1
|
Li Q, Liang W, Wu H, Li J, Wang G, Zhen Y, An Y. Challenges in Application: Gelation Strategies of DAT-Based Hydrogel Scaffolds. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:76-87. [PMID: 38666688 DOI: 10.1089/ten.teb.2023.0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Decellularized adipose tissue (DAT) has great clinical applicability, owing to its abundant source material, natural extracellular matrix microenvironment, and nonimmunogenic attributes, rendering it a versatile resource in the realm of tissue engineering. However, practical implementations are confronted with multifarious limitations. Among these, the selection of an appropriate gelation strategy serves as the foundation for adapting to diverse clinical contexts. The cross-linking strategies under varying physical or chemical conditions exert profound influences on the ultimate morphology and therapeutic efficacy of DAT. This review sums up the processes of DAT decellularization and subsequent gelation, with a specific emphasis on the diverse gelation strategies employed in recent experimental applications of DAT. The review expounds upon methodologies, underlying principles, and clinical implications of different gelation strategies, aiming to offer insights and inspiration for the application of DAT in tissue engineering and advance research for tissue engineering scaffold development.
Collapse
Affiliation(s)
- Qiaoyu Li
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Huiting Wu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Jingming Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
2
|
Klak M, Rachalewski M, Filip A, Dobrzański T, Berman A, Wszoła M. Bioprinting of Perfusable, Biocompatible Vessel-like Channels with dECM-Based Bioinks and Living Cells. Bioengineering (Basel) 2024; 11:439. [PMID: 38790306 PMCID: PMC11117567 DOI: 10.3390/bioengineering11050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
There is a growing interest in the production of bioinks that on the one hand, are biocompatible and, on the other hand, have mechanical properties that allow for the production of stable constructs that can survive for a long time after transplantation. While the selection of the right material is crucial for bioprinting, there is another equally important issue that is currently being extensively researched-the incorporation of the vascular system into the fabricated scaffolds. Therefore, in the following manuscript, we present the results of research on bioink with unique physico-chemical and biological properties. In this article, two methods of seeding cells were tested using bioink B and seeding after bioprinting the whole model. After 2, 5, 8, or 24 h of incubation, the flow medium was used in the tested systems. At the end of the experimental trial, for each time variant, the canals were stored in formaldehyde, and immunohistochemical staining was performed to examine the presence of cells on the canal walls and roof. Cells adhered to both ways of fiber arrangement; however, a parallel bioprint with the 5 h incubation and the intermediate plating of cells resulted in better adhesion efficiency. For this test variant, the percentage of cells that adhered was at least 20% higher than in the other analyzed variants. In addition, it was for this variant that the lowest percentage of viable cells was found that were washed out of the tested model. Importantly, hematoxylin and eosin staining showed that after 8 days of culture, the cells were evenly distributed throughout the canal roof. Our study clearly shows that neovascularization-promoting cells effectively adhere to ECM-based pancreatic bioink. Summarizing the presented results, it was demonstrated that the proposed bioink compositions can be used for bioprinting bionic organs with a vascular system formed by endothelial cells and fibroblasts.
Collapse
Affiliation(s)
- Marta Klak
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
- Polbionica sp. z o.o., 01-242 Warsaw, Poland
| | - Michał Rachalewski
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
| | - Anna Filip
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
| | | | | | - Michał Wszoła
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
- Polbionica sp. z o.o., 01-242 Warsaw, Poland
| |
Collapse
|
3
|
Gómez‐Álvarez M, Bueno‐Fernandez C, Rodríguez‐Eguren A, Francés‐Herrero E, Agustina‐Hernández M, Faus A, Gisbert Roca F, Martínez‐Ramos C, Galán A, Pellicer A, Ferrero H, Cervelló I. Hybrid Endometrial-Derived Hydrogels: Human Organoid Culture Models and In Vivo Perspectives. Adv Healthc Mater 2024; 13:e2303838. [PMID: 37983675 PMCID: PMC11468130 DOI: 10.1002/adhm.202303838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 11/22/2023]
Abstract
The endometrium plays a vital role in fertility, providing a receptive environment for embryo implantation and development. Understanding the endometrial physiology is essential for developing new strategies to improve reproductive healthcare. Human endometrial organoids (hEOs) are emerging as powerful models for translational research and personalized medicine. However, most hEOs are cultured in a 3D microenvironment that significantly differs from the human endometrium, limiting their applicability in bioengineering. This study presents a hybrid endometrial-derived hydrogel that combines the rigidity of PuraMatrix (PM) with the natural scaffold components and interactions of a porcine decellularized endometrial extracellular matrix (EndoECM) hydrogel. This hydrogel provides outstanding support for hEO culture, enhances hEO differentiation efficiency due to its biochemical similarity with the native tissue, exhibits superior in vivo stability, and demonstrates xenogeneic biocompatibility in mice over a 2-week period. Taken together, these attributes position this hybrid endometrial-derived hydrogel as a promising biomaterial for regenerative treatments in reproductive medicine.
Collapse
Affiliation(s)
- María Gómez‐Álvarez
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
| | - Clara Bueno‐Fernandez
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
- Universitat de ValènciaDepartment of PediatricsObstetrics and GynaecologyValencia46010Spain
| | - Adolfo Rodríguez‐Eguren
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
| | - Emilio Francés‐Herrero
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
- Universitat de ValènciaDepartment of PediatricsObstetrics and GynaecologyValencia46010Spain
| | - Marcos Agustina‐Hernández
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
| | - Amparo Faus
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
| | - Fernando Gisbert Roca
- Universitat Politècnica de ValènciaCentre for Biomaterials and Tissue EngineeringValencia46022Spain
| | - Cristina Martínez‐Ramos
- Universitat Politècnica de ValènciaCentre for Biomaterials and Tissue EngineeringValencia46022Spain
- Unitat Predepartamental de MedicinaUniversitat Jaume ICastellón de la Plana12071Spain
| | - Amparo Galán
- Laboratory of NeuroendocrinologyPrince Felipe Research Center (CIPF)Valencia46012Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadrid28029Spain
| | | | - Hortensia Ferrero
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
| | - Irene Cervelló
- IVIRMA Global Research AllianceIVI FoundationInstituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
| |
Collapse
|
4
|
Gómez-Álvarez M, Agustina-Hernández M, Francés-Herrero E, Rodríguez-Eguren A, Bueno-Fernandez C, Cervelló I. Addressing Key Questions in Organoid Models: Who, Where, How, and Why? Int J Mol Sci 2023; 24:16014. [PMID: 37958996 PMCID: PMC10650475 DOI: 10.3390/ijms242116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Organoids are three-dimensional cellular structures designed to recreate the biological characteristics of the body's native tissues and organs in vitro. There has been a recent surge in studies utilizing organoids due to their distinct advantages over traditional two-dimensional in vitro approaches. However, there is no consensus on how to define organoids. This literature review aims to clarify the concept of organoids and address the four fundamental questions pertaining to organoid models: (i) What constitutes organoids?-The cellular material. (ii) Where do organoids grow?-The extracellular scaffold. (iii) How are organoids maintained in vitro?-Via the culture media. (iv) Why are organoids suitable in vitro models?-They represent reproducible, stable, and scalable models for biological applications. Finally, this review provides an update on the organoid models employed within the female reproductive tract, underscoring their relevance in both basic biology and clinical applications.
Collapse
Affiliation(s)
- María Gómez-Álvarez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Marcos Agustina-Hernández
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Emilio Francés-Herrero
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Clara Bueno-Fernandez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Irene Cervelló
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| |
Collapse
|
5
|
Morello G, De Iaco G, Gigli G, Polini A, Gervaso F. Chitosan and Pectin Hydrogels for Tissue Engineering and In Vitro Modeling. Gels 2023; 9:132. [PMID: 36826302 PMCID: PMC9957157 DOI: 10.3390/gels9020132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Hydrogels are fascinating biomaterials that can act as a support for cells, i.e., a scaffold, in which they can organize themselves spatially in a similar way to what occurs in vivo. Hydrogel use is therefore essential for the development of 3D systems and allows to recreate the cellular microenvironment in physiological and pathological conditions. This makes them ideal candidates for biological tissue analogues for application in the field of both tissue engineering and 3D in vitro models, as they have the ability to closely mimic the extracellular matrix (ECM) of a specific organ or tissue. Polysaccharide-based hydrogels, because of their remarkable biocompatibility related to their polymeric constituents, have the ability to interact beneficially with the cellular components. Although the growing interest in the use of polysaccharide-based hydrogels in the biomedical field is evidenced by a conspicuous number of reviews on the topic, none of them have focused on the combined use of two important polysaccharides, chitosan and pectin. Therefore, the present review will discuss the biomedical applications of polysaccharide-based hydrogels containing the two aforementioned natural polymers, chitosan and pectin, in the fields of tissue engineering and 3D in vitro modeling.
Collapse
Affiliation(s)
- Giulia Morello
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Gianvito De Iaco
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Polini
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Francesca Gervaso
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
6
|
Revete A, Aparicio A, Cisterna BA, Revete J, Luis L, Ibarra E, Segura González EA, Molino J, Reginensi D. Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. Int J Biomater 2022; 2022:3606765. [PMID: 36387956 PMCID: PMC9663251 DOI: 10.1155/2022/3606765] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 07/29/2023] Open
Abstract
Due to their particular water absorption capacity, hydrogels are the most widely used scaffolds in biomedical studies to regenerate damaged tissue. Hydrogels can be used in tissue engineering to design scaffolds for three-dimensional cell culture, providing a novel alternative to the traditional two-dimensional cell culture as hydrogels have a three-dimensional biomimetic structure. This material property is crucial in regenerative medicine, especially for the nervous system, since it is a highly complex and delicate structure. Hydrogels can move quickly within the human body without physically disturbing the environment and possess essential biocompatible properties, as well as the ability to form a mimetic scaffold in situ. Therefore, hydrogels are perfect candidates for biomedical applications. Hydrogels represent a potential alternative to regenerating tissue lost after removing a brain tumor and/or brain injuries. This reason presents them as an exciting alternative to highly complex human physiological problems, such as injuries to the central nervous system and neurodegenerative disease.
Collapse
Affiliation(s)
- Andrea Revete
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | - Andrea Aparicio
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Bruno A. Cisterna
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Javier Revete
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Luis Luis
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Ernesto Ibarra
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | | | - Jay Molino
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Diego Reginensi
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
- Integrative Neurobiology, School of Medicine, Universidad de Panama (UP), Panama, Panama
- Center for Biodiversity and Drug Discovery, INDICASAT-AIP, City of Knowledge, Panama, Panama
| |
Collapse
|
7
|
Willemse J, van Tienderen G, van Hengel E, Schurink I, van der Ven D, Kan Y, de Ruiter P, Rosmark O, Westergren-Thorsson G G, Schneeberger K, van der Eerden B, Roest H, Spee B, van der Laan L, de Jonge J, Verstegen M. Hydrogels derived from decellularized liver tissue support the growth and differentiation of cholangiocyte organoids. Biomaterials 2022; 284:121473. [PMID: 35344800 DOI: 10.1016/j.biomaterials.2022.121473] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
Abstract
Human cholangiocyte organoids are promising for regenerative medicine applications, such as repair of damaged bile ducts. However, organoids are typically cultured in mouse tumor-derived basement membrane extracts (BME), which is poorly defined, highly variable and limits the direct clinical applications of organoids in patients. Extracellular matrix (ECM)-derived hydrogels prepared from decellularized human or porcine livers are attractive alternative culture substrates. Here, the culture and expansion of human cholangiocyte organoids in liver ECM(LECM)-derived hydrogels is described. These hydrogels support proliferation of cholangiocyte organoids and maintain the cholangiocyte-like phenotype. The use of LECM hydrogels does not significantly alter the expression of selected genes or proteins, such as the cholangiocyte marker cytokeratin-7, and no species-specific effect is found between human or porcine LECM hydrogels. Proliferation rates of organoids cultured in LECM hydrogels are lower, but the differentiation capacity of the cholangiocyte organoids towards hepatocyte-like cells is not altered by the presence of tissue-specific ECM components. Moreover, human LECM extracts support the expansion of ICO in a dynamic culture set up without the need for laborious static culture of organoids in hydrogel domes. Liver ECM hydrogels can successfully replace tumor-derived BME and can potentially unlock the full clinical potential of human cholangiocyte organoids.
Collapse
Affiliation(s)
- Jorke Willemse
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Gilles van Tienderen
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Eline van Hengel
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Ivo Schurink
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Diana van der Ven
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Yik Kan
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Petra de Ruiter
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Oskar Rosmark
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Kerstin Schneeberger
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Calcium and Bone Metabolism, Erasmus MC-University, Rotterdam, the Netherlands
| | - Henk Roest
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Luc van der Laan
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Monique Verstegen
- Department of Surgery, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, the Netherlands.
| |
Collapse
|
8
|
Design by Nature: Emerging Applications of Native Liver Extracellular Matrix for Cholangiocyte Organoid-Based Regenerative Medicine. Bioengineering (Basel) 2022; 9:bioengineering9030110. [PMID: 35324799 PMCID: PMC8945468 DOI: 10.3390/bioengineering9030110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Organoid technology holds great promise for regenerative medicine. Recent studies show feasibility for bile duct tissue repair in humans by successfully transplanting cholangiocyte organoids in liver grafts during perfusion. Large-scale expansion of cholangiocytes is essential for extending these regenerative medicine applications. Human cholangiocyte organoids have a high and stable proliferation capacity, making them an attractive source of cholangiocytes. Commercially available basement membrane extract (BME) is used to expand the organoids. BME allows the cells to self-organize into 3D structures and stimulates cell proliferation. However, the use of BME is limiting the clinical applications of the organoids. There is a need for alternative tissue-specific and clinically relevant culture substrates capable of supporting organoid proliferation. Hydrogels prepared from decellularized and solubilized native livers are an attractive alternative for BME. These hydrogels can be used for the culture and expansion of cholangiocyte organoids in a clinically relevant manner. Moreover, the liver-derived hydrogels retain tissue-specific aspects of the extracellular microenvironment. They are composed of a complex mixture of bioactive and biodegradable extracellular matrix (ECM) components and can support the growth of various hepatobiliary cells. In this review, we provide an overview of the clinical potential of native liver ECM-based hydrogels for applications with human cholangiocyte organoids. We discuss the current limitations of BME for the clinical applications of organoids and how native ECM hydrogels can potentially overcome these problems in an effort to unlock the full regenerative clinical potential of the organoids.
Collapse
|
9
|
Pancreas transplant versus islet transplant versus insulin pump therapy: in which patients and when? Curr Opin Organ Transplant 2021; 26:176-183. [PMID: 33650999 DOI: 10.1097/mot.0000000000000857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The aim of the present review is to gather recent reports on the use of pancreas and islet transplantation and conventional insulin therapy for treating patients experiencing diabetes and its related complications. The present review directs attention to the current status, challenges and perspectives of these therapies and sheds light on potential future cellular therapies. RECENT FINDINGS The risks and benefits of diabetes treatment modalities continue to evolve, altering the risk versus benefit calculation for patients. As continuous subcutaneous insulin infusion and monitoring technologies demonstrate increasing effectiveness in achieving better diabetes control and reducing hypoglycemia frequency, so are pancreas and islet transplantation improving and becoming more effective and safer. Both beta-cell replacement therapies, however, are limited by a dependence on immunosuppression and a shortage of cadaver donors, restricting more widespread and safer deployment. Based on the effectiveness of clinical beta-cell replacement for lengthening lifespan and improving quality of life, scientists are aggressively investigating alternative cell sources, transplant platforms, and means of preventing immunological damage of transplanted cells to overcome these principle limitations. SUMMARY Essential goals of diabetes therapy are euglycemia, avoidance of hypoglycemia, and prevention or stabilization of end-organ damage. With these goals in mind, all therapeutic options should be considered.
Collapse
|
10
|
Asthana A, Tamburrini R, Chaimov D, Gazia C, Walker SJ, Van Dyke M, Tomei A, Lablanche S, Robertson J, Opara EC, Soker S, Orlando G. Comprehensive characterization of the human pancreatic proteome for bioengineering applications. Biomaterials 2020; 270:120613. [PMID: 33561625 DOI: 10.1016/j.biomaterials.2020.120613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Interactions between the pancreatic extracellular matrix (ECM) and islet cells are known to regulate multiple aspects of islet physiology, including survival, proliferation, and glucose-stimulated insulin secretion. Recognizing the essential role of ECM in islet survival and function, various engineering approaches have been developed that aim to utilize ECM-based materials to recreate a native-like microenvironment. However, a major impediment to the success of these approaches has been the lack of a robust and comprehensive characterization of the human pancreatic proteome. Herein, by combining mass spectrometry (MS) and multiplex ELISA, we have provided an improved workflow for the in-depth profiling of the proteome, including minor constituents that are generally underrepresented. Moreover, we have further validated the effectiveness of our detergent-free decellularization protocol in the removal of cellular proteins and retention of the matrisome. It has also been established that the decellularized ECM and its derivatives can provide more tissue-specific cues than traditionally used biological scaffolds and are therefore more physiologically relevant for the development of hydrogels, bioinks and medium additives, in order to create a pancreatic niche. The data generated in this study would contribute significantly to the efforts of comprehensively defining the ECM atlas and also serve as a standard for the human pancreatic proteome to provide further guidance for design and engineering strategies for improved tissue engineering scaffolds.
Collapse
Affiliation(s)
- Amish Asthana
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Riccardo Tamburrini
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Deborah Chaimov
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Carlo Gazia
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alice Tomei
- Diabetes Research Institute, University of Miami, Miami, USA
| | - Sandrine Lablanche
- Grenoble Alps University, Laboratory of Fundamental and Applied Bioenergetics (LBFA), And Environmental and System Biology (BEeSy), Grenoble, France; Inserm, U1055, Grenoble, France
| | - John Robertson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Giuseppe Orlando
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA.
| |
Collapse
|