1
|
Lin W, Tang H, Cao R, Chen J, Wang L, She Y, Zhang L, Chen Y, Pan Z, Bai Q, Zhao D, Yang M, Zhao G, Sun W, Xie D, Chen C. 3D-printed Engineered Trachea Functionalized by Diverse Extracellular Matrix Particles. Adv Healthc Mater 2025; 14:e2500124. [PMID: 40095427 DOI: 10.1002/adhm.202500124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/27/2025] [Indexed: 03/19/2025]
Abstract
It remains a significant challenge to construct a tracheal substitute with both a native-like structure and multiple essential physiological functions. In this study, a combination of 3D printing techniques and a modular strategy is employed to fabricate an engineered trachea, in which the decellularized extracellular matrix particles (DEPs) from diverse sources determined specific regenerative environments in different spatial regions. Costal cartilage-derived DEPs are integrated within the cartilage rings of the engineered trachea. They effectively activated chondrocytes to secrete specific matrix proteins and develop into mature cartilage with a natural pattern of collagen deposition, which provided sufficient mechanical properties to maintain tracheal ventilation. Lung-derived DEPsare strategically placed between the cartilage rings, and are able to accelerate endothelial cell migration to form a transmural vessel network. Additionally, lung-derived DEPs exhibited a great capability to recruit macrophages and facilitate their polarization, which is beneficial for tissue regeneration. The engineered trachea underwent heterotopic vascularization and utilized for long-segmental trachea replacement in a rabbit model, demonstrating a satisfactory physiological function. Through DEP functionalization, the tracheal substitute developed a native-like complex structure with adequate mechanical supply, abundant blood perfusion, and favorable immune conditions, demonstrating significant clinical potential for patients requiring tracheal reconstruction.
Collapse
Affiliation(s)
- Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
- Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Runfeng Cao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
- Department of Thoracic Surgery, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Long Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Qingfeng Bai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Deping Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Minglei Yang
- Department of Cardiothoracic Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang, 315000, China
| | - Guofang Zhao
- Department of Cardiothoracic Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang, 315000, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| |
Collapse
|
2
|
Yang Y, Zhu X, Liu X, Chen K, Hu Y, Liu P, Xu Y, Xiao X, Liu X, Song N, Feng Q. Injectable and self-healing sulfated hyaluronic acid/gelatin hydrogel as dual drug delivery system for circumferential tracheal repair. Int J Biol Macromol 2024; 279:134978. [PMID: 39182860 DOI: 10.1016/j.ijbiomac.2024.134978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Stem cell-based therapies show promise for clinically addressing circumferential tracheal defects (CTD) through tissue engineering. However, creating a tissue-engineered tracheal tube possesses a healthy cartilage matrix and intact tube structure remains a challenge. A solution lies in the use of an injectable hydrogel with shape adaptability and chondrogenic capacity, serving as a practical and dependable platform for tubular tracheal cartilage regeneration. In this study, we developed an injectable hydrogel using modified natural polymers-hydrazide-grafted gelatin (Gelatin-ADH) and aldehyde-modified hyaluronic acid with sulfated groups (HA-CHO-SO3) via Schiff Base interaction. Additionally, aldehyde-modified β-cyclodextrin (β-CD-CHO) was introduced into the network during hydrogel formation. The negative sulfated groups and hydrophobic cavities of β-cyclodextrin facilitated the efficient encapsulation and sustained release of transforming growth factor-β1 (TGF-β1) and kartogenin (KGN) within our hydrogel. This synergistically promoted the chondrogenesis of loaded bone marrow stem cells (BMSCs). Subsequently, we employed this TGF-β1, KGN, and BMSCs loaded hydrogel to form a cartilage ring. This ring was then assembled into an engineered tracheal cartilage tube using our previously reported ring-to-tube strategy. Our results demonstrated that the engineered tracheal cartilage tube effectively repaired CTD in a rabbit model. Hence, this study introduces a novel hydrogel with significant clinical application potential for tracheal tissue engineering.
Collapse
Affiliation(s)
- YaYan Yang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Xinsheng Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuezhe Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Kai Chen
- School of Resources and Chemical Engineering, Sanming University, Fuzhou, China
| | - Yunping Hu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Pei Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China.
| | - Xiaogang Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Nan Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| |
Collapse
|
3
|
Kapat K, Gondane P, Kumbhakarn S, Takle S, Sable R. Challenges and Opportunities in Developing Tracheal Substitutes for the Recovery of Long-Segment Defects. Macromol Biosci 2024; 24:e2400054. [PMID: 39008817 DOI: 10.1002/mabi.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Tracheal resection and reconstruction procedures are necessary when stenosis, tracheomalacia, tumors, vascular lesions, or tracheal injury cause a tracheal blockage. Replacement with a tracheal substitute is often recommended when the trauma exceeds 50% of the total length of the trachea in adults and 30% in children. Recently, tissue engineering and other advanced techniques have shown promise in fabricating biocompatible tracheal substitutes with physical, morphological, biomechanical, and biological characteristics similar to native trachea. Different polymers and biometals are explored. Even with limited success with tissue-engineered grafts in clinical settings, complete healing of tracheal defects remains a substantial challenge due to low mechanical strength and durability of the graft materials, inadequate re-epithelialization and vascularization, and restenosis. This review has covered a range of reconstructive and regenerative techniques, design criteria, the use of bioprostheses and synthetic grafts for the recovery of tracheal defects, as well as the traditional and cutting-edge methods of their fabrication, surface modification for increased immuno- or biocompatibility, and associated challenges.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| |
Collapse
|
4
|
Wan H, Xiang J, Mao G, Pan S, Li B, Lu Y. Recent Advances in the Application of 3D-Printing Bioinks Based on Decellularized Extracellular Matrix in Tissue Engineering. ACS OMEGA 2024; 9:24219-24235. [PMID: 38882108 PMCID: PMC11170705 DOI: 10.1021/acsomega.4c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
In recent years, 3D bioprinting with various types of bioinks has been widely used in tissue engineering to fabricate human tissues and organs with appropriate biological functions. Decellularized extracellular matrix (dECM) is an excellent bioink candidate because it is enriched with a variety of bioactive proteins and bioactive factors and can provide a suitable environment for tissue repair or tissue regeneration while reducing the likelihood of severe immune rejection. In this Review, we systematically review recent advances in 3D bioprinting and decellularization technologies and comprehensively detail the latest research and applications of dECM as a bioink for tissue engineering in various systems, with the aim of providing a reference for researchers in tissue engineering to better understand the properties of dECM bioinks.
Collapse
Affiliation(s)
- Haoxin Wan
- Department
of Thoracic Surgery, The First Affiliated
Hospital of Soochow University, Suzhou 215000, China
| | - Jian Xiang
- Affiliated
Hospital of Yangzhou University, Yangzhou 225000, China
| | - Guocai Mao
- Department
of Thoracic Surgery, The First Affiliated
Hospital of Soochow University, Suzhou 215000, China
| | - Shu Pan
- Department
of Thoracic Surgery, The First Affiliated
Hospital of Soochow University, Suzhou 215000, China
| | - Bing Li
- The
Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Yi Lu
- Clinical
Medical College, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
5
|
Wang B, Fei X, Yin HF, Xu XN, Zhu JJ, Guo ZY, Wu JW, Zhu XS, Zhang Y, Xu Y, Yang Y, Chen LS. Photothermal-Controllable Microneedles with Antitumor, Antioxidant, Angiogenic, and Chondrogenic Activities to Sequential Eliminate Tracheal Neoplasm and Reconstruct Tracheal Cartilage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309454. [PMID: 38098368 DOI: 10.1002/smll.202309454] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 03/16/2024]
Abstract
The optimal treatment for tracheal tumors necessitates sequential tumor elimination and tracheal cartilage reconstruction. This study introduces an innovative inorganic nanosheet, MnO2 /PDA@Cu, comprising manganese dioxide (MnO2 ) loaded with copper ions (Cu) through in situ polymerization using polydopamine (PDA) as an intermediary. Additionally, a specialized methacrylic anhydride modified decellularized cartilage matrix (MDC) hydrogel with chondrogenic effects is developed by modifying a decellularized cartilage matrix with methacrylic anhydride. The MnO2 /PDA@Cu nanosheet is encapsulated within MDC-derived microneedles, creating a photothermal-controllable MnO2 /PDA@Cu-MDC microneedle. Effectiveness evaluation involved deep insertion of the MnO2 /PDA@Cu-MDC microneedle into tracheal orthotopic tumor in a murine model. Under 808 nm near-infrared irradiation, facilitated by PDA, the microneedle exhibited rapid overheating, efficiently eliminating tumors. PDA's photothermal effects triggered controlled MnO2 and Cu release. The MnO2 nanosheet acted as a potent inorganic nanoenzyme, scavenging reactive oxygen species for an antioxidant effect, while Cu facilitated angiogenesis. This intervention enhanced blood supply at the tumor excision site, promoting stem cell enrichment and nutrient provision. The MDC hydrogel played a pivotal role in creating a chondrogenic niche, fostering stem cells to secrete cartilaginous matrix. In conclusion, the MnO2 /PDA@Cu-MDC microneedle is a versatile platform with photothermal control, sequentially combining antitumor, antioxidant, pro-angiogenic, and chondrogenic activities to orchestrate precise tracheal tumor eradication and cartilage regeneration.
Collapse
Affiliation(s)
- B Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - X Fei
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - H F Yin
- Department of Infection Management, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - X N Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - J J Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Z Y Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - J W Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - X S Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Y Zhang
- Department of Orthopedics, Shanghai Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Y Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Y Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - L S Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| |
Collapse
|
6
|
Shan Y, Shen Z, Lu Y, Zhu J, Sun F, Chen W, Yuan L, Shi H. Reconstruction of tracheal window-shape defect by 3D printed polycaprolatone scaffold coated with Silk Fibroin Methacryloyl. Biotechnol J 2024; 19:e2300040. [PMID: 37985427 DOI: 10.1002/biot.202300040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/07/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
In this study, we aimed to utilize autologous tracheal epithelia and BMSCs as the seeding cells, utilize PCL coated with SilMA as the hybrid scaffold to carry the cells and KGN, which can selectively stimulate chondrogenic differentiation of BMSCs. This hybrid tracheal substitution was carried out to repair the tracheal partial window-shape defect. Firstly, SilMA with the concentration of 10%, 15% and 20% was prepared, and the experiment of swelling and degradation was performed. With the increase of the concentration, the swelling ratio of SilMA decreased, and the degradation progress slowed down. Upon the result of CCK-8 test and HE staining of 3D co-culture, the SilMA with concentration of 20% was selected. Next, SilMA and the cells attached to SilMA were characterized by SEM. Furthermore, in vitro cytotoxicity test shows that 20% SilMA has good cytocompatibility. The hybrid scaffold was then made by PCL coated with 20% SilMA. The mechanical test shows this hybrid scaffold has better biomechanical properties than native trachea. In vivo tracheal defect repair assays were conducted to evaluate the effect of the hybrid substitution. H&E staining, IHC staining and IF staining showed that this hybrid substitution ensured the viability, proliferation and migration of epithelium. However, it is sad that the results of chondrogenesis were not obvious. This study is expected to provide new strategies for the fields of tracheal replacement therapy needing mechanical properties and epithelization.
Collapse
Affiliation(s)
- Yibo Shan
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Zhiming Shen
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yi Lu
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Jianwei Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Fei Sun
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Wenxuan Chen
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Lei Yuan
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Verzeletti V, Mammana M, Zambello G, Dell'Amore A, Rea F. Human tracheal transplantation: A systematic review of case reports. Clin Transplant 2024; 38:e15238. [PMID: 38289888 DOI: 10.1111/ctr.15238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Patients with long-segment airway stenosis not amenable to conventional surgery may benefit from tracheal transplantation. However, this procedure has been only anecdotally reported, and its indications, techniques, and outcomes have not been extensively reviewed. METHODS We conducted a systematic Literature search to identify all original articles reporting attempts at tracheal transplantation in humans. RESULTS Of 699 articles found by the initial search, 11 were included in the systematic review, describing 14 cases of tracheal transplantation. Patients underwent transplantation for benign stenosis in nine cases, and for malignancies in five cases. In 12 cases blood supply to the trachea was provided by wrapping the graft in a vascularized recipient's tissue, while in 2 cases the trachea was directly transplanted as a vascularized composite allograft. The transplantation procedure was aborted before orthotopic transplantation in two patients. Among the remaining 12 patients, there was 1 operative mortality, while 4 patients experienced complications. Immunosuppressants drugs were administered to the majority of patients postoperatively, and only one group of authors attempted their withdrawal, in five patients. At the end of follow-up, all 11 patients surviving the operation were alive, but 2 had a recurrent tracheal stenosis requiring an airway appliance for breathing. CONCLUSION Human tracheal transplantation is still at an embryonic phase. Studies available in the Literature report different surgical techniques, and information on long-term outcomes is still limited. Future research is needed in order to understand the clinical value of this procedure.
Collapse
Affiliation(s)
- Vincenzo Verzeletti
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Marco Mammana
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Giovanni Zambello
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Andrea Dell'Amore
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Federico Rea
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
8
|
Brusis T. [The first allogenic tracheal transplantation in humans 45 years ago : Procedure, course, and outcome]. HNO 2023; 71:763-766. [PMID: 37819274 DOI: 10.1007/s00106-023-01374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 10/13/2023]
Abstract
In November/December 1978, the first successful tracheal transplantation in humans was performed at the University ENT Clinic in Cologne by the then senior physicians Kurt G. Rose (later chief physician in Dortmund) and Klaus Sesterhenn (later chief physician in Duisburg). Director of the clinic at that time was Prof. Dr. Dr. Fritz Wustrow [10]. The immunological foundations and preliminary work were laid by Sesterhenn in the context of a total of 338 tracheal transplants in Lewis rats in the 1970s (details in the text). The first successful tracheal transplantation was performed on 18 November 1978 in a, then 19-year-old patient who had previously had a motorcycle accident. The donor organ was explanted in the University Hospital Essen and transplanted about 160 min later in the Cologne University ENT Clinic, first into a pocket of the right sternocleidomastoid muscle. The definitive transplantation took place on 06 December 1978. In the article, the circumstances at that time and the perioperative course in the Cologne University ENT Clinic are described by an eyewitness. The former patient is still well and without complications after more than four decades.
Collapse
|
9
|
Shen Z, Xia T, Zhao J, Pan S. Current status and future trends of reconstructing a vascularized tissue-engineered trachea. Connect Tissue Res 2023; 64:428-444. [PMID: 37171223 DOI: 10.1080/03008207.2023.2212052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Alternative treatment of long tracheal defects remains one of the challenges faced by thoracic surgeons. Tissue engineering has shown great potential in addressing this regenerative medicine conundrum and the technology to make tracheal grafts using this technique is rapidly maturing, leading to unique therapeutic approaches. However, the clinical application of tissue-engineered tracheal implants is limited by insufficient revascularization. Among them, realizing the vascularization of a tissue-engineered trachea is the most challenging problem to overcome. To achieve long-term survival after tracheal transplantation, an effective blood supply must be formed to support the metabolism of seeded cells and promote tissue healing and regeneration. Otherwise, repeated infection, tissue necrosis, lumen stenosis lack of effective epithelialization, need for repeated bronchoscopy after surgery, and other complications will be inevitable and lead to graft failure and a poor outcome. Here we review and analyze various tissue engineering studies promoting angiogenesis in recent years. The general situation of reconstructing a vascularized tissue-engineered trachea, including current problems and future development trends, is elaborated from the perspectives of seed cells, scaffold materials, growth factors and signaling pathways, surgical interventions in animal models and clinical applications. This review also provides ideas and methods for the further development of better biocompatible tracheal substitutes in the future.
Collapse
Affiliation(s)
- Ziqing Shen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Perryman MC, Kraft SM, Kavookjian HL. Laryngotracheal Reconstruction for Subglottic and Tracheal Stenosis. Otolaryngol Clin North Am 2023:S0030-6665(23)00075-0. [PMID: 37268515 DOI: 10.1016/j.otc.2023.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Laryngotracheal stenosis is the common endpoint for any process that results in the narrowing of the airway at the level of the glottis, subglottis, or trachea. Although endoscopic procedures are effective in opening the airway lumen, open resection and reconstruction can be necessary to reconstitute a functional airway. When resection and anastomosis are insufficient due to extensive length or location of the stenosis, autologous grafts can be used to expand the airway. Future directions in airway reconstruction include tissue engineering and allotransplantation.
Collapse
Affiliation(s)
- Mollie C Perryman
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas, The University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3010, Kansas City, KS 66160, USA
| | - Shannon M Kraft
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas, The University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3010, Kansas City, KS 66160, USA
| | - Hannah L Kavookjian
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas, The University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3010, Kansas City, KS 66160, USA.
| |
Collapse
|
11
|
Xu C, Ma Y, Huang H, Ruan Z, Li Y. A Review of Woven Tracheal Stents: Materials, Structures, and Application. J Funct Biomater 2022; 13:jfb13030096. [PMID: 35893464 PMCID: PMC9326637 DOI: 10.3390/jfb13030096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
The repair and reconstruction of tracheal defects is a challenging clinical problem. Due to the wide choice of materials and structures, weaving technology has shown unique advantages in simulating the multilayer structure of the trachea and providing reliable performance. Currently, most woven stent-based stents focus only on the effect of materials on stent performance while ignoring the direct effect of woven process parameters on stent performance, and the advantages of weaving technology in tissue regeneration have not been fully exploited. Therefore, this review will introduce the effects of stent materials and fabric construction on the performance of tracheal stents, focusing on the effects of weaving process parameters on stent performance. We will summarize the problems faced by woven stents and possible directions of development in the hope of broadening the technical field of artificial trachea preparation.
Collapse
Affiliation(s)
- Chen Xu
- College of Textiles, Donghua University, Shanghai 201620, China; (C.X.); (Y.M.)
| | - Yanxue Ma
- College of Textiles, Donghua University, Shanghai 201620, China; (C.X.); (Y.M.)
| | - Haihua Huang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China;
| | - Zheng Ruan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China;
- Correspondence: (Z.R.); (Y.L.)
| | - Yuling Li
- College of Textiles, Donghua University, Shanghai 201620, China; (C.X.); (Y.M.)
- Correspondence: (Z.R.); (Y.L.)
| |
Collapse
|
12
|
de Sá Schiavo Matias G, Carreira ACO, Batista VF, de Carvalho HJC, Miglino MA, Fratini P. In vivo biocompatibility analysis of the recellularized canine tracheal scaffolds with canine epithelial and endothelial progenitor cells. Bioengineered 2022; 13:3551-3565. [PMID: 35109755 PMCID: PMC8974223 DOI: 10.1080/21655979.2021.2020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Decellularized extracellular matrix (ECM) has frequently been applied as a biomaterial for tissue engineering purposes. When implanted, their role can be essential for partial trachea replacement in patients that require a viable transplant solution. Acellular canine tracheal scaffolds with preserved ECM structure, flexibility, and proteins were obtained by high pressure vacuum decellularization. Here, we aimed to evaluate the cell adhesion and proliferation of canine tracheal epithelial cells (EpC) and canine yolk sac endothelial progenitor cells (YS) cultivated on canine decellularized tracheal scaffolds and test the in vivo biocompatibility of these recellularized scaffolds implanted in BALB-c nude mice. In order to evaluate the recellularization efficiency, scaffolds were evaluated by scanning electron microscopy (SEM), immunofluorescence, DNA quantification, mycoplasma test, and in vivo biocompatibility. The scaffolds sterility was confirmed, and EpC and YS cells were cultured by 7 and 14 days. We demonstrated by SEM, immunofluorescence, and genomic DNA analyzes cell adhesion to tracheal ECM. Then, recellularized scaffolds were in vivo subcutaneously implanted in mice and after 45 days, the fragments were collected and analyzed by Hematoxylin-Eosin and Gömori Trichrome staining and PCNA, CD4, CD8, and CD68 immunohistochemistry. In vivo results confirmed that the implanted tissue remains preserved and proliferative, and no fibrotic tissue process was observed in animals. Finally, our results showed the recellularization success due the preserved ECM proteins, and that these may be suitable to future preclinical studies applications for partial trachea replacement in tissue engineering.
Collapse
Affiliation(s)
- Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia O Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Vitória Frias Batista
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,Neuromuscular Disease Laboratory, Faculdade de Medicina do ABC (FMABC), Santo André, Brazil
| |
Collapse
|