1
|
Cai Y, Fan Y, Chen A, Wang X, Wang L, Chen J, Wang Z, Li J, Yi X, Ju C. Characteristics of upper and lower respiratory tract microbiota after lung transplantation. Respir Res 2025; 26:160. [PMID: 40281571 PMCID: PMC12023598 DOI: 10.1186/s12931-025-03235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND The composition and characteristics of airway microbiota offer critical insights for clinical decision-making. Current research on chronic lung diseases shows differences in the composition and characteristics of upper and lower respiratory tract microbiota compared with healthy individuals. However, the temporal changes of these microbial communities in lung transplant recipients remain poorly characterized. METHODS This is a longitudinal prospective study. Respiratory specimens were collected regularly from lung transplant recipients for testing and analysis. A total of 150 bronchoalveolar lavage fluid (BALF) samples, 150 throat swab samples, 51 sputum samples, and 36 lung tissue samples were collected from the recipients, at 7 days, 14 days, 1 month, 2 months, 3 months, and 6 months post-transplant for 16S rRNA gene sequencing and analysis. RESULTS Our study showed that there were significant differences in α-diversity and β-diversity among lung tissue, throat swab, and sputum samples, although α-diversity did not show a significant difference between lung tissue and BALF. Most amplicon sequence variants (ASVs) belonged to the families Enterobacteriaceae, Pseudomonadaceae, and Stenotrophomonas in BALF, while most ASVs belonged to the genera Streptococcus, Pseudomonadaceae, and Stenotrophomonas in sputum samples. Regarding dynamic changes, Corynebacterium and Staphylococcus were more prevalent in the early post-operative period but gradually decreased by 7 days post-operatively, while the common microbiota found in healthy populations based on literature became the most abundant ASVs at 6 months post-operatively in our study participants. Pseudomonadaceae and Stenotrophomonas contributed to the similarity in the composition of upper and lower respiratory microbiota. CONCLUSIONS This study demonstrates that lung transplant recipients exhibit unique characteristics in their upper and lower respiratory tract microbiota, which are distinct ecological profiles, and both undergo significant changes within 6 months post-operatively. The similarity between upper and lower respiratory tract microbiota is associated with microbial diversity and taxonomic dominance. CLINICAL TRIAL The clinical trial was registered at Chinese Clinical Trial Registry (ChiCTR2200056908) in February 2022.
Collapse
Affiliation(s)
- Yuhang Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guang Dong, China
| | - Yuchen Fan
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, China
| | - Ao Chen
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guang Dong, China
| | - Xiaohua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guang Dong, China
| | - Lulin Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guang Dong, China
| | - Jiaqi Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guang Dong, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, China
| | - Jia Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guang Dong, China.
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, China.
| | - Chunrong Ju
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guang Dong, China.
| |
Collapse
|
2
|
Ponholzer F, Bogensperger C, Krendl FJ, Krapf C, Dumfarth J, Schneeberger S, Augustin F. Beyond the organ: lung microbiome shapes transplant indications and outcomes. Eur J Cardiothorac Surg 2024; 66:ezae338. [PMID: 39288305 PMCID: PMC11466426 DOI: 10.1093/ejcts/ezae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024] Open
Abstract
The lung microbiome plays a crucial role in the development of chronic lung diseases, which may ultimately lead to the need for lung transplantation. Also, perioperative results seem to be connected with altered lung microbiomes and its dynamic changes providing a possible target for optimizing short-term outcome after transplantation. A literature review using MEDLINE, PubMed Central and Bookshelf was performed. Chronic lung allograft dysfunction (CLAD) seems to be influenced and partly triggered by changes in the pulmonary microbiome and dysbiosis, e.g. through increased bacterial load or abundance of specific species such as Pseudomonas aeruginosa. Additionally, the specific indications for transplantation, with their very heterogeneous changes and influences on the pulmonary microbiome, influence long-term outcome. Next to composition and measurable bacterial load, dynamic changes in the allografts microbiome also possess the ability to alter long-term outcomes negatively. This review discusses the "new" microbiome after transplantation and the associations with direct postoperative outcome. With the knowledge of these principles the impact of alterations in the pulmonary microbiome in hindsight to CLAD and possible therapeutic implications are described and discussed. The aim of this review is to summarize the current literature regarding pre- and postoperative lung microbiomes and how they influence different lung diseases on their progression to failure of conservative treatment. This review provides a summary of current literature for centres looking for further options in optimizing lung transplant outcomes and highlights possible areas for further research activities investigating the pulmonary microbiome in connection to transplantation.
Collapse
Affiliation(s)
- Florian Ponholzer
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Bogensperger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Julius Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Krapf
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Dumfarth
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Augustin
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Li CX, Lv M, Liu HY, Lin YX, Pan JB, You CX, Su J. Comparison of the upper and lower airway microbiome in early postoperative lung transplant recipients. Microbiol Spectr 2024; 12:e0379123. [PMID: 38747583 PMCID: PMC11237413 DOI: 10.1128/spectrum.03791-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 06/06/2024] Open
Abstract
The upper and lower respiratory tract may share microbiome because they are directly continuous, and the nasal microbiome contributes partially to the composition of the lung microbiome. But little is known about the upper and lower airway microbiome of early postoperative lung transplant recipients (LTRs). Using 16S rRNA gene sequencing, we compared paired nasal swab (NS) and bronchoalveolar lavage fluid (BALF) microbiome from 17 early postoperative LTRs. The microbiome between the two compartments were significantly different in Shannon diversity and beta diversity. Four and eight core NS-associated and BALF-associated microbiome were identified, respectively. NS samples harbored more Corynebacterium, Acinetobacter, and Pseudomonas, while BALF contained more Ralstonia, Stenotrophomonas, Enterococcus, and Pedobacter. The within-subject dissimilarity was higher than the between-subject dissimilarity, indicating a greater impact of sampling sites than sampling individuals on microbial difference. There were both difference and homogeneity between NS and BALF microbiome in early postoperative LTRs. High levels of pathogens were detected in both samples, suggesting that both of them can reflect the diseases characteristics of transplanted lung. The differences between upper and lower airway microbiome mainly come from sampling sites instead of sampling individuals. IMPORTANCE Lung transplantation is the only therapeutic option for patients with end-stage lung disease, but its outcome is much worse than other solid organ transplants. Little is known about the NS and BALF microbiome of early postoperative LTRs. Here, we compared paired samples of the nasal and lung microbiome from 17 early postoperative LTRs and showed both difference and homogeneity between the two samples. Most of the "core" microbiome in both NS and BALF samples were recognized respiratory pathogens, suggesting that both samples can reflect the diseases characteristics of transplanted lung. We also found that the differences between upper and lower airway microbiome in early postoperative LTRs mainly come from sampling sites instead of sampling individuals.
Collapse
Affiliation(s)
- Chun-xi Li
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Lv
- Department of Oncology, Medical Center for Overseas Patient, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-yue Liu
- Department of laboratory medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yan-xia Lin
- Hospital Infection-Control Department, Shenzhen University General Hospital, Shenzhen, China
| | - Jian-bing Pan
- Department of Respiratory Medicine, Meizhou People's Hospital, Meizhou, China
| | - Chang-xuan You
- Department of Oncology, Medical Center for Overseas Patient, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Su
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Yuzefpolskaya M, Bohn B, Ladanyi A, Khoruts A, Colombo PC, Demmer RT. Oral and gut microbiome alterations in heart failure: Epidemiology, pathogenesis and response to advanced heart failure therapies. J Heart Lung Transplant 2023; 42:291-300. [PMID: 36586790 DOI: 10.1016/j.healun.2022.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Despite significant advances in therapies, heart failure (HF) remains a progressive disease that, once advanced, is associated with significant death and disability. Cardiac replacement therapies with left ventricular assist device (LVAD) and heart transplantation (HT) are the only treatment options for advanced HF, while lifesaving they can also be lifespan limiting due to the associated complications. Systemic inflammation is mechanistically important in HF pathophysiology and progression. However, directly targeting inflammation in HF has not been beneficial thus far. These failed attempts at therapeutics might be related to our limited understanding of the factors that cause inflammation in HF, and, therefore, to our inability to investigate these triggers in interventional studies. Observational studies have consistently demonstrated associations between alterations in the digestive (gut and oral) microbiome, inflammation and HF risk and progression. Additionally, recent data indicate that these microbial perturbations persist following LVAD and HT, along with residual inflammation and oxidative stress. Furthermore, there is rising recognition of the critical contribution of the microbiome to the metabolism of immunosuppressive drugs after HT. Cumulatively, these findings might posit a mechanistic link between microbiome alterations, systemic inflammation, and adverse outcomes in HF patients before and after cardiac replacement therapies. This review (1) provides an update on available data linking changes in digestive tract microbiota, inflammation, and oxidative stress, to HF pathogenesis and progression; (2) describes evolution of these relationships following LVAD and HT; and (3) outlines present and future intervention strategies that can manipulate the microbiome and possibly modify HF disease trajectory.
Collapse
Affiliation(s)
- Melana Yuzefpolskaya
- Division of Cardiovascular Medicine, Columbia University Irving Medical Center, New York City, New York.
| | - Bruno Bohn
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Annamaria Ladanyi
- Division of Cardiovascular Medicine, Columbia University Irving Medical Center, New York City, New York
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine University of Minnesota, Minneapolis, Minnesota
| | - Paolo C Colombo
- Division of Cardiovascular Medicine, Columbia University Irving Medical Center, New York City, New York
| | - Ryan T Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota; Division of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
5
|
Hidi L, Kovács GI, Szabó D, Makra N, Pénzes K, Juhász J, Sótonyi P, Ostorházi E. Human blood vessel microbiota in healthy adults based on common femoral arteries of brain-dead multi-organ donors. Front Cell Infect Microbiol 2022; 12:1056319. [PMID: 36530429 PMCID: PMC9747773 DOI: 10.3389/fcimb.2022.1056319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
Discovery of human microbiota is fundamentally changing our perceptions of certain diseases and their treatments. However little is known about the human blood vessel microbiota, it may have important effects on vascular pathological lesions and vascular homograft failure. In our prospective survey study fourteen femoral arteries, harvested from donors in multi-organ donations, were examined using the V3-V4 region 16S rRNA sequencing method. The most abundant phyla in the human vascular microbiota were Proteobacteria, Firmicutes and Actinobacteria. At the genus level, the most abundant taxa were Staphylococcus, Corynebacterium, Pseudomonas, Bacillus, Acinetobacter and Propionibacterium. Of the bacterial taxa that have an indirect effect on the development of atherosclerosis, we found Porphyromonas gingivalis, Prevotella nigrescens and Enterobacteriaceae spp. with different abundances in our samples. Of the bacteria that are more common in the intestinal flora of healthy than of atherosclerosis patients, Roseburia and Ruminococcus occurred in the majority of samples. The human arterial wall has a unique microbiota that is significantly different in composition from that of other areas of the body. Our present study provides a basis for ensuing research that investigates the direct role of the microbiota in vascular wall abnormalities and the success of vascular allograft transplantations.
Collapse
Affiliation(s)
- László Hidi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gergely Imre Kovács
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Nóra Makra
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Kinga Pénzes
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - János Juhász
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Eszter Ostorházi
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Guohui J, Kun W, Dong T, Ji Z, Dong L, Dong W, Jingyu C. Microbiosis in lung allotransplantation and xenotransplantation: State of the art and future perspective. HEALTH CARE SCIENCE 2022; 1:119-128. [PMID: 38938886 PMCID: PMC11080722 DOI: 10.1002/hcs2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 06/29/2024]
Abstract
The respiratory tract is known to harbor a microbial community including bacteria, viruses, and fungi. New techniques contribute enormously to the identification of unknown or culture-independent species and reveal the interaction of the community with the host immune system. The existing respiratory microbiome and substantial equilibrium of the transplanted microbiome from donor lung grafts provide an extreme bloom of dynamic changes in the microenvironment in lung transplantation (LT) recipients. Dysbiosis in grafts are not only related to the modified microbial components but also involve the kinetics of the host-graft "talk," which signifies the destination of graft allograft injury, acute rejection, infection, and chronic allograft dysfunction development in short- and long-term survival. Microbiome-derived factors may contribute to lung xenograft survival when using genetically multimodified pig-derived organs. Here, we review the most advanced knowledge of the dynamics and resilience of microbial communities in transplanted lungs with various pretransplant indications. Conceptual and analytical points of view have been illustrated along the time series, gaining insight into the microbiome and lung grafts. Future endeavors on precise tools, sophisticated models, and novel targeted regimens are needed to improve the long-term survival in these patients.
Collapse
Affiliation(s)
- Jiao Guohui
- Center for Medical Device Evaluation, NMPABeijingChina
| | - Wu Kun
- Center for Medical Device Evaluation, NMPABeijingChina
| | - Tian Dong
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduChina
| | - Zhang Ji
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| | - Liu Dong
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| | - Wei Dong
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| | - Chen Jingyu
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| |
Collapse
|
7
|
Zhao Y, Zhang P, Ding J, Li Y, Su Y, Cao X, Chen C, Zhu Y, Jiang G, Shen L. An exploratory analysis of the lung microbiome and immune status in lung transplant recipients. J Infect 2022; 85:e44-e46. [PMID: 35659546 DOI: 10.1016/j.jinf.2022.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Yanfeng Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Pei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Junrong Ding
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Yuping Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Yiliang Su
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Xuejie Cao
- Genoxor Medical Science and Technology Inc., Shanghai, 201100, China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Lei Shen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Su J, Li CX, Liu HY, Lian QY, Chen A, You ZX, Li K, Cai YH, Lin YX, Pan JB, Zhang GX, Ju CR, You CX, He JX. The Airway Microbiota Signatures of Infection and Rejection in Lung Transplant Recipients. Microbiol Spectr 2022; 10:e0034421. [PMID: 35416686 PMCID: PMC9045364 DOI: 10.1128/spectrum.00344-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Infection and rejection are the two most common complications after lung transplantation (LT) and are associated with increased morbidity and mortality. We aimed to examine the association between the airway microbiota and infection and rejection in lung transplant recipients (LTRs). Here, we collected 181 sputum samples (event-free, n = 47; infection, n = 103; rejection, n = 31) from 59 LTRs, and performed 16S rRNA gene sequencing to analyze the airway microbiota. A significantly different airway microbiota was observed among event-free, infection and rejection recipients, including microbial diversity and community composition. Nineteen differential taxa were identified by linear discriminant analysis (LDA) effect size (LEfSe), with 6 bacterial genera, Actinomyces, Rothia, Abiotrophia, Neisseria, Prevotella, and Leptotrichia enriched in LTRs with rejection. Random forest analyses indicated that the combination of the 6 genera and procalcitonin (PCT) and T-lymphocyte levels showed area under the curve (AUC) values of 0.898, 0.919 and 0.895 to differentiate between event-free and infection recipients, event-free and rejection recipients, and infection and rejection recipients, respectively. In conclusion, our study compared the airway microbiota between LTRs with infection and acute rejection. The airway microbiota, especially combined with PCT and T-lymphocyte levels, showed satisfactory predictive efficiency in discriminating among clinically stable recipients and those with infection and acute rejection, suggesting that the airway microbiota can be a potential indicator to differentiate between infection and acute rejection after LT. IMPORTANCE Survival after LT is limited compared with other solid organ transplantations mainly due to infection- and rejection-related complications. Differentiating infection from rejection is one of the most important challenges to face after LT. Recently, the airway microbiota has been reported to be associated with either infection or rejection of LTRs. However, fewer studies have investigated the relationship between airway microbiota together with infection and rejection of LTRs. Here, we conducted an airway microbial study of LTRs and analyzed the airway microbiota together with infection, acute rejection, and clinically stable recipients. We found different airway microbiota between infection and acute rejection and identify several genera associated with each outcome and constructed a model that incorporates airway microbiota and clinical parameters to predict outcome. This study highlighted that the airway microbiota was a potential indicator to differentiate between infection and acute rejection after LT.
Collapse
Affiliation(s)
- Jin Su
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chun-xi Li
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-yue Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qiao-yan Lian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-xuan You
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Kun Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yu-hang Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan-xia Lin
- Hospital Infection-Control Department, Shenzhen University General Hospital, Shenzhen, China
| | - Jian-bing Pan
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-xia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chun-rong Ju
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chang-xuan You
- Department of Oncology, Medical Center for Overseas Patient, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-xing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Pan L, Wu F, Cai Q, Xu Z, Hu H, Tang T, Yue R, Hou Y, Zhang X, Fang Y, Huang X, Kang Y. Whole Genome Profiling of Lung Microbiome in Solid Organ Transplant Recipients Reveals Virus Involved Microecology May Worsen Prognosis. Front Cell Infect Microbiol 2022; 12:863399. [PMID: 35372133 PMCID: PMC8967177 DOI: 10.3389/fcimb.2022.863399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
Solid organ transplantation (SOT) is the final therapeutic option for recipients with end-stage organ failure, and its long-term success is limited by infections and chronic allograft dysfunction. Viral infection in SOT recipients is considered an important factor affecting prognosis. In this study, we retrospectively analyzed 43 cases of respiratory infections in SOT recipients using metagenomic next-generation sequencing (mNGS) for bronchoalveolar lavage fluid (BALF). At least one virus was detected in 26 (60.5%) recipients, while 17 (39.5%) were virus-negative. Among virus-positive recipients, cytomegalovirus (CMV) was detected in 14 (32.6%), Torque teno virus (TTV) was detected in 9 (20.9%), and other viruses were detected in 6 (14.0%). Prognostic analysis showed that the mortality of the virus-positive group was higher than that of the virus-negative group regardless whether it is the main cause of infection. Analysis of different types of viruses showed that the mortality of the CMV-positive group was significantly higher than that of the CMV-negative group, but no significant difference was observed in other type of virus groups. The diversity analysis of the lung microbiome showed that there was a significant difference between the virus-positive group and the negative group, in particular, the significant differences in microorganisms such as Pneumocystis jirovecii (PJP) and Moraxella osloensiswere detected. Moreover, in the presence of CMV, Pneumocystis jirovecii, Veillonella parvula, and other species showed dramatic changes in the lung of SOT patients, implying that high degree of co-infection between CMV and Pneumocystis jirovecii may occur. Taken together, our study shows that the presence of virus is associated with worse prognosis and dramatically altered lung microbiota in SOT recipients.
Collapse
Affiliation(s)
- Lingai Pan
- Department of Critical Care Medicine, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengsheng Wu
- Genoxor Medical Science and Technology Inc., Zhejiang, China
| | - Qingqing Cai
- Genoxor Medical Science and Technology Inc., Zhejiang, China
| | - Zhuofei Xu
- Genoxor Medical Science and Technology Inc., Zhejiang, China
| | - Huan Hu
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tian Tang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiming Yue
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifu Hou
- Department of Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqin Zhang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Fang
- Genoxor Medical Science and Technology Inc., Zhejiang, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Yan Kang, ; Xiaobo Huang,
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
- *Correspondence: Yan Kang, ; Xiaobo Huang,
| |
Collapse
|
10
|
Watzenboeck ML, Gorki AD, Quattrone F, Gawish R, Schwarz S, Lambers C, Jaksch P, Lakovits K, Zahalka S, Rahimi N, Starkl P, Symmank D, Artner T, Pattaroni C, Fortelny N, Klavins K, Frommlet F, Marsland BJ, Hoetzenecker K, Widder S, Knapp S. Multi-omics profiling predicts allograft function after lung transplantation. Eur Respir J 2022; 59:2003292. [PMID: 34244315 DOI: 10.1183/13993003.03292-2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/09/2021] [Indexed: 11/05/2022]
Abstract
RATIONALE Lung transplantation is the ultimate treatment option for patients with end-stage respiratory diseases but bears the highest mortality rate among all solid organ transplantations due to chronic lung allograft dysfunction (CLAD). The mechanisms leading to CLAD remain elusive due to an insufficient understanding of the complex post-transplant adaptation processes. OBJECTIVES To better understand these lung adaptation processes after transplantation and to investigate their association with future changes in allograft function. METHODS We performed an exploratory cohort study of bronchoalveolar lavage samples from 78 lung recipients and donors. We analysed the alveolar microbiome using 16S rRNA sequencing, the cellular composition using flow cytometry, as well as metabolome and lipidome profiling. MEASUREMENTS AND MAIN RESULTS We established distinct temporal dynamics for each of the analysed data sets. Comparing matched donor and recipient samples, we revealed that recipient-specific as well as environmental factors, rather than the donor microbiome, shape the long-term lung microbiome. We further discovered that the abundance of certain bacterial strains correlated with underlying lung diseases even after transplantation. A decline in forced expiratory volume during the first second (FEV1) is a major characteristic of lung allograft dysfunction in transplant recipients. By using a machine learning approach, we could accurately predict future changes in FEV1 from our multi-omics data, whereby microbial profiles showed a particularly high predictive power. CONCLUSION Bronchoalveolar microbiome, cellular composition, metabolome and lipidome show specific temporal dynamics after lung transplantation. The lung microbiome can predict future changes in lung function with high precision.
Collapse
Affiliation(s)
- Martin L Watzenboeck
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- These authors contributed equally
| | - Anna-Dorothea Gorki
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- These authors contributed equally
| | - Federica Quattrone
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- These authors contributed equally
| | - Riem Gawish
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- These authors contributed equally
| | - Stefan Schwarz
- Division of Thoracic Surgery, Dept of Surgery, Medical University of Vienna, Vienna, Austria
- These authors contributed equally
| | - Christopher Lambers
- Division of Thoracic Surgery, Dept of Surgery, Medical University of Vienna, Vienna, Austria
| | - Peter Jaksch
- Division of Thoracic Surgery, Dept of Surgery, Medical University of Vienna, Vienna, Austria
| | - Karin Lakovits
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sophie Zahalka
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nina Rahimi
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- Division of Thoracic Surgery, Dept of Surgery, Medical University of Vienna, Vienna, Austria
| | - Philipp Starkl
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Dörte Symmank
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tyler Artner
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Céline Pattaroni
- Dept of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Nikolaus Fortelny
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kristaps Klavins
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian Frommlet
- Institute of Medical Statistics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | | | - Konrad Hoetzenecker
- Division of Thoracic Surgery, Dept of Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefanie Widder
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
- S. Widder and S. Knapp contributed equally to this article as lead authors and supervised the work
| | - Sylvia Knapp
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- S. Widder and S. Knapp contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
11
|
Lung microbiota predict chronic rejection in healthy lung transplant recipients: a prospective cohort study. THE LANCET RESPIRATORY MEDICINE 2021; 9:601-612. [PMID: 33460570 DOI: 10.1016/s2213-2600(20)30405-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alterations in the respiratory microbiome are common in chronic lung diseases, correlate with decreased lung function, and have been associated with disease progression. The clinical significance of changes in the respiratory microbiome after lung transplant, specifically those related to development of chronic lung allograft dysfunction (CLAD), are unknown. The aim of this study was to evaluate the effect of lung microbiome characteristics in healthy lung transplant recipients on subsequent CLAD-free survival. METHODS We prospectively studied a cohort of lung transplant recipients at the University of Michigan (Ann Arbor, MI, USA). We analysed characteristics of the respiratory microbiome in acellular bronchoalveolar lavage fluid (BALF) collected from asymptomatic patients during per-protocol surveillance bronchoscopy 1 year after lung transplantation. For our primary endpoint, we evaluated a composite of development of CLAD or death at 500 days after the 1-year surveillance bronchoscopy. Our primary microbiome predictor variables were bacterial DNA burden (total 16S rRNA gene copies per mL of BALF, quantified via droplet digital PCR) and bacterial community composition (determined by bacterial 16S rRNA gene sequencing). Patients' lung function was followed serially at least every 3 months by spirometry, and CLAD was diagnosed according to International Society of Heart and Lung Transplant 2019 guidelines. FINDINGS We analysed BALF from 134 patients, collected during 1-year post-transplant surveillance bronchoscopy between Oct 21, 2005, and Aug 25, 2017. Within 500 days of follow-up from the time of BALF sampling, 24 (18%) patients developed CLAD, five (4%) died before confirmed development of CLAD, and 105 (78%) patients remained CLAD-free with complete follow-up. Lung bacterial burden was predictive of CLAD development or death within 500 days of the surveillance bronchoscopy, after controlling for demographic and clinical factors, including immunosuppression and bacterial culture results, in a multivariable survival model. This relationship was evident when burden was analysed as a continuous variable (per log10 increase in burden, HR 2·49 [95% CI 1·38-4·48], p=0·0024) or by tertiles (middle vs lowest bacterial burden tertile, HR 4·94 [1·25-19·42], p=0·022; and highest vs lowest, HR 10·56 [2·53-44·08], p=0·0012). In patients who developed CLAD or died, composition of the lung bacterial community significantly differed to that in patients who survived and remained CLAD-free (on permutational multivariate analysis of variance, p=0·047 at the taxonomic level of family), although differences in community composition were associated with bacterial burden. No individual bacterial taxa were definitively associated with CLAD development or death. INTERPRETATION Among asymptomatic lung transplant recipients at 1-year post-transplant, increased lung bacterial burden is predictive of chronic rejection and death. The lung microbiome represents an understudied and potentially modifiable risk factor for lung allograft dysfunction. FUNDING US National Institutes of Health, Cystic Fibrosis Foundation, Brian and Mary Campbell and Elizabeth Campbell Carr research gift fund.
Collapse
|
12
|
Li H, Xu D, Li H, Wu Y, Cheng Y, Chen Z, Yin G, Wang W, Ge Y, Niu Y, Liu C, Cai J, Kan H, Yu D, Chen R. Exposure to ultrafine particles and oral flora, respiratory function, and biomarkers of inflammation: A panel study in children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116489. [PMID: 33485003 DOI: 10.1016/j.envpol.2021.116489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/27/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Particulate matter (PM) is the most important air pollution problem that leads to substantial health effects. However, very few studies focused on the effects of ultrafine particles (UFPs, particles< 0.1 μm) on children respiratory health. We performed a panel study with 3 rounds of follow-up among 65 pupils at the Elementary School Affiliated to Shanghai Normal University in China from November 2018 to June 2019. Real-time concentrations of UFPs were measured in the campus. In each visit, we detected biomarkers in saliva and microflora in buccal mucosa, fractional exhaled nitric oxide (FeNO) and lung function. We applied a linear mixed-effect (LME) model to examine the associations of UFPs and each health outcome. We found increased levels of FeNO and tumor necrosis factor-α (TNF-α) and reduced lung function in association with higher UFP exposure. For each interquartile range increase of UFPs, the largest changes were found in lag 0-72 h for forced vital capacity [-69.02 ml (95% CI: -114.20, -23.84)], TNF-α [13.41 pg/ml (95% CI: 7.08, 19.73)], and FeNO [26.85% (95% CI: 11.84%, 43.88%)]. UFP exposure was associated with reduced diversity in buccal microflora with largest reduction in lag 0-72 h [12.24 (95% CI: 7.76, 16.71) for Ace index; 8.78 (95% CI: 2.96, 14.60) for Chao1 index]. UFP exposure was also associated with increased Streptococcus, Gemella, and decreased Actinomyces. Short-term UFP exposures may impair the respiratory system by inducing inflammation, decreasing lung function and attenuating buccal microbe diversity in children.
Collapse
Affiliation(s)
- Hongjin Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Dong Xu
- Xuhui District Center for Disease Prevention and Control, Shanghai, 200237, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H.Chan School of Public Health, Boston, MA, 02115, USA
| | - Yihan Wu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yu Cheng
- Xuhui District Center for Disease Prevention and Control, Shanghai, 200237, China
| | - Zhe Chen
- Xuhui District Center for Disease Prevention and Control, Shanghai, 200237, China
| | - Guanjin Yin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yihui Ge
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Dedong Yu
- Department of 2nd Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China.
| |
Collapse
|
13
|
Tanaka S, Gauthier JM, Terada Y, Takahashi T, Li W, Hashimoto K, Higashikubo R, Hachem RR, Bharat A, Ritter JH, Nava RG, Puri V, Krupnick AS, Gelman AE, Kreisel D. Bacterial products in donor airways prevent the induction of lung transplant tolerance. Am J Transplant 2021; 21:353-361. [PMID: 32786174 PMCID: PMC7775268 DOI: 10.1111/ajt.16256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/17/2020] [Accepted: 08/03/2020] [Indexed: 01/25/2023]
Abstract
Although postoperative bacterial infections can trigger rejection of pulmonary allografts, the impact of bacterial colonization of donor grafts on alloimmune responses to transplanted lungs remains unknown. Here, we tested the hypothesis that bacterial products present within donor grafts at the time of implantation promote lung allograft rejection. Administration of the toll-like receptor 2 (TLR2) agonist Pam3 Cys4 to Balb/c wild-type grafts triggered acute cellular rejection after transplantation into B6 wild-type recipients that received perioperative costimulatory blockade. Pam3 Cys4 -triggered rejection was associated with an expansion of CD8+ T lymphocytes and CD11c+ CD11bhi MHC (major histocompatibility complex) class II+ antigen-presenting cells within the transplanted lungs. Rejection was prevented when lungs were transplanted into TLR2-deficient recipients but not when MyD88-deficient donors were used. Adoptive transfer of B6 wild-type monocytes, but not T cells, following transplantation into B6 TLR2-deficient recipients restored the ability of Pam3 Cys4 to trigger acute cellular rejection. Thus, we have demonstrated that activation of TLR2 by a bacterial lipopeptide within the donor airways prevents the induction of lung allograft tolerance through a process mediated by recipient-derived monocytes. Our work suggests that donor lungs harboring bacteria may precipitate an inflammatory response that can facilitate allograft rejection.
Collapse
Affiliation(s)
- Satona Tanaka
- Department of Surgery, Washington University, Saint Louis, MO
| | | | - Yuriko Terada
- Department of Surgery, Washington University, Saint Louis, MO
| | | | - Wenjun Li
- Department of Surgery, Washington University, Saint Louis, MO
| | - Kohei Hashimoto
- Department of Surgery, Washington University, Saint Louis, MO
| | | | | | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, IL
| | - Jon H. Ritter
- Department of Pathology & Immunology, Washington University, Saint Louis, MO
| | - Ruben G. Nava
- Department of Surgery, Washington University, Saint Louis, MO
| | - Varun Puri
- Department of Surgery, Washington University, Saint Louis, MO
| | | | - Andrew E. Gelman
- Department of Surgery, Washington University, Saint Louis, MO,Department of Pathology & Immunology, Washington University, Saint Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University, Saint Louis, MO,Department of Pathology & Immunology, Washington University, Saint Louis, MO
| |
Collapse
|
14
|
Hu D, Cui L, Qi Y, Jia X, Chen J, Niu W, Miller MR, Loh M, Zhou H, Deng F, Liu J, Guo X. Identification of potential markers for internal exposure to ambient ozone in oral cavity of healthy adults. ENVIRONMENTAL RESEARCH 2020; 190:109907. [PMID: 32758550 DOI: 10.1016/j.envres.2020.109907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ozone is a highly oxidative gaseous pollutant associated with adverse health outcomes, but markers for internal exposure to ambient ozone are not well-established. METHODS We aimed to evaluate the feasibility and suitability of the markers in oral microbiome for ambient ozone exposure. Between March and May in 2018, 97 healthy adults were examined on 2 or 3 occasions for oral swab sampling. Hourly concentrations of ambient ozone 1-7 days preceding sampling were collected. Mixed-effect models were fitted to examine the associations between ambient ozone and the diversity and taxon abundances of oral microbiome. Receiver operating characteristic (ROC) curves estimated the accuracies of markers to delineate between samples exposed to different concentrations of ambient ozone. The associations between the makers and lung function were further examined by linear mixed effect models. RESULTS The averages of daily mean concentrations of ambient ozone (O3-daily), maximum 8-h means (O3-8hmax) and 1-h maximums (O3-1hmax) were respectively 72 μg/m³, 123 μg/m³ and 144 μg/m³. O3-daily was positively associated with α-diversity of oral microbiome, but the exposure-response curves only yielded positive associations in the range of O3-daily from 60 μg/m³ to 75 μg/m³. Results of O3-8hmax and O3-1hmax were consistent with these of O3-daily. With an interquartile range increase in O3-daily at lag04, the abundance of Proteobacteria decreased by 3.1% (95% CI: -4.0%, -2.2%) and Firmicutes increased by 3.3% (95% CI: 2.3%, 4.3%), whilst the Proteobacteria:Firmicutes ratio (P/F) decreased by 0.9 (95% CI: -1.5, -0.4). The areas under ROC curves for Proteobacteria, Firmicutes and P/F were 0.8535, 0.7569 and 0.8929, respectively. Proteobacteria and P/F were associated with forced expiratory volume in the first second and fractional exhaled nitric oxide significantly. CONCLUSION Ambient ozone disturbs oral microbial homeostasis. Proteobacteria, Firmicutes and their ratio may be potential markers for short-term ambient ozone exposure, and indicators of airway inflammation or lung function decline.
Collapse
Affiliation(s)
- Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Yuze Qi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Xu Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiahui Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Wei Niu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Miranda Loh
- Institute of Occupational Medicine, Research Avenue North Riccarton, Edinburgh, EH144AP, UK
| | - Hui Zhou
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
15
|
Frye CC, Bery AI, Kreisel D, Kulkarni HS. Sterile inflammation in thoracic transplantation. Cell Mol Life Sci 2020; 78:581-601. [PMID: 32803398 DOI: 10.1007/s00018-020-03615-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
The life-saving benefits of organ transplantation can be thwarted by allograft dysfunction due to both infectious and sterile inflammation post-surgery. Sterile inflammation can occur after necrotic cell death due to the release of endogenous ligands [such as damage-associated molecular patterns (DAMPs) and alarmins], which perpetuate inflammation and ongoing cellular injury via various signaling cascades. Ischemia-reperfusion injury (IRI) is a significant contributor to sterile inflammation after organ transplantation and is associated with detrimental short- and long-term outcomes. While the vicious cycle of sterile inflammation and cellular injury is remarkably consistent amongst different organs and even species, we have begun understanding its mechanistic basis only over the last few decades. This understanding has resulted in the developments of novel, yet non-specific therapies for mitigating IRI-induced graft damage, albeit with moderate results. Thus, further understanding of the mechanisms underlying sterile inflammation after transplantation is critical for identifying personalized therapies to prevent or interrupt this vicious cycle and mitigating allograft dysfunction. In this review, we identify common and distinct pathways of post-transplant sterile inflammation across both heart and lung transplantation that can potentially be targeted.
Collapse
Affiliation(s)
- C Corbin Frye
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Amit I Bery
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA.
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA
| |
Collapse
|