1
|
Wu S, Benny M, Duara J, Williams K, Tan A, Schmidt A, Young KC. Extracellular vesicles: pathogenic messengers and potential therapy for neonatal lung diseases. Front Pediatr 2023; 11:1205882. [PMID: 37397144 PMCID: PMC10311919 DOI: 10.3389/fped.2023.1205882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of nano-sized membranous structures increasingly recognized as mediators of intercellular and inter-organ communication. EVs contain a cargo of proteins, lipids and nucleic acids, and their cargo composition is highly dependent on the biological function of the parental cells. Their cargo is protected from the extracellular environment by the phospholipid membrane, thus allowing for safe transport and delivery of their intact cargo to nearby or distant target cells, resulting in modification of the target cell's gene expression, signaling pathways and overall function. The highly selective, sophisticated network through which EVs facilitate cell signaling and modulate cellular processes make studying EVs a major focus of interest in understanding various biological functions and mechanisms of disease. Tracheal aspirate EV-miRNA profiling has been suggested as a potential biomarker for respiratory outcome in preterm infants and there is strong preclinical evidence showing that EVs released from stem cells protect the developing lung from the deleterious effects of hyperoxia and infection. This article will review the role of EVs as pathogenic messengers, biomarkers, and potential therapies for neonatal lung diseases.
Collapse
Affiliation(s)
- Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - Merline Benny
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - Joanne Duara
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - Kevin Williams
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - April Tan
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - Augusto Schmidt
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - Karen C. Young
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
2
|
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharm Sin B 2023; 13:1789-1827. [PMID: 37250173 PMCID: PMC10213819 DOI: 10.1016/j.apsb.2022.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Polymer nanotherapeutics to correct autoimmunity. J Control Release 2022; 343:152-174. [PMID: 34990701 DOI: 10.1016/j.jconrel.2021.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
The immune system maintains homeostasis and protects the body from pathogens, mutated cells, and other harmful substances. When immune homeostasis is disrupted, excessive autoimmunity will lead to diseases. To inhibit the unexpected immune responses and reduce the impact of treatment on immunoprotective functions, polymer nanotherapeutics, such as nanomedicines, nanovaccines, and nanodecoys, were developed as part of an advanced strategy for precise immunomodulation. Nanomedicines transport cytotoxic drugs to target sites to reduce the occurrence of side effects and increase the stability and bioactivity of various immunomodulating agents, especially nucleic acids and cytokines. In addition, polymer nanomaterials carrying autoantigens used as nanovaccines can induce antigen-specific immune tolerance without interfering with protective immune responses. The precise immunomodulatory function of nanovaccines has broad prospects for the treatment of immune related-diseases. Besides, nanodecoys, which are designed to protect the body from various pathogenic substances by intravenous administration, are a simple and relatively noninvasive treatment. Herein, we have discussed and predicted the application of polymer nanotherapeutics in the correction of autoimmunity, including treating autoimmune diseases, controlling hypersensitivity, and avoiding transplant rejection.
Collapse
|
4
|
Paluszkiewicz P, Martuszewski A, Zaręba N, Wala K, Banasik M, Kepinska M. The Application of Nanoparticles in Diagnosis and Treatment of Kidney Diseases. Int J Mol Sci 2021; 23:ijms23010131. [PMID: 35008556 PMCID: PMC8745391 DOI: 10.3390/ijms23010131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomedicine is currently showing great promise for new methods of diagnosing and treating many diseases, particularly in kidney disease and transplantation. The unique properties of nanoparticles arise from the diversity of size effects, used to design targeted nanoparticles for specific cells or tissues, taking renal clearance and tubular secretion mechanisms into account. The design of surface particles on nanoparticles offers a wide range of possibilities, among which antibodies play an important role. Nanoparticles find applications in encapsulated drug delivery systems containing immunosuppressants and other drugs, in imaging, gene therapies and many other branches of medicine. They have the potential to revolutionize kidney transplantation by reducing and preventing ischemia-reperfusion injury, more efficiently delivering drugs to the graft site while avoiding systemic effects, accurately localizing and visualising the diseased site and enabling continuous monitoring of graft function. So far, there are known nanoparticles with no toxic effects on human tissue, although further studies are still needed to confirm their safety.
Collapse
Affiliation(s)
- Patrycja Paluszkiewicz
- Department of Emergency Medical Service, Wroclaw Medical University, Bartla 5, 50-367 Wroclaw, Poland;
| | - Adrian Martuszewski
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland;
| | - Natalia Zaręba
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
| | - Kamila Wala
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland;
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
- Correspondence: (M.B.); (M.K.); Tel.: +48-71-733-2500 (M.B.); +48-71-784-0171 (M.K.)
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
- Correspondence: (M.B.); (M.K.); Tel.: +48-71-733-2500 (M.B.); +48-71-784-0171 (M.K.)
| |
Collapse
|
5
|
Ibrahim UH, Devnarain N, Govender T. Biomimetic strategies for enhancing synthesis and delivery of antibacterial nanosystems. Int J Pharm 2021; 596:120276. [DOI: 10.1016/j.ijpharm.2021.120276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022]
|
6
|
Van Deun J, Roux Q, Deville S, Van Acker T, Rappu P, Miinalainen I, Heino J, Vanhaecke F, De Geest BG, De Wever O, Hendrix A. Feasibility of Mechanical Extrusion to Coat Nanoparticles with Extracellular Vesicle Membranes. Cells 2020; 9:cells9081797. [PMID: 32751082 PMCID: PMC7464356 DOI: 10.3390/cells9081797] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Biomimetic functionalization to confer stealth and targeting properties to nanoparticles is a field of intense study. Extracellular vesicles (EV), sub-micron delivery vehicles for intercellular communication, have unique characteristics for drug delivery. We investigated the top-down functionalization of gold nanoparticles with extracellular vesicle membranes, including both lipids and associated membrane proteins, through mechanical extrusion. EV surface-exposed membrane proteins were confirmed to help avoid unwanted elimination by macrophages, while improving autologous uptake. EV membrane morphology, protein composition and orientation were found to be unaffected by mechanical extrusion. We implemented complementary EV characterization methods, including transmission- and immune-electron microscopy, and nanoparticle tracking analysis, to verify membrane coating, size and zeta potential of the EV membrane-cloaked nanoparticles. While successful EV membrane coating of the gold nanoparticles resulted in lower macrophage uptake, low yield was found to be a significant downside of the extrusion approach. Our data incentivize more research to leverage EV membrane biomimicking as a unique drug delivery approach in the near future.
Collapse
Affiliation(s)
- Jan Van Deun
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (J.V.D.); (Q.R.); (S.D.); (O.D.W.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Quentin Roux
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (J.V.D.); (Q.R.); (S.D.); (O.D.W.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Sarah Deville
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (J.V.D.); (Q.R.); (S.D.); (O.D.W.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Thibaut Van Acker
- Department of Analytical Chemistry, Ghent University, 9000 Ghent, Belgium; (T.V.A.); (F.V.)
| | - Pekka Rappu
- Department of Biochemistry, University of Turku, 20500 Turku, Finland; (P.R.); (J.H.)
| | - Ilkka Miinalainen
- Biocenter Oulu, Department of Pathology, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland;
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, 20500 Turku, Finland; (P.R.); (J.H.)
| | - Frank Vanhaecke
- Department of Analytical Chemistry, Ghent University, 9000 Ghent, Belgium; (T.V.A.); (F.V.)
| | | | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (J.V.D.); (Q.R.); (S.D.); (O.D.W.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (J.V.D.); (Q.R.); (S.D.); (O.D.W.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
7
|
Lu M, Huang Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials 2020; 242:119925. [PMID: 32151860 DOI: 10.1016/j.biomaterials.2020.119925] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/09/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Exosomes have emerged as appealing candidate therapeutic agents and delivery nanoplatforms due to their endogenous features and unique biological properties. However, obstacles such as low isolation yield, considerable complexity and potential safety concerns, and inefficient drug payload substantially hamper their therapeutic applicability. To this end, developing bioinspired exosome-like nanoparticles has become a promising area to overcome certain limitations of their natural counterparts. Synthetically fabrication of exosome-like nanoparticles that harbor only crucial components of exosomes through controllable protocols strongly increases the pharmaceutical acceptability of these vesicles. Assembly of exosome-like nanovesicles derived from producer cells allows for a promising strategy for scale-up production. To improve the loading capability and delivery efficiency of exosomes, hybrid exosome-like nanovesicles and membrane-camouflaged nanoparticles towards better bridging synthetic nanocarriers with natural exosomes could be designed. Building off these observations, herein, efforts are made to give an overview of bioinspired exosome-like therapeutics and delivery nanoplatforms. We briefly recapitulate the recent advance in exosome biology with focus on tailoring exosomes as therapeutics and delivery vehicles. Furthermore, we elaborately discuss the biomimicry methodologies for preparation of exosome-like nanoparticles with special emphasis on offering insights into strategies for rational design of exosome-like biomaterials as effective and safe therapeutics and delivery nanoplatforms.
Collapse
Affiliation(s)
- Mei Lu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|