1
|
Abbaszadeh S, Nosrati-Siahmazgi V, Musaie K, Rezaei S, Qahremani M, Xiao B, Santos HA, Shahbazi MA. Emerging strategies to bypass transplant rejection via biomaterial-assisted immunoengineering: Insights from islets and beyond. Adv Drug Deliv Rev 2023; 200:115050. [PMID: 37549847 DOI: 10.1016/j.addr.2023.115050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Novel transplantation techniques are currently under development to preserve the function of impaired tissues or organs. While current technologies can enhance the survival of recipients, they have remained elusive to date due to graft rejection by undesired in vivo immune responses despite systemic prescription of immunosuppressants. The need for life-long immunomodulation and serious adverse effects of current medicines, the development of novel biomaterial-based immunoengineering strategies has attracted much attention lately. Immunomodulatory 3D platforms can alter immune responses locally and/or prevent transplant rejection through the protection of the graft from the attack of immune system. These new approaches aim to overcome the complexity of the long-term administration of systemic immunosuppressants, including the risks of infection, cancer incidence, and systemic toxicity. In addition, they can decrease the effective dose of the delivered drugs via direct delivery at the transplantation site. In this review, we comprehensively address the immune rejection mechanisms, followed by recent developments in biomaterial-based immunoengineering strategies to prolong transplant survival. We also compare the efficacy and safety of these new platforms with conventional agents. Finally, challenges and barriers for the clinical translation of the biomaterial-based immunoengineering transplants and prospects are discussed.
Collapse
Affiliation(s)
- Samin Abbaszadeh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Vahideh Nosrati-Siahmazgi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Kiyan Musaie
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Saman Rezaei
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Mostafa Qahremani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715 China.
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
2
|
Angeletti A, Zappulo F, Donadei C, Cappuccilli M, Di Certo G, Conte D, Comai G, Donati G, La Manna G. Immunological Effects of a Single Hemodialysis Treatment. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E71. [PMID: 32059426 PMCID: PMC7074458 DOI: 10.3390/medicina56020071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
Immune disorders, involving both innate and adaptive response, are common in patients with end-stage renal disease under chronic hemodialysis. Endogenous and exogenous factors, such as uremic toxins and the extracorporeal treatment itself, alter the immune balance, leading to chronic inflammation and higher risk of cardiovascular events. Several studies have previously described the immune effects of chronic hemodialysis and the possibility to modulate inflammation through more biocompatible dialyzers and innovative techniques. On the other hand, very limited data are available on the possible immunological effects of a single hemodialysis treatment. In spite of the lacking information about the immunological reactivity related to a single session, there is evidence to indicate that mediators of innate and adaptive response, above all complement cascade and T cells, are implicated in immune system modulation during hemodialysis treatment. Expanding our understanding of these modulations represents a necessary basis to develop pro-tolerogenic strategies in specific conditions, like hemodialysis in septic patients or the last session prior to kidney transplant in candidates for receiving a graft.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (A.A.); (F.Z.); (C.D.); (M.C.); (G.D.C.); (D.C.); (G.C.); (G.D.)
| |
Collapse
|