Australia
| | - Ivan Vassiliev
- Robinson Research Institute & Adelaide School of Medicine, University of Adelaide, Adelaide, Australia
| | - Wayne J Hawthorne
- Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | | | - Jamie L Brady
- Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - Andrew M Lew
- Walter and Eliza Hall Institute, Melbourne, Victoria, Australia.,Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. .,Department of Medicine, University of Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Shah JA, Tanabe T, Yamada K. Role of Intrinsic Factors in the Growth of Transplanted Organs Following Transplantation. JOURNAL OF IMMUNOBIOLOGY 2017; 2. [PMID: 28725880 DOI: 10.4172/2476-1966.1000122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shortages in the availability of transplantable organs have forced the transplant community to seek alternative methods to increase the supply of available organs. In our recent study following α-1,3-galactocyltransferase knockout (GalT-KO) pig-to-baboon kidney xenotransplantation, we found that certain recipients developed increased serum creatinine, possibly due to the rapid growth of orthotopic pig grafts in smaller baboon recipients. To test our hypothesis, we assessed whether the growth of outbred (Yorkshire) organ transplants (kidney and lung) in miniature swine was regulated by intrinsic (graft) factors. Yorkshire kidneys reached 3.7× their initial volume over 3 months vs. 1.2× for miniature swine kidneys over a similar time period. A similar pattern was seen in porcine lung allografts as well. Following xenotransplantation, a review of our results suggests that there is a threshold for kidney graft volume of 25 cm3/kg of recipient body weight at which cortical ischemia is induced in transplanted GalT-KO kidneys in baboons. These results suggest that intrinsic factors are in part responsible for the growth of donor organs and this should be taken into consideration for growth-curve-mismatched transplants.
Collapse
Affiliation(s)
- Jigesh A Shah
- Department of Surgery, Transplantation Biology Research Center Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Tatsu Tanabe
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, USA
| | - Kazuhiko Yamada
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, USA
| |
Collapse
|
15
|
Yamada K, Shah JA, Tanabe T, Lanaspa MA, Johnson RJ. Xenotransplantation: Where Are We with Potential Kidney Recipients? Recent Progress and Potential Future Clinical Trials. CURRENT TRANSPLANTATION REPORTS 2017; 4:101-109. [PMID: 28989853 DOI: 10.1007/s40472-017-0149-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Inter-species transplantation, xenotransplantation, is becoming a realistic strategy to solve the organ shortage crisis. Here we focus on seminal publications that have driven research in xenotransplantation, as well as recently published literature and future endeavors. RECENT FINDINGS Advances in gene editing technology have allowed for the efficient production of multi-transgenic porcine donors leading improved xenograft survival in baboons, up to 2-years following heterotopic heart xenotransplantation and from weeks to several months following life-supporting kidney xenotransplanation. As technology evolves, additional challenges have arisen, including the development of proteinuria, early graft loss associated with porcine CMV, disparities in organ growth between donors and recipients as well as high-dose continuous immunosuppression requirements. To address these issues, our laboratory developed a tolerance-inducing protocol which has allowed for >6 months survival of a life-supporting kidney with further approaches currently underway to address the challenges mentioned above. SUMMARY Our recent findings, reviewed in this article, led us to develop methods to overcome obstacles, which, in conjunction with the work of others, are promising for future clinical applications of xenotransplantation.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Jigesh A Shah
- Transplantation Biology Research Laboratories, Massachusetts general Hospital, Harvard Medical School, Boston, MA
| | - Tatsu Tanabe
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora CO
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora CO
| |
Collapse
|
16
|
Efficient Screening of CRISPR/Cas9-Induced Events in Drosophila Using a Co-CRISPR Strategy. G3-GENES GENOMES GENETICS 2017; 7:87-93. [PMID: 27793971 PMCID: PMC5217126 DOI: 10.1534/g3.116.036723] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genome editing using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and associated nuclease (Cas9) enables specific genetic modifications, including deletions, insertions, and substitutions in numerous organisms, such as the fruit fly Drosophila melanogaster. One challenge of the CRISPR/Cas9 system can be the laborious and time-consuming screening required to find CRISPR-induced modifications due to a lack of an obvious phenotype and low frequency after editing. Here we apply the successful co-CRISPR technique in Drosophila to simultaneously target a gene of interest and a marker gene, ebony, which is a recessive gene that produces dark body color and has the further advantage of not being a commonly used transgenic marker. We found that Drosophila broods containing higher numbers of CRISPR-induced ebony mutations (“jackpot” lines) are significantly enriched for indel events in a separate gene of interest, while broods with few or no ebony offspring showed few mutations in the gene of interest. Using two different PAM sites in our gene of interest, we report that ∼61% (52–70%) of flies from the ebony-enriched broods had an indel in DNA near either PAM site. Furthermore, this marker mutation system may be useful in detecting the less frequent homology-directed repair events, all of which occurred in the ebony-enriched broods. By focusing on the broods with a significant number of ebony flies, successful identification of CRISPR-induced events is much faster and more efficient. The co-CRISPR technique we present significantly improves the screening efficiency in identification of genome-editing events in Drosophila.
Collapse
|
17
|
New solutions to old problems in cell transplantation. Curr Opin Organ Transplant 2016; 21:459-60. [PMID: 27517511 DOI: 10.1097/mot.0000000000000358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|