1
|
Mohammadi I, Farahani S, Karimi A, Jahanian S, Firouzabadi SR, Alinejadfard M, Fatemi A, Hajikarimloo B, Akhlaghpasand M. Mortality prediction of heart transplantation using machine learning models: a systematic review and meta-analysis. Front Artif Intell 2025; 8:1551959. [PMID: 40256322 PMCID: PMC12006172 DOI: 10.3389/frai.2025.1551959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction Machine learning (ML) models have been increasingly applied to predict post-heart transplantation (HT) mortality, aiming to improve decision-making and optimize outcomes. This systematic review and meta-analysis evaluates the performance of ML algorithms in predicting mortality and explores factors contributing to model accuracy. Method A systematic search of PubMed, Scopus, Web of Science, and Embase identified relevant studies, with 17 studies included in the review and 12 in the meta-analysis. The algorithms assessed included random forests, CatBoost, neural networks, and others. Model performance was evaluated using pooled area under the curve (AUC) values, with subgroup analyses for algorithm type, validation methods, and prediction timeframes. The risk of bias was assessed using the QUADAS-2 tool. Results The pooled AUC of all ML algorithms was 0.65 (95% CI: 0.64, 0.67), with no significant difference between machine learning and deep learning models (p = 0.67). Among the algorithms, CatBoost demonstrated the highest accuracy (AUC 0.80, 95% CI: 0.74, 0.86), while K-nearest neighbor had the lowest accuracy (AUC 0.53, 95% CI: 0.50, 0.55). A meta-regression indicated improved model performance with longer post-transplant periods (p = 0.008). When pooling only the best-performing models, the AUC improved to 0.73 (95% CI: 0.68, 0.78). The risk of bias was high in eight studies, with the flow and timing domains most commonly contributing to bias. Conclusion ML models demonstrate moderate accuracy in predicting post-HT mortality, with CatBoost achieving the best performance. While ML shows potential for improving predictive precision, significant heterogeneity and biases highlight the need for standardized methods and further external validations to enhance clinical applicability. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024509630, CRD42024509630.
Collapse
Affiliation(s)
- Ida Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Setayesh Farahani
- Cardiovascular Surgery Research and Development Committee, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Asal Karimi
- Cardiovascular Surgery Research and Development Committee, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Saina Jahanian
- Cardiovascular Surgery Research and Development Committee, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shahryar Rajai Firouzabadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Alinejadfard
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Fatemi
- Cardiovascular Surgery Research and Development Committee, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Bardia Hajikarimloo
- Cardiovascular Surgery Research and Development Committee, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammadhosein Akhlaghpasand
- Cardiovascular Surgery Research and Development Committee, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
2
|
Rawashdeh B, Al-abdallat H, Arpali E, Thomas B, Dunn TB, Cooper M. Machine learning in solid organ transplantation: Charting the evolving landscape. World J Transplant 2025; 15:99642. [PMID: 40104197 PMCID: PMC11612896 DOI: 10.5500/wjt.v15.i1.99642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Machine learning (ML), a major branch of artificial intelligence, has not only demonstrated the potential to significantly improve numerous sectors of healthcare but has also made significant contributions to the field of solid organ transplantation. ML provides revolutionary opportunities in areas such as donor-recipient matching, post-transplant monitoring, and patient care by automatically analyzing large amounts of data, identifying patterns, and forecasting outcomes. AIM To conduct a comprehensive bibliometric analysis of publications on the use of ML in transplantation to understand current research trends and their implications. METHODS On July 18, a thorough search strategy was used with the Web of Science database. ML and transplantation-related keywords were utilized. With the aid of the VOS viewer application, the identified articles were subjected to bibliometric variable analysis in order to determine publication counts, citation counts, contributing countries, and institutions, among other factors. RESULTS Of the 529 articles that were first identified, 427 were deemed relevant for bibliometric analysis. A surge in publications was observed over the last four years, especially after 2018, signifying growing interest in this area. With 209 publications, the United States emerged as the top contributor. Notably, the "Journal of Heart and Lung Transplantation" and the "American Journal of Transplantation" emerged as the leading journals, publishing the highest number of relevant articles. Frequent keyword searches revealed that patient survival, mortality, outcomes, allocation, and risk assessment were significant themes of focus. CONCLUSION The growing body of pertinent publications highlights ML's growing presence in the field of solid organ transplantation. This bibliometric analysis highlights the growing importance of ML in transplant research and highlights its exciting potential to change medical practices and enhance patient outcomes. Encouraging collaboration between significant contributors can potentially fast-track advancements in this interdisciplinary domain.
Collapse
Affiliation(s)
- Badi Rawashdeh
- Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI 53202, United States
| | | | - Emre Arpali
- Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI 53202, United States
| | - Beje Thomas
- Department of Nephrology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Ty B Dunn
- Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI 53202, United States
| | - Matthew Cooper
- Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI 53202, United States
| |
Collapse
|
3
|
Wies C, Miltenberger R, Grieser G, Jahn-Eimermacher A. Exploring the variable importance in random forests under correlations: a general concept applied to donor organ quality in post-transplant survival. BMC Med Res Methodol 2023; 23:209. [PMID: 37726680 PMCID: PMC10507897 DOI: 10.1186/s12874-023-02023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Random Forests are a powerful and frequently applied Machine Learning tool. The permutation variable importance (VIMP) has been proposed to improve the explainability of such a pure prediction model. It describes the expected increase in prediction error after randomly permuting a variable and disturbing its association with the outcome. However, VIMPs measure a variable's marginal influence only, that can make its interpretation difficult or even misleading. In the present work we address the general need for improving the explainability of prediction models by exploring VIMPs in the presence of correlated variables. In particular, we propose to use a variable's residual information for investigating if its permutation importance partially or totally originates from correlated predictors. Hypotheses tests are derived by a resampling algorithm that can further support results by providing test decisions and p-values. In simulation studies we show that the proposed test controls type I error rates. When applying the methods to a Random Forest analysis of post-transplant survival after kidney transplantation, the importance of kidney donor quality for predicting post-transplant survival is shown to be high. However, the transplant allocation policy introduces correlations with other well-known predictors, which raises the concern that the importance of kidney donor quality may simply originate from these predictors. By using the proposed method, this concern is addressed and it is demonstrated that kidney donor quality plays an important role in post-transplant survival, regardless of correlations with other predictors.
Collapse
Affiliation(s)
- Christoph Wies
- Department of Mathematics and Natural Sciences, Darmstadt University of Applied Sciences, Schöfferstraße 3, Darmstadt, 64295, Germany
- Digital Biomarkers for Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, Heidelberg, 69120, Germany
- Medical Facility, University Heidelberg, Im Neuenheimer Feld 672, Heidelberg, 69120, Germany
| | - Robert Miltenberger
- Department of Mathematics and Natural Sciences, Darmstadt University of Applied Sciences, Schöfferstraße 3, Darmstadt, 64295, Germany
| | - Gunter Grieser
- Department of Computer Science, Darmstadt University of Applied Sciences, Schöfferstraße 3, Darmstadt, 64295, Germany
| | - Antje Jahn-Eimermacher
- Department of Mathematics and Natural Sciences, Darmstadt University of Applied Sciences, Schöfferstraße 3, Darmstadt, 64295, Germany.
| |
Collapse
|
4
|
Gholamzadeh M, Abtahi H, Safdari R. Machine learning-based techniques to improve lung transplantation outcomes and complications: a systematic review. BMC Med Res Methodol 2022; 22:331. [PMID: 36564710 PMCID: PMC9784000 DOI: 10.1186/s12874-022-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Machine learning has been used to develop predictive models to support clinicians in making better and more reliable decisions. The high volume of collected data in the lung transplant process makes it possible to extract hidden patterns by applying machine learning methods. Our study aims to investigate the application of machine learning methods in lung transplantation. METHOD A systematic search was conducted in five electronic databases from January 2000 to June 2022. Then, the title, abstracts, and full text of extracted articles were screened based on the PRISMA checklist. Then, eligible articles were selected according to inclusion criteria. The information regarding developed models was extracted from reviewed articles using a data extraction sheet. RESULTS Searches yielded 414 citations. Of them, 136 studies were excluded after the title and abstract screening. Finally, 16 articles were determined as eligible studies that met our inclusion criteria. The objectives of eligible articles are classified into eight main categories. The applied machine learning methods include the Support vector machine (SVM) (n = 5, 31.25%) technique, logistic regression (n = 4, 25%), Random Forests (RF) (n = 4, 25%), Bayesian network (BN) (n = 3, 18.75%), linear regression (LR) (n = 3, 18.75%), Decision Tree (DT) (n = 3, 18.75%), neural networks (n = 3, 18.75%), Markov Model (n = 1, 6.25%), KNN (n = 1, 6.25%), K-means (n = 1, 6.25%), Gradient Boosting trees (XGBoost) (n = 1, 6.25%), and Convolutional Neural Network (CNN) (n = 1, 6.25%). Most studies (n = 11) employed more than one machine learning technique or combination of different techniques to make their models. The data obtained from pulmonary function tests were the most used as input variables in predictive model development. Most studies (n = 10) used only post-transplant patient information to develop their models. Also, UNOS was recognized as the most desirable data source in the reviewed articles. In most cases, clinicians succeeded to predict acute diseases incidence after lung transplantation (n = 4) or estimate survival rate (n = 4) by developing machine learning models. CONCLUSION The outcomes of these developed prediction models could aid clinicians to make better and more reliable decisions by extracting new knowledge from the huge volume of lung transplantation data.
Collapse
Affiliation(s)
- Marsa Gholamzadeh
- Health Information Management Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, 5th Floor, Fardanesh Alley, Qods Ave, Tehran, Iran
| | - Hamidreza Abtahi
- Pulmonary and Critical Care Medicine Department, Thoracic Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Safdari
- Health Information Management Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, 5th Floor, Fardanesh Alley, Qods Ave, Tehran, Iran.
| |
Collapse
|
5
|
Zhang X, Gavaldà R, Baixeries J. Interpretable prediction of mortality in liver transplant recipients based on machine learning. Comput Biol Med 2022; 151:106188. [PMID: 36306583 DOI: 10.1016/j.compbiomed.2022.106188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 09/24/2022] [Accepted: 10/08/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Accurate prediction of the mortality of post-liver transplantation is an important but challenging task. It relates to optimizing organ allocation and estimating the risk of possible dysfunction. Existing risk scoring models, such as the Balance of Risk (BAR) score and the Survival Outcomes Following Liver Transplantation (SOFT) score, do not predict the mortality of post-liver transplantation with sufficient accuracy. In this study, we evaluate the performance of machine learning models and establish an explainable machine learning model for predicting mortality in liver transplant recipients. METHOD The optimal feature set for the prediction of the mortality was selected by a wrapper method based on binary particle swarm optimization (BPSO). With the selected optimal feature set, seven machine learning models were applied to predict mortality over different time windows. The best-performing model was used to predict mortality through a comprehensive comparison and evaluation. An interpretable approach based on machine learning and SHapley Additive exPlanations (SHAP) is used to explicitly explain the model's decision and make new discoveries. RESULTS With regard to predictive power, our results demonstrated that the feature set selected by BPSO outperformed both the feature set in the existing risk score model (BAR score, SOFT score) and the feature set processed by principal component analysis (PCA). The best-performing model, extreme gradient boosting (XGBoost), was found to improve the Area Under a Curve (AUC) values for mortality prediction by 6.7%, 11.6%, and 17.4% at 3 months, 3 years, and 10 years, respectively, compared to the SOFT score. The main predictors of mortality and their impact were discussed for different age groups and different follow-up periods. CONCLUSIONS Our analysis demonstrates that XGBoost can be an ideal method to assess the mortality risk in liver transplantation. In combination with the SHAP approach, the proposed framework provides a more intuitive and comprehensive interpretation of the predictive model, thereby allowing the clinician to better understand the decision-making process of the model and the impact of factors associated with mortality risk in liver transplantation.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Computer Science, Universitat Politècnica de Catalunya, Barcelona, 08034, Spain.
| | | | - Jaume Baixeries
- Department of Computer Science, Universitat Politècnica de Catalunya, Barcelona, 08034, Spain
| |
Collapse
|
6
|
Kherabi Y, Messika J, Peiffer‐Smadja N. Machine learning, antimicrobial stewardship, and solid organ transplantation: Is this the future? Transpl Infect Dis 2022; 24:e13957. [DOI: 10.1111/tid.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yousra Kherabi
- Infectious and Tropical Diseases Department Bichat‐Claude Bernard Hospital Assistance Publique‐Hôpitaux de Paris Paris France
| | - Jonathan Messika
- Université Paris Cité AP‐HP Bichat‐Claude Bernard Hospital Pneumologie B et Transplantation Pulmonaire Paris France
| | - Nathan Peiffer‐Smadja
- Infectious and Tropical Diseases Department Bichat‐Claude Bernard Hospital Assistance Publique‐Hôpitaux de Paris Paris France
- Université Paris Cité and Université Sorbonne Paris Nord Inserm IAME Paris France
| |
Collapse
|
7
|
Naruka V, Arjomandi Rad A, Subbiah Ponniah H, Francis J, Vardanyan R, Tasoudis P, Magouliotis DE, Lazopoulos GL, Salmasi MY, Athanasiou T. Machine learning and artificial intelligence in cardiac transplantation: A systematic review. Artif Organs 2022; 46:1741-1753. [PMID: 35719121 PMCID: PMC9545856 DOI: 10.1111/aor.14334] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 01/09/2023]
Abstract
Background This review aims to systematically evaluate the currently available evidence investigating the use of artificial intelligence (AI) and machine learning (ML) in the field of cardiac transplantation. Furthermore, based on the challenges identified we aim to provide a series of recommendations and a knowledge base for future research in the field of ML and heart transplantation. Methods A systematic database search was conducted of original articles that explored the use of ML and/or AI in heart transplantation in EMBASE, MEDLINE, Cochrane database, and Google Scholar, from inception to November 2021. Results Our search yielded 237 articles, of which 13 studies were included in this review, featuring 463 850 patients. Three main areas of application were identified: (1) ML for predictive modeling of heart transplantation mortality outcomes; (2) ML in graft failure outcomes; (3) ML to aid imaging in heart transplantation. The results of the included studies suggest that AI and ML are more accurate in predicting graft failure and mortality than traditional scoring systems and conventional regression analysis. Major predictors of graft failure and mortality identified in ML models were: length of hospital stay, immunosuppressive regimen, recipient's age, congenital heart disease, and organ ischemia time. Other potential benefits include analyzing initial lab investigations and imaging, assisting a patient with medication adherence, and creating positive behavioral changes to minimize further cardiovascular risk. Conclusion ML demonstrated promising applications for improving heart transplantation outcomes and patient‐centered care, nevertheless, there remain important limitations relating to implementing AI into everyday surgical practices.
Collapse
Affiliation(s)
- Vinci Naruka
- Department of Cardiothoracic Surgery, Imperial College NHS Trust, Hammersmith Hospital, London, UK.,Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Arian Arjomandi Rad
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | | - Jeevan Francis
- Faculty of Medicine, University of Edinburgh, Edinburgh, UK
| | - Robert Vardanyan
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Panagiotis Tasoudis
- Department of Cardiothoracic Surgery, University Hospital Thessaly, Larissa, Greece
| | | | - George L Lazopoulos
- Department of Cardiothoracic Surgery, University Hospital Thessaly, Larissa, Greece.,Department of Cardiac Surgery, University Hospital of Heraklion, Crete, Greece
| | | | - Thanos Athanasiou
- Department of Cardiothoracic Surgery, Imperial College NHS Trust, Hammersmith Hospital, London, UK.,Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.,Department of Cardiothoracic Surgery, University Hospital Thessaly, Larissa, Greece
| |
Collapse
|