1
|
Bernaldo-de-Quirós E, Camino M, Martínez-Bonet M, Gil-Jaurena JM, Gil N, Hernández-Flórez D, Fernández-Santos ME, Butragueño L, Dijke IE, Levings MK, West LJ, Pion M, Correa-Rocha R. First-in-human therapy with Treg produced from thymic tissue (thyTreg) in a heart transplant infant. J Exp Med 2023; 220:e20231045. [PMID: 37906166 PMCID: PMC10619578 DOI: 10.1084/jem.20231045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Due to their suppressive capacity, regulatory T cells (Tregs) have attracted growing interest as an adoptive cellular therapy for the prevention of allograft rejection, but limited Treg recovery and lower quality of adult-derived Tregs could represent an obstacle to success. To address this challenge, we developed a new approach that provides large quantities of Tregs with high purity and excellent features, sourced from thymic tissue routinely removed during pediatric cardiac surgeries (thyTregs). We report on a 2-year follow-up of the first patient treated worldwide with thyTregs, included in a phase I/II clinical trial evaluating the administration of autologous thyTreg in infants undergoing heart transplantation. In addition to observing no adverse effects that could be attributed to thyTreg administration, we report that the Treg frequency in the periphery was preserved during the 2-year follow-up period. These initial results are consistent with the trial objective, which is to confirm safety of the autologous thyTreg administration and its capacity to restore the Treg pool.
Collapse
Affiliation(s)
- Esther Bernaldo-de-Quirós
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Manuela Camino
- Department of Pediatric Cardiology, Hospital Gregorio Marañón, Madrid, Spain
| | - Marta Martínez-Bonet
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | | | - Nuria Gil
- Department of Pediatric Cardiology, Hospital Gregorio Marañón, Madrid, Spain
| | - Diana Hernández-Flórez
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | | | - Laura Butragueño
- Pediatric Intensive Care Unit, Hospital Gregorio Marañón, Madrid, Spain
| | - I. Esmé Dijke
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
- Canadian Donation and Transplantation Research Program Investigator, Edmonton, Canada
- Alberta Transplant Institute, Edmonton, Canada
| | - Megan K. Levings
- Canadian Donation and Transplantation Research Program Investigator, Edmonton, Canada
- Department of Surgery and School of Biomedical Engineering, University of British Columbia, BC Children’s Hospital, Vancouver, Canada
| | - Lori J. West
- Canadian Donation and Transplantation Research Program Investigator, Edmonton, Canada
- Alberta Transplant Institute, Edmonton, Canada
- Department of Pediatrics, University of Alberta/Stollery Children’s Hospital, Edmonton, Canada
| | - Marjorie Pion
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- Canadian Donation and Transplantation Research Program Investigator, Edmonton, Canada
| |
Collapse
|
2
|
Guinan EC, Contreras-Ruiz L, Crisalli K, Rickert C, Rosales I, Makar R, Colvin R, Geissler EK, Sawitzki B, Harden P, Tang Q, Blancho G, Turka LA, Markmann JF. Donor antigen-specific regulatory T cell administration to recipients of live donor kidneys: A ONE Study consortium pilot trial. Am J Transplant 2023; 23:1872-1881. [PMID: 37422112 DOI: 10.1016/j.ajt.2023.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Regulatory T cells (Tregs) can inhibit cellular immunity in diverse experimental models and have entered early phase clinical trials in autoimmunity and transplantation to assess safety and efficacy. As part of the ONE Study consortium, we conducted a phase I-II clinical trial in which purified donor antigen reactive (dar)-Tregs (CD4+CD25+CD127lo) were administered to 3 patients, 7 to 11 days after live donor renal transplant. Recipients received a modified immunosuppression regimen, without induction therapy, consisting of maintenance tacrolimus, mycophenolate mofetil, and steroids. Steroids were weaned off over 14 weeks. No rejection was seen on any protocol biopsy. Therefore, all patients discontinued mycophenolate mofetil 11 to 13 months posttransplant, per protocol. An early for-cause biopsy in 1 patient, 5 days after dar-Treg infusion, revealed absence of rejection and accumulation of Tregs in the kidney allograft. All patients had Treg-containing lymphoid aggregates evident on protocol biopsies performed 8 months posttransplant. The patients are now all >6 years posttransplant on tacrolimus monotherapy with excellent graft function. None experienced rejection episodes. No serious adverse events were attributable to Treg administration. These results support a favorable safety profile of dar-Tregs administered early after renal transplant, suggest early biopsy might be an instructive research endpoint and provide preliminary evidence of potential immunomodulatory activity.
Collapse
Affiliation(s)
- Eva C Guinan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
| | - Laura Contreras-Ruiz
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
| | - Kerry Crisalli
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Charles Rickert
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Ivy Rosales
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Robert Makar
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Robert Colvin
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Edward K Geissler
- University Hospital Regensburg, Department of Surgery, Regensburg, Germany.
| | - Birgit Sawitzki
- Institute of Medical Immunology, Virchow - Klinikum, Berlin, Germany.
| | - Paul Harden
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Qizhi Tang
- Division of Transplantation, Department of Surgery, University of California, San Francisco, California, USA.
| | - Giles Blancho
- Centre of Research in Transplantation and Immunology, Nantes University, Nantes, France.
| | - Laurence A Turka
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - James F Markmann
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Requejo Cier CJ, Valentini N, Lamarche C. Unlocking the potential of Tregs: innovations in CAR technology. Front Mol Biosci 2023; 10:1267762. [PMID: 37900916 PMCID: PMC10602912 DOI: 10.3389/fmolb.2023.1267762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Regulatory T cells (Tregs) adoptive immunotherapy is emerging as a viable treatment option for both autoimmune and alloimmune diseases. However, numerous challenges remain, including limitations related to cell number, availability of target-specific cells, stability, purity, homing ability, and safety concerns. To address these challenges, cell engineering strategies have emerged as promising solutions. Indeed, it has become feasible to increase Treg numbers or enhance their stability through Foxp3 overexpression, post-translational modifications, or demethylation of the Treg-specific demethylated region (TSDR). Specificity can be engineered by the addition of chimeric antigen receptors (CARs), with new techniques designed to fine-tune specificity (tandem chimeric antigen receptors, universal chimeric antigen receptors, synNotch chimeric antigen receptors). The introduction of B-cell targeting antibody receptor (BAR) Tregs has paved the way for effective regulation of B cells and plasma cells. In addition, other constructs have emerged to enhance Tregs activation and function, such as optimized chimeric antigen receptors constructs and the use of armour proteins. Chimeric antigen receptor expression can also be better regulated to limit tonic signaling. Furthermore, various opportunities exist for enhancing the homing capabilities of CAR-Tregs to improve therapy outcomes. Many of these genetic modifications have already been explored for conventional CAR-T therapy but need to be further considered for CAR-Tregs therapies. This review highlights innovative CAR-engineering strategies that have the potential to precisely and efficiently manage immune responses in autoimmune diseases and improve transplant outcomes. As these strategies are further explored and optimized, CAR-Treg therapies may emerge as powerful tools for immune intervention.
Collapse
Affiliation(s)
- Christopher J. Requejo Cier
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Valentini
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Caroline Lamarche
- Department of Medicine, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
4
|
Arteaga-Cruz S, Cortés-Hernández A, Alvarez-Salazar EK, Rosas-Cortina K, Aguilera-Sandoval C, Morales-Buenrostro LE, Alberú-Gómez JM, Soldevila G. Highly purified and functionally stable in vitro expanded allospecific Tr1 cells expressing immunosuppressive graft-homing receptors as new candidates for cell therapy in solid organ transplantation. Front Immunol 2023; 14:1062456. [PMID: 36911743 PMCID: PMC9998667 DOI: 10.3389/fimmu.2023.1062456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
The development of new strategies based on the use of Tr1 cells has taken relevance to induce long-term tolerance, especially in the context of allogeneic stem cell transplantation. Although Tr1 cells are currently identified by the co-expression of CD49b and LAG-3 and high production of interleukin 10 (IL-10), recent studies have shown the need for a more exhaustive characterization, including co-inhibitory and chemokines receptors expression, to ensure bona fide Tr1 cells to be used as cell therapy in solid organ transplantation. Moreover, the proinflammatory environment induced by the allograft could affect the suppressive function of Treg cells, therefore stability of Tr1 cells needs to be further investigated. Here, we establish a new protocol that allows long-term in vitro expansion of highly purified expanded allospecific Tr1 (Exp-allo Tr1). Our expanded Tr1 cell population becomes highly enriched in IL-10 producers (> 90%) and maintains high expression of CD49b and LAG-3, as well as the co-inhibitory receptors PD-1, CTLA-4, TIM-3, TIGIT and CD39. Most importantly, high dimensional analysis of Exp-allo Tr1 demonstrated a specific expression profile that distinguishes them from activated conventional T cells (T conv), showing overexpression of IL-10, CD39, CTLA-4 and LAG-3. On the other hand, Exp-allo Tr1 expressed a chemokine receptor profile relevant for allograft homing and tolerance induction including CCR2, CCR4, CCR5 and CXCR3, but lower levels of CCR7. Interestingly, Exp-allo Tr1 efficiently suppressed allospecific but not third-party T cell responses even after being expanded in the presence of proinflammatory cytokines for two extra weeks, supporting their functional stability. In summary, we demonstrate for the first time that highly purified allospecific Tr1 (Allo Tr1) cells can be efficiently expanded maintaining a stable phenotype and suppressive function with homing potential to the allograft, so they may be considered as promising therapeutic tools for solid organ transplantation.
Collapse
Affiliation(s)
- Saúl Arteaga-Cruz
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico
| | - Arimelek Cortés-Hernández
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico.,The National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Evelyn Katy Alvarez-Salazar
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico.,The National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Katya Rosas-Cortina
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico
| | | | - Luis E Morales-Buenrostro
- Department of Nephrology and Mineral Metabolism, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | | | - Gloria Soldevila
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico.,The National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
5
|
Kaljanac M, Abken H. Do Treg Speed Up with CARs? Chimeric Antigen Receptor Treg Engineered to Induce Transplant Tolerance. Transplantation 2023; 107:74-85. [PMID: 36226849 PMCID: PMC9746345 DOI: 10.1097/tp.0000000000004316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Abstract
Adoptive transfer of regulatory T cells (Treg) can induce transplant tolerance in preclinical models by suppressing alloantigen-directed inflammatory responses; clinical translation was so far hampered by the low abundance of Treg with allo-specificity in the peripheral blood. In this situation, ex vivo engineering of Treg with a T-cell receptor (TCR) or chimeric antigen receptor (CAR) provides a cell population with predefined specificity that can be amplified and administered to the patient. In contrast to TCR-engineered Treg, CAR Treg can be redirected toward a broad panel of targets in an HLA-unrestricted fashion' making these cells attractive to provide antigen-specific tolerance toward the transplanted organ. In preclinical models, CAR Treg accumulate and amplify at the targeted transplant, maintain their differentiated phenotype, and execute immune repression more vigorously than polyclonal Treg. With that, CAR Treg are providing hope in establishing allospecific, localized immune tolerance in the long term' and the first clinical trials administering CAR Treg for the treatment of transplant rejection are initiated. Here, we review the current platforms for developing and manufacturing alloantigen-specific CAR Treg and discuss the therapeutic potential and current hurdles in translating CAR Treg into clinical exploration.
Collapse
Affiliation(s)
- Marcell Kaljanac
- Division Genetic Immunotherapy, and Chair Genetic Immunotherapy, Leibniz Institute for Immunotherapy, University Regensburg, Regensburg, Germany
| | - Hinrich Abken
- Division Genetic Immunotherapy, and Chair Genetic Immunotherapy, Leibniz Institute for Immunotherapy, University Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Lamarche C, Maltzman JS. Chimeric Antigen Receptor Regulatory T Cell in Transplantation: The Future of Cell Therapy? Kidney Int Rep 2022; 7:1149-1152. [PMID: 35694556 PMCID: PMC9174038 DOI: 10.1016/j.ekir.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Caroline Lamarche
- Division of Nephrology, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont (CRHMR), Department of Medecine, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan S. Maltzman
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, CA, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
7
|
Bernaldo-de-Quirós E, Cózar B, López-Esteban R, Clemente M, Gil-Jaurena JM, Pardo C, Pita A, Pérez-Caballero R, Camino M, Gil N, Fernández-Santos ME, Suarez S, Pion M, Martínez-Bonet M, Correa-Rocha R. A Novel GMP Protocol to Produce High-Quality Treg Cells From the Pediatric Thymic Tissue to Be Employed as Cellular Therapy. Front Immunol 2022; 13:893576. [PMID: 35651624 PMCID: PMC9148974 DOI: 10.3389/fimmu.2022.893576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Due to their suppressive capacity, the adoptive transfer of regulatory T cells (Treg) has acquired a growing interest in controlling exacerbated inflammatory responses. Limited Treg recovery and reduced quality remain the main obstacles in most current protocols where differentiated Treg are obtained from adult peripheral blood. An alternate Treg source is umbilical cord blood, a promising source of Treg cells due to the higher frequency of naïve Treg and lower frequency of memory T cells present in the fetus’ blood. However, the Treg number isolated from cord blood remains limiting. Human thymuses routinely discarded during pediatric cardiac surgeries to access the retrosternal operative field has been recently proposed as a novel source of Treg for cellular therapy. This strategy overcomes the main limitations of current Treg sources, allowing the obtention of very high numbers of undifferentiated Treg. We have developed a novel good manufacturing practice (GMP) protocol to obtain large Treg amounts, with very high purity and suppressive capacity, from the pediatric thymus (named hereafter thyTreg). The total amount of thyTreg obtained at the end of the procedure, after a short-term culture of 7 days, reach an average of 1,757 x106 (range 50 x 106 – 13,649 x 106) cells from a single thymus. The thyTreg product obtained with our protocol shows very high viability (mean 93.25%; range 83.35% – 97.97%), very high purity (mean 92.89%; range 70.10% – 98.41% of CD25+FOXP3+ cells), stability under proinflammatory conditions and a very high suppressive capacity (inhibiting in more than 75% the proliferation of activated CD4+ and CD8+ T cells in vitro at a thyTreg:responder cells ratio of 1:1). Our thyTreg product has been approved by the Spanish Drug Agency (AEMPS) to be administered as cell therapy. We are recruiting patients in the first-in-human phase I/II clinical trial worldwide that evaluates the safety, feasibility, and efficacy of autologous thyTreg administration in children undergoing heart transplantation (NCT04924491). The high quality and amount of thyTreg and the differential features of the final product obtained with our protocol allow preparing hundreds of doses from a single thymus with improved therapeutic properties, which can be cryopreserved and could open the possibility of an “off-the-shelf” allogeneic use in another individual.
Collapse
Affiliation(s)
| | - Beatriz Cózar
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Rocío López-Esteban
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Maribel Clemente
- Cell Culture Unit, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | | | - Carlos Pardo
- Pediatric Cardiac Surgery Unit, Hospital Materno Infantil Gregorio Marañón, Madrid, Spain
| | - Ana Pita
- Pediatric Cardiac Surgery Unit, Hospital Materno Infantil Gregorio Marañón, Madrid, Spain
| | - Ramón Pérez-Caballero
- Pediatric Cardiac Surgery Unit, Hospital Materno Infantil Gregorio Marañón, Madrid, Spain
| | - Manuela Camino
- Pediatric Heart Transplant Unit, Hospital Materno Infantil Gregorio Marañón, Madrid, Spain
| | - Nuria Gil
- Pediatric Heart Transplant Unit, Hospital Materno Infantil Gregorio Marañón, Madrid, Spain
| | | | - Susana Suarez
- Cell Production Unit, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Marjorie Pion
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Marta Martínez-Bonet
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- *Correspondence: Rafael Correa-Rocha, ; Marta Martínez-Bonet,
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- *Correspondence: Rafael Correa-Rocha, ; Marta Martínez-Bonet,
| |
Collapse
|
8
|
Cremoni M, Massa F, Sicard A. Overcoming barriers to widespread use of CAR-Treg therapy in organ transplant recipients. HLA 2022; 99:565-572. [PMID: 35233971 DOI: 10.1111/tan.14591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/30/2022]
Abstract
Preventing allograft rejection has been the main challenge of transplantation medicine since the discovery of immune responses against foreign HLA molecules in the mid-20th century. Prevention of rejection currently relies on immunosuppressive drugs, which lack antigen specificity and therefore increase the risk for infections and cancers. Adoptive cell therapy with donor-reactive regulatory T cells (Tregs) has progressively emerged as a promising approach to reduce the need for pan-immunosuppressive drugs and minimize morbidity and mortality in solid-organ transplant recipients. Chimeric antigen receptor (CAR) technology has recently been used successfully to generate Tregs specific for donor HLA molecules and overcome the limitations of Tregs enrichment protocols based on repetitive stimulations with alloantigens. While this novel approach opens new possibilities to make Tregs therapy more feasible, it also creates additional challenges. It is essential to determine which source of therapeutic Tregs, CAR constructs, target alloantigens, safety strategies, patients and immunosuppressive regimens are optimal for the success of CAR Treg therapy. Here, we discuss unmet needs and strategies to bring donor-specific CAR Treg therapy to the clinic and make it as accessible as possible.
Collapse
Affiliation(s)
- Marion Cremoni
- Department of Nephrology, Dialysis, Transplantation, Nice University Hospital, Nice, France.,Clinical Research Unit, University Côte d'Azur (UR2CA), Nice, France
| | - Filippo Massa
- Department of Nephrology, Dialysis, Transplantation, Nice University Hospital, Nice, France.,Laboratory of Molecular Physio Medicine (LP2M), University Côte d'Azur, Nice, France
| | - Antoine Sicard
- Department of Nephrology, Dialysis, Transplantation, Nice University Hospital, Nice, France.,Laboratory of Molecular Physio Medicine (LP2M), University Côte d'Azur, Nice, France
| |
Collapse
|
9
|
Cortés-Hernández A, Alvarez-Salazar EK, Arteaga-Cruz S, Rosas-Cortina K, Linares N, Alberú Gómez JM, Soldevila G. Highly Purified Alloantigen-Specific Tregs From Healthy and Chronic Kidney Disease Patients Can Be Long-Term Expanded, Maintaining a Suppressive Phenotype and Function in the Presence of Inflammatory Cytokines. Front Immunol 2021; 12:686530. [PMID: 34777330 PMCID: PMC8581357 DOI: 10.3389/fimmu.2021.686530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023] Open
Abstract
The adoptive transfer of alloantigen-specific regulatory T cells (alloTregs) has been proposed as a therapeutic alternative in kidney transplant recipients to the use of lifelong immunosuppressive drugs that cause serious side effects. However, the clinical application of alloTregs has been limited due to their low frequency in peripheral blood and the scarce development of efficient protocols to ensure their purity, expansion, and stability. Here, we describe a new experimental protocol that allows the long-term expansion of highly purified allospecific natural Tregs (nTregs) from both healthy controls and chronic kidney disease (CKD) patients, which maintain their phenotype and suppressive function under inflammatory conditions. Firstly, we co-cultured CellTrace Violet (CTV)-labeled Tregs from CKD patients or healthy individuals with allogeneic monocyte-derived dendritic cells in the presence of interleukin 2 (IL-2) and retinoic acid. Then, proliferating CD4+CD25hiCTV− Tregs (allospecific) were sorted by fluorescence-activated cell sorting (FACS) and polyclonally expanded with anti-CD3/CD28-coated beads in the presence of transforming growth factor beta (TGF-β), IL-2, and rapamycin. After 4 weeks, alloTregs were expanded up to 2,300 times the initial numbers with a purity of >95% (CD4+CD25hiFOXP3+). The resulting allospecific Tregs showed high expressions of CTLA-4, LAG-3, and CD39, indicative of a highly suppressive phenotype. Accordingly, expanded alloTregs efficiently suppressed T-cell proliferation in an antigen-specific manner, even in the presence of inflammatory cytokines (IFN-γ, IL-4, IL-6, or TNF-α). Unexpectedly, the long-term expansion resulted in an increased methylation of the specific demethylated region of Foxp3. Interestingly, alloTregs from both normal individuals and CKD patients maintained their immunosuppressive phenotype and function after being expanded for two additional weeks under an inflammatory microenvironment. Finally, phenotypic and functional evaluation of cryopreserved alloTregs demonstrated the feasibility of long-term storage and supports the potential use of this cellular product for personalized Treg therapy in transplanted patients.
Collapse
Affiliation(s)
- Arimelek Cortés-Hernández
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Evelyn Katy Alvarez-Salazar
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Saúl Arteaga-Cruz
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Katya Rosas-Cortina
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nadyeli Linares
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Josefina M Alberú Gómez
- National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Soldevila
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Current immunosuppressive regimens used in kidney transplantation are sometimes ineffective and carry significant risks of morbidity and mortality. Cellular therapies are a promising alternative to prolong graft survival while minimizing treatment toxicity. We review the recently published breakthrough studies using cell therapies in kidney transplantation. RECENT FINDINGS The reviewed phase I and II trials showed that cell therapies are feasible and safe in kidney transplantation, sometimes associated with less infectious complications than traditional regimens. Regulatory T cells and macrophages were added to the induction regimen, allowing for lower immunosuppressive drug doses without higher rejection risk. Regulatory T cells are also a treatment for subclinical rejection on the 6 months biopsy. Other strategies, like bone marrow-derived mesenchymal cells, genetically modified regulatory T cells, and chimerism-based tolerance are also really promising. In addition, to improve graft tolerance, cell therapy could be used to prevent or treat viral infection after transplantation. SUMMARY Emerging data underline that cell therapy is a feasible and safe treatment in kidney transplantation. Although the evidence points to a benefit for transplant recipients, studies with standardized protocols, representative control groups, and longer follow-up are needed to answer the question definitively and guide future research.
Collapse
Affiliation(s)
- Simon Leclerc
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Caroline Lamarche
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Ezzelarab MB, Zhang H, Sasaki K, Lu L, Zahorchak AF, van der Windt DJ, Dai H, Perez-Gutierrez A, Bhama JK, Thomson AW. Ex Vivo Expanded Donor Alloreactive Regulatory T Cells Lose Immunoregulatory, Proliferation, and Antiapoptotic Markers After Infusion Into ATG-lymphodepleted, Nonhuman Primate Heart Allograft Recipients. Transplantation 2021; 105:1965-1979. [PMID: 33587433 PMCID: PMC8239063 DOI: 10.1097/tp.0000000000003617] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Regulatory T cell (Treg) therapy is a promising approach to amelioration of allograft rejection and promotion of organ transplant tolerance. However, the fate of infused Treg, and how this relates to their therapeutic efficacy using different immunosuppressive regimens is poorly understood. Our aim was to analyze the tissue distribution, persistence, replicative activity and phenotypic stability of autologous, donor antigen alloreactive Treg (darTreg) in anti-thymocyte globulin (ATG)-lymphodepleted, heart-allografted cynomolgus monkeys. METHODS darTreg were expanded ex vivo from flow-sorted, circulating Treg using activated donor B cells and infused posttransplant into recipients of major histocompatibility complex-mismatched heart allografts. Fluorochrome-labeled darTreg were identified and characterized in peripheral blood, lymphoid, and nonlymphoid tissues and the graft by flow cytometric analysis. RESULTS darTreg selectively suppressed autologous T cell responses to donor antigens in vitro. However, following their adoptive transfer after transplantation, graft survival was not prolonged. Early (within 2 wk posttransplant; under ATG, tacrolimus, and anti-IL-6R) or delayed (6-8 wk posttransplant; under rapamycin) darTreg infusion resulted in a rapid decline in transferred darTreg in peripheral blood. Following their early or delayed infusion, labeled cells were evident in lymphoid and nonlymphoid organs and the graft at low percentages (<4% CD4+ T cells). Notably, infused darTreg showed reduced expression of immunoregulatory molecules (Foxp3 and CTLA4), Helios, the proliferative marker Ki67 and antiapoptotic Bcl2, compared with preinfusion darTreg and endogenous CD4+CD25hi Treg. CONCLUSIONS Lack of therapeutic efficacy of infused darTreg in lymphodepleted heart graft recipients appears to reflect loss of a regulatory signature and proliferative and survival capacity shortly after infusion.
Collapse
Affiliation(s)
- Mohamed B. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hong Zhang
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kazuki Sasaki
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lien Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alan F. Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dirk J. van der Windt
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Helong Dai
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Angelica Perez-Gutierrez
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jay K. Bhama
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Thomson AW, Sasaki K, Ezzelarab MB. Non-human Primate Regulatory T Cells and Their Assessment as Cellular Therapeutics in Preclinical Transplantation Models. Front Cell Dev Biol 2021; 9:666959. [PMID: 34211972 PMCID: PMC8239398 DOI: 10.3389/fcell.2021.666959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Non-human primates (NHP) are an important resource for addressing key issues regarding the immunobiology of regulatory T cells (Treg), their in vivo manipulation and the translation of adoptive Treg therapy to clinical application. In addition to their phenotypic and functional characterization, particularly in cynomolgus and rhesus macaques, NHP Treg have been isolated and expanded successfully ex vivo. Their numbers can be enhanced in vivo by administration of IL-2 and other cytokines. Both polyclonal and donor antigen (Ag) alloreactive NHP Treg have been expanded ex vivo and their potential to improve long-term outcomes in organ transplantation assessed following their adoptive transfer in combination with various cytoreductive, immunosuppressive and "Treg permissive" agents. In addition, important insights have been gained into the in vivo fate/biodistribution, functional stability, replicative capacity and longevity of adoptively-transferred Treg in monkeys. We discuss current knowledge of NHP Treg immunobiology, methods for their in vivo expansion and functional validation, and results obtained testing their safety and efficacy in organ and pancreatic islet transplantation models. We compare and contrast results obtained in NHP and mice and also consider prospects for future, clinically relevant studies in NHP aimed at improved understanding of Treg biology, and innovative approaches to promote and evaluate their therapeutic potential.
Collapse
Affiliation(s)
- Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kazuki Sasaki
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mohamed B. Ezzelarab
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Choi Y, Jung JH, Lee EG, Kim KM, Yoo WH. 4-phenylbutyric acid mediates therapeutic effect in systemic lupus erythematosus: Observations in an experimental murine lupus model. Exp Ther Med 2021; 21:460. [PMID: 33747192 PMCID: PMC7967889 DOI: 10.3892/etm.2021.9891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
Impaired function of regulatory T cells (Tregs) contributes to the pathogenesis of systemic lupus erythematosus (SLE). Our previous study demonstrated aberrant responses of T lymphocytes to endoplasmic reticulum (ER) stress in patients with SLE. The present study investigated whether ER stress inhibition by 4-phenylbutyric acid (4-PBA) ameliorated lupus manifestations in an experimental lupus model and the effect of ER stress inhibition on the frequency and function of Tregs. A murine lupus model was induced through a 4-week treatment with Resiquimod, a toll-like receptor (TLR) 7 agonist. From the 8th week, the mice were treated with 4-PBA for 4 weeks. 4-PBA significantly decreased the levels of anti-dsDNA antibodies and serum TNF-α. A significant decrease in glomerulonephritis score was also observed in the 4-PBA-treated group. ER stress inhibition decreased the activated T and B lymphocytes population of splenocytes; however, the population of Tregs was not significantly different between the vehicle and 4-PBA group. However, a markedly enhanced suppressive capacity of Treg was detected in the 4-PBA-treated group. The present results suggest that ER stress inhibition attenuated disease activity in an experimental model by improving the suppressive capacity of Tregs. Therefore, reduction of ER stress could be used as a beneficial therapeutic strategy in SLE.
Collapse
Affiliation(s)
- Yunjung Choi
- Division of Rheumatology, Department of Internal Medicine, Jeonbuk National University Hospital, Jeonju, Jeollabukdo 54907, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabukdo 54907, Republic of Korea
| | - Ji-Hyun Jung
- Division of Rheumatology, Department of Internal Medicine, Jeonbuk National University Hospital, Jeonju, Jeollabukdo 54907, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabukdo 54907, Republic of Korea
| | - Eun-Gyeong Lee
- Division of Rheumatology, Department of Internal Medicine, Jeonbuk National University Hospital, Jeonju, Jeollabukdo 54907, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabukdo 54907, Republic of Korea
| | - Kyoung Min Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabukdo 54907, Republic of Korea.,Department of Pathology, Jeonjuk National Medical School, Jeonju, Jeollabukdo 54907, Republic of Korea
| | - Wan-Hee Yoo
- Division of Rheumatology, Department of Internal Medicine, Jeonbuk National University Hospital, Jeonju, Jeollabukdo 54907, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabukdo 54907, Republic of Korea
| |
Collapse
|
14
|
Wardell CM, MacDonald KN, Levings MK, Cook L. Cross talk between human regulatory T cells and antigen-presenting cells: Lessons for clinical applications. Eur J Immunol 2020; 51:27-38. [PMID: 33301176 DOI: 10.1002/eji.202048746] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/04/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Regulatory T cells (Tregs) have a critical role in maintaining self-tolerance and immune homeostasis. There is much interest in using Tregs as a cell therapy to re-establish tolerance in conditions such as inflammatory bowel disease and type 1 diabetes, with many ongoing clinical studies testing the safety and efficacy of this approach. Manufacturing of Tregs for therapy typically involves ex vivo expansion to obtain sufficient cell numbers for infusion and comes with the risk of altering the activity of key biological processes. However, this process also offers an opportunity to tailor Treg function to maximize in vivo activity. In this review, we focus on the roles of antigen-presenting cells (APCs) in the generation and function of Tregs in humans. In addition to stimulating the development of Tregs, APCs activate Tregs and provide signals that induce specialized functional and homing marker expression. Cross talk between Tregs and APCs is a critical, often under-appreciated, aspect of Treg biology, with APCs mediating the key properties of infectious tolerance and bystander suppression. Understanding the biology of human Treg-APC interactions will reveal new ways to optimize Treg-based therapeutic approaches.
Collapse
Affiliation(s)
- Christine M Wardell
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine N MacDonald
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Cook
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Sicard A, Lamarche C, Speck M, Wong M, Rosado-Sánchez I, Blois M, Glaichenhaus N, Mojibian M, Levings MK. Donor-specific chimeric antigen receptor Tregs limit rejection in naive but not sensitized allograft recipients. Am J Transplant 2020; 20:1562-1573. [PMID: 31957209 DOI: 10.1111/ajt.15787] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 12/19/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Cell therapy with autologous donor-specific regulatory T cells (Tregs) is a promising strategy to minimize immunosuppression in transplant recipients. Chimeric antigen receptor (CAR) technology has recently been used successfully to generate donor-specific Tregs and overcome the limitations of enrichment protocols based on repetitive stimulations with alloantigens. However, the ability of CAR-Treg therapy to control alloreactivity in immunocompetent recipients is unknown. We first analyzed the effect of donor-specific CAR Tregs on alloreactivity in naive, immunocompetent mice receiving skin allografts. Tregs expressing an irrelevant or anti-HLA-A2-specific CAR were administered to Bl/6 mice at the time of transplanting an HLA-A2+ Bl/6 skin graft. Donor-specific CAR-Tregs, but not irrelevant-CAR Tregs, significantly delayed skin rejection and diminished donor-specific antibodies (DSAs) and frequencies of DSA-secreting B cells. Donor-specific CAR-Treg-treated mice also had a weaker recall DSA response, but normal responses to an irrelevant antigen, demonstrating antigen-specific suppression. When donor-specific CAR Tregs were tested in HLA-A2-sensitized mice, they were unable to delay allograft rejection or diminish DSAs. The finding that donor-specific CAR-Tregs restrain de novo but not memory alloreactivity has important implications for their use as an adoptive cell therapy in transplantation.
Collapse
Affiliation(s)
- Antoine Sicard
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,Department of Nephrology-Dialysis-Transplantation, Nice University Hospital, Clinical Research Unit of University of Côte d'Azur, Nice, France.,CNRS, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne, France
| | - Caroline Lamarche
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Madeleine Speck
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - May Wong
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Isaac Rosado-Sánchez
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Mathilde Blois
- Department of Nephrology-Dialysis-Transplantation, Nice University Hospital, Clinical Research Unit of University of Côte d'Azur, Nice, France.,CNRS, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne, France
| | - Nicolas Glaichenhaus
- CNRS, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne, France
| | - Majid Mojibian
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Megan K Levings
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Adoptive cell therapy using CD4FOXP3 regulatory T cells (Treg) has emerged as a promising therapeutic strategy to treat autoimmunity and alloimmunity. Preclinical studies suggest that the efficacy of Treg therapy can be improved by modifying the antigen specificity, stability and function of therapeutic Tregs. We review recent innovations that considerably enhance the possibilities of controlling these parameters. RECENT FINDINGS Antigen-specific Tregs can be generated by genetically modifying polyclonal Tregs to express designated T-cell receptors or single-chain chimeric antigen receptors. The benefits of this approach can be further extended by using novel strategies to fine-tune the antigen-specificity and affinity of Treg in vivo. CRISPR/Cas 9 technology now enables the modification of therapeutic Tregs so they are safer, more stable and long lived. The differentiation and homing properties of Tregs can also be modulated by gene editing or modifying ex-vivo stimulation conditions. SUMMARY A new wave of innovation has considerably increased the number of strategies that could be used to increase the therapeutic potential of Treg therapy. However, the increased complexity of these approaches may limit their wide accessibility. Third-party therapy with off-the-shelf Treg products could be a solution.
Collapse
|
17
|
Dawson NA, Lamarche C, Hoeppli RE, Bergqvist P, Fung VC, McIver E, Huang Q, Gillies J, Speck M, Orban PC, Bush JW, Mojibian M, Levings MK. Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in regulatory T cells. JCI Insight 2019; 4:123672. [PMID: 30753169 DOI: 10.1172/jci.insight.123672] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Chimeric antigen receptor (CAR) technology can be used to engineer the antigen specificity of regulatory T cells (Tregs) and improve their potency as an adoptive cell therapy in multiple disease models. As synthetic receptors, CARs carry the risk of immunogenicity, particularly when derived from nonhuman antibodies. Using an HLA-A*02:01-specific CAR (A2-CAR) encoding a single-chain variable fragment (Fv) derived from a mouse antibody, we developed a panel of 20 humanized A2-CARs (hA2-CARs). Systematic testing demonstrated variations in expression, and ability to bind HLA-A*02:01 and stimulate human Treg suppression in vitro. In addition, we developed a new method to comprehensively map the alloantigen specificity of CARs, revealing that humanization reduced HLA-A cross-reactivity. In vivo bioluminescence imaging showed rapid trafficking and persistence of hA2-CAR Tregs in A2-expressing allografts, with eventual migration to draining lymph nodes. Adoptive transfer of hA2-CAR Tregs suppressed HLA-A2+ cell-mediated xenogeneic graft-versus-host disease and diminished rejection of human HLA-A2+ skin allografts. These data provide a platform for systematic development and specificity testing of humanized alloantigen-specific CARs that can be used to engineer specificity and homing of therapeutic Tregs.
Collapse
Affiliation(s)
- Nicholas Aj Dawson
- Department of Medicine and.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Caroline Lamarche
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Romy E Hoeppli
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Peter Bergqvist
- Centre for Drug and Research and Development, Vancouver, British Columbia, Canada
| | - Vivian Cw Fung
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Emma McIver
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Qing Huang
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Jana Gillies
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Madeleine Speck
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Paul C Orban
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Jonathan W Bush
- BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine and
| | - Majid Mojibian
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada.,School of Biomedical Engineering, UBC, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Martin-Moreno PL, Tripathi S, Chandraker A. Regulatory T Cells and Kidney Transplantation. Clin J Am Soc Nephrol 2018; 13:1760-1764. [PMID: 29789350 PMCID: PMC6237070 DOI: 10.2215/cjn.01750218] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability of the immune system to differentiate self from nonself is critical in determining the immune response to antigens expressed on transplanted tissue. Even with conventional immunosuppression, acceptance of the allograft is an active process often determined by the presence of regulatory T cells (Tregs). Tregs classically are CD4+ cells that constitutively express high levels of the IL-2 receptor α chain CD25, along with the transcription factor Foxp3. The use of Tregs in the field of solid organ transplantation is related specifically to the objective of achieving tolerance, with the goal of reducing or eliminating immunosuppressive drugs as well as maintaining tissue repair and managing acute rejection. A key issue in clinical use of Tregs is how to effectively expand the number of Tregs, either through increasing numbers of endogenous Tregs or by the direct infusion of exogenously expanded Tregs. In order to realize the benefits of Treg therapy in solid organ transplantation, a number of outstanding challenges need to be overcome, including assuring an effective expansion of Tregs, improving long-term Treg stability and reduction of risk-related to off-target, nonspecific, immunosuppressive effects related specially to cancer.
Collapse
Affiliation(s)
- Paloma Leticia Martin-Moreno
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
- Nephrology Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Sudipta Tripathi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|