1
|
Lee SK, Kwon JH, Jang JW, Bae SH, Yoon SK, Jung ES, Choi JY. The Critical Role of Regulatory T Cells in Immune Tolerance and Rejection Following Liver Transplantation: Interactions With the Gut Microbiome. Transplantation 2025; 109:784-793. [PMID: 39375899 DOI: 10.1097/tp.0000000000005220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Liver transplantation (LT) is the ultimate treatment for patients with end-stage liver disease or early hepatocellular carcinoma. In the context of LT, because of the unique immunological characteristics of human liver allograft, 5%-20% of selected LT recipients can achieve operational tolerance. Nonetheless, there remains a risk of rejection in LT patients. Maintaining immune homeostasis is thus crucial for improving clinical outcomes in these patients. In mechanism, several immune cells, including dendritic cells, Kupffer cells, myeloid-derived suppressor cells, hepatic stellate cells, regulatory B cells, and CD4 + regulatory T cells (Treg), contribute to achieving tolerance following LT. In terms of Treg, it plays a role in successfully minimizing immunosuppression or achieving tolerance post-LT while also reducing the risk of rejection. Furthermore, the gut microbiome modulates systemic immune functions along the gut-liver axis. Recent studies have explored changes in the microbiome and its metabolites under various conditions, including post-LT, acute rejection, and tolerance. Certain functional microbiomes and metabolites exhibit immunomodulatory functions, such as the augmentation of Treg, influencing immune homeostasis. Therefore, understanding the mechanisms of tolerance in LT, the role of Treg in tolerance and rejection, as well as their interactions with gut microbiome, is vital for the management of LT patients.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hyun Kwon
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Pathology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Saeed H, Díaz LA, Gil-Gómez A, Burton J, Bajaj JS, Romero-Gomez M, Arrese M, Arab JP, Khan MQ. Microbiome-centered therapies for the management of metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol 2025; 31:S94-S111. [PMID: 39604327 PMCID: PMC11925441 DOI: 10.3350/cmh.2024.0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant global health issue, affecting over 30% of the population worldwide due to the rising prevalence of metabolic risk factors such as obesity and type 2 diabetes mellitus. This spectrum of liver disease ranges from isolated steatosis to more severe forms such as steatohepatitis, fibrosis, and cirrhosis. Recent studies highlight the role of gut microbiota in MASLD pathogenesis, showing that dysbiosis significantly impacts metabolic health and the progression of liver disease. This review critically evaluates current microbiome-centered therapies in MASLD management, including prebiotics, probiotics, synbiotics, fecal microbiota transplantation, and emerging therapies such as engineered bacteria and bacteriophage therapy. We explore the scientific rationale, clinical evidence, and potential mechanisms by which these interventions influence MASLD. The gut-liver axis is crucial in MASLD, with notable changes in microbiome composition linked to disease progression. For instance, specific microbial profiles and reduced alpha diversity are associated with MASLD severity. Therapeutic strategies targeting the microbiome could modulate disease progression by improving gut permeability, reducing endotoxin-producing bacteria, and altering bile acid metabolism. Although promising, these therapies require further research to fully understand their mechanisms and optimize their efficacy. This review integrates findings from clinical trials and experimental studies, providing a comprehensive overview of microbiome-centered therapies' potential in managing MASLD. Future research should focus on personalized strategies, utilizing microbiome features, blood metabolites, and customized dietary interventions to enhance the effectiveness of these therapies.
Collapse
Affiliation(s)
- Huma Saeed
- Division of Infectious Diseases, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Luis Antonio Díaz
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, CA, USA
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonio Gil-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jeremy Burton
- Department of Microbiology & Immunology, Western University, London, ON, Canada
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Manuel Romero-Gomez
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- UCM Digestive diseases, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Mohammad Qasim Khan
- Division of Gastroenterology, Department of Medicine, University of Western Ontario, London, ON, Canada
- Department of Epidemiology and Biostatistics, University of Western Ontario, London, ON, Canada
| |
Collapse
|
3
|
Lian YQ, Li PF, Guo Y, Tao YL, Liu YN, Liang ZY, Zhu SF. Interaction between ischemia-reperfusion injury and intestinal microecology in organ transplantation and its therapeutic prospects. Front Immunol 2024; 15:1495394. [PMID: 39712022 PMCID: PMC11659223 DOI: 10.3389/fimmu.2024.1495394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024] Open
Abstract
Organ transplantation is a vital intervention for end-stage organ failure; however, ischemia-reperfusion injury is a complication of transplantation, affecting the prognosis and survival of transplant recipients. As a complex ecosystem, recent research has highlighted the role of the intestinal microecology in transplantation, revealing its significant interplay with ischemia-reperfusion injury. This review explores the interaction between ischemia-reperfusion injury and intestinal microecology, with a special focus on how ischemia-reperfusion injury affects intestinal microecology and how these microecological changes contribute to complications after organ transplantation, such as infection and rejection. Based on a comprehensive analysis of current research advances, this study proposes potential strategies to improve transplant outcomes, offering guidance for future research and clinical practice.
Collapse
Affiliation(s)
- Yong-qi Lian
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Peng-fei Li
- Department of Orthopaedics, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yan Guo
- Pathology Department, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yan-lin Tao
- Department of Surgery ICU, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ya-nan Liu
- Department of Surgery ICU, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhao-yu Liang
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Shu-fen Zhu
- Physical Examination Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
4
|
Li Y, Chvatal-Medina M, Trillos-Almanza MC, Bourgonje AR, Connelly MA, Moshage H, Bakker SJL, de Meijer VE, Blokzijl H, Dullaart RPF. Circulating Citrate Is Reversibly Elevated in Patients with End-Stage Liver Disease: Association with All-Cause Mortality. Int J Mol Sci 2024; 25:12806. [PMID: 39684514 DOI: 10.3390/ijms252312806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Circulating citrate may serve as a proxy for mitochondrial dysfunction which plays a role in the progression of end-stage liver disease (ESLD). This study aimed to determine the extent of alterations in circulating citrate in patients with ESLD, and examined its association with all-cause mortality among ESLD patients while on the waiting list for liver transplantation. Plasma citrate levels were measured using nuclear magnetic resonance spectroscopy in 129 ESLD patients (TransplantLines cohort study; NCT03272841) and compared to levels in 4837 participants of the community-dwelling PREVEND cohort. Plasma citrate levels were 40% higher in ESLD patients compared to PREVEND participants (p < 0.001). In a subset of 30 ESLD patients, citrate decreased following liver transplantation (p < 0.001), resulting in levels that were slightly lower than those observed in PREVEND participants. In multivariable analysis, plasma citrate levels were positively associated with Child-Turcotte-Pugh classification and inversely associated with estimated glomerular filtration rate (both p < 0.05). Survival was significantly reduced in ESLD patients in the highest citrate tertile (log-rank p = 0.037). Elevated citrate levels were associated with an increased risk of all-cause mortality in ESLD patients (HR per 1 Ln SD increment: 1.65 [95% CI: 1.03-2.63], p = 0.037). This association was suggested to be particularly present in men (HR: 2.04 [95% CI: 1.08-3.85], p = 0.027). In conclusion, plasma citrate levels are elevated in ESLD patients and decrease following liver transplantation. Moreover, elevated plasma citrate levels may be associated with increased all-cause mortality in ESLD patients, likely more pronounced in men.
Collapse
Affiliation(s)
- Yakun Li
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Mateo Chvatal-Medina
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Maria Camila Trillos-Almanza
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Robin P F Dullaart
- Department of Internal Medicine, Division of Endocrinology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
5
|
D’Amico F, Rinaldi M, Pascale R, Fabbrini M, Morelli MC, Siniscalchi A, Laici C, Coladonato S, Ravaioli M, Cescon M, Ambretti S, Viale P, Brigidi P, Turroni S, Giannella M. Gut microbiome dynamics and Enterobacterales infection in liver transplant recipients: A prospective observational study. JHEP Rep 2024; 6:101039. [PMID: 38524669 PMCID: PMC10960129 DOI: 10.1016/j.jhepr.2024.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Background & Aims The aim of this study was to investigate gut microbiome (GM) dynamics in relation to carbapenem-resistant Enterobacterales (CRE) colonization, CRE infection, and non-CRE infection development within 2 months after liver transplant (LT). Methods A single-center, prospective study was performed in patients undergoing LT from November 2018 to January 2020. The GM was profiled through 16S rRNA amplicon sequencing of a rectal swab taken on the day of transplantation, and fecal samples were collected weekly until 1 month after LT. A subset of samples was subjected to shotgun metagenomics, including resistome dynamics. The primary endpoint was to explore changes in the GM in the following groups: (1) CRE carriers developing CRE infection (CRE_I); (2) CRE carriers not developing infection (CRE_UI); (3) non-CRE carriers developing microbial infection (INF); and (4) non-CRE carriers not developing infection (NEG). Results Overall, 97 patients were enrolled, and 91 provided fecal samples. Of these, five, nine, 22, and 55 patients were classified as CRE_I, CRE_UI, INF, and NEG, respectively. CRE_I patients showed an immediate and sustained post-LT decrease in alpha diversity, with depletion of the GM structure and gradual over-representation of Klebsiella and Enterococcus. The proportions of Klebsiella were significantly higher in CRE_I patients than in NEG patients even before LT, serving as an early marker of subsequent CRE infection. CRE_UI patients had a more stable and diverse GM, whose compositional dynamics tended to overlap with those of NEG patients. Conclusions GM profiling before LT could improve patient stratification and risk prediction and guide early GM-based intervention strategies to reduce infectious complications and improve overall prognosis. Impact and implications Little is known about the temporal dynamics of gut microbiome (GM) in liver transplant recipients associated with carbapenem-resistant Enterobacterales (CRE) colonization and infection. The GM structure and functionality of patients colonized with CRE and developing infection appeared to be distinct compared with CRE carriers without infection or patients with other microbial infection or no infection and CRE colonization. Higher proportions of antimicrobial-resistant pathogens and poor representation of bacteria and metabolic pathways capable of promoting overall host health were observed in CRE carriers who developed infection, even before liver transplant. Therefore, pretransplant GM profiling could improve patient stratification and risk prediction and guide early GM-based intervention strategies to reduce infectious complications and improve overall prognosis.
Collapse
Affiliation(s)
- Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Matteo Rinaldi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Integrated Management of Infectious Risk, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Renato Pascale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Integrated Management of Infectious Risk, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Cristina Morelli
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Antonio Siniscalchi
- Division of Anesthesiology, Department of Anesthesia and Intensive Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Cristiana Laici
- Division of Anesthesiology, Department of Anesthesia and Intensive Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simona Coladonato
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Integrated Management of Infectious Risk, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Matteo Ravaioli
- General Surgery and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Matteo Cescon
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- General Surgery and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Simone Ambretti
- Microbiology Operative Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Integrated Management of Infectious Risk, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Integrated Management of Infectious Risk, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| |
Collapse
|
6
|
Lehmann CJ, Dylla NP, Odenwald M, Nayak R, Khalid M, Boissiere J, Cantoral J, Adler E, Stutz MR, Dela Cruz M, Moran A, Lin H, Ramaswamy R, Sundararajan A, Sidebottom AM, Little J, Pamer EG, Aronsohn A, Fung J, Baker TB, Kacha A. Fecal metabolite profiling identifies liver transplant recipients at risk for postoperative infection. Cell Host Microbe 2024; 32:117-130.e4. [PMID: 38103544 DOI: 10.1016/j.chom.2023.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Metabolites produced by the intestinal microbiome modulate mucosal immune defenses and optimize epithelial barrier function. Intestinal dysbiosis, including loss of intestinal microbiome diversity and expansion of antibiotic-resistant pathobionts, is accompanied by changes in fecal metabolite concentrations and increased incidence of systemic infection. Laboratory tests that quantify intestinal dysbiosis, however, have yet to be incorporated into clinical practice. We quantified fecal metabolites in 107 patients undergoing liver transplantation (LT) and correlated these with fecal microbiome compositions, pathobiont expansion, and postoperative infections. Consistent with experimental studies implicating microbiome-derived metabolites with host-mediated antimicrobial defenses, reduced fecal concentrations of short- and branched-chain fatty acids, secondary bile acids, and tryptophan metabolites correlate with compositional microbiome dysbiosis in LT patients and the relative risk of postoperative infection. Our findings demonstrate that fecal metabolite profiling can identify LT patients at increased risk of postoperative infection and may provide guideposts for microbiome-targeted therapies.
Collapse
Affiliation(s)
- Christopher J Lehmann
- Department of Medicine, Section of Infectious Disease and Global Health, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA; Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | - Nicholas P Dylla
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Matthew Odenwald
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA; Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Ravi Nayak
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Maryam Khalid
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Jaye Boissiere
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Jackelyn Cantoral
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Emerald Adler
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Matthew R Stutz
- Department of Pulmonary and Critical Care Medicine, Cook County Health, 1950 W. Polk St, Chicago, IL 60612, USA
| | - Mark Dela Cruz
- Department of Cardiology, Advocate Health Care Systems, 4400 W. 95(th) St, Oak Lawn, IL 60453, USA
| | - Angelica Moran
- Department of Pathology, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Huaiying Lin
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Ramanujam Ramaswamy
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Anitha Sundararajan
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Ashley M Sidebottom
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Jessica Little
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Eric G Pamer
- Department of Medicine, Section of Infectious Disease and Global Health, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA; Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA.
| | - Andrew Aronsohn
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - John Fung
- Department of Surgery, Section of Transplant Surgery, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Talia B Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah Health, 30 N. 1900 East, Salt Lake City, UT 84132, USA
| | - Aalok Kacha
- Department of Anesthesia and Critical Care, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Adhikary S, Esmeeta A, Dey A, Banerjee A, Saha B, Gopan P, Duttaroy AK, Pathak S. Impacts of gut microbiota alteration on age-related chronic liver diseases. Dig Liver Dis 2024; 56:112-122. [PMID: 37407321 DOI: 10.1016/j.dld.2023.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
The gut microbiome and its metabolites are involved in developing and progressing liver disease. Various liver illnesses, such as non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis C, and hepatocellular carcinoma, are made worse and have worse prognoses with aging. Dysbiosis, which occurs when the symbiosis between the microbiota and the host is disrupted, can significantly negatively impact health. Liver disease is linked to qualitative changes, such as an increase in hazardous bacteria and a decrease in good bacteria, as well as quantitative changes in the overall amount of bacteria (overgrowth). Intestinal gut microbiota and their metabolites may lead to chronic liver disease development through various mechanisms, such as increasing gut permeability, persistent systemic inflammation, production of SCFA, bile acids, and alteration in metabolism. Age-related gut dysbiosis can disrupt the communication between gut microbiota and the host, impacting the host's health and lifespan. With aging, a gradual loss of the ability to maintain homeostasis because of structural alteration and gut dysbiosis leads to the disease progression in end-stage liver disease. Recently chronic liver disease has been identified as a global problem. A large number of patients are receiving liver transplants yearly. Thereby gut microbiome ecology is changing in the patients of the gut due to the changes in pathophysiology during the preoperative stage. The present review summarises the age-associated dysbiosis of gut microbial composition and its contribution to chronic liver disease. This review also provides information about the impact of liver transplant on the gut microbiome and possible disadvantageous effects of alteration in gut microbiota.
Collapse
Affiliation(s)
- Subhamay Adhikary
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India
| | - Akanksha Esmeeta
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Amit Dey
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India
| | - Antara Banerjee
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India
| | - Biki Saha
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India
| | - Pournami Gopan
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Surajit Pathak
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India.
| |
Collapse
|
8
|
Chen G, Hu X, Huang Y, Xiang X, Pan S, Chen R, Xu X. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e444. [PMID: 38098611 PMCID: PMC10719430 DOI: 10.1002/mco2.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.
Collapse
Affiliation(s)
- Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin Hu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaonan Xiang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Sheng Pan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
9
|
Li X, Li S, Wu B, Xu Q, Teng D, Yang T, Sun Y, Zhao Y, Li T, Liu D, Yang S, Gong W, Cai J. Landscape of Immune Cells Heterogeneity in Liver Transplantation by Single-Cell RNA Sequencing Analysis. Front Immunol 2022; 13:890019. [PMID: 35619708 PMCID: PMC9127089 DOI: 10.3389/fimmu.2022.890019] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Rejection is still a critical barrier to the long-term survival of graft after liver transplantation, requiring clinicians to unveil the underlying mechanism of liver transplant rejection. The cellular diversity and the interplay between immune cells in the liver graft microenvironment remain unclear. Herein, we performed single-cell RNA sequencing analysis to delineate the landscape of immune cells heterogeneity in liver transplantation. T cells, NK cells, B cells, and myeloid cell subsets in human liver and blood were enriched to characterize their tissue distribution, gene expression, and functional modules. The proportion of CCR6+CD4+ T cells increased within an allograft, suggesting that there are more memory CD4+ T cells after transplantation, in parallel with exhausted CTLA4+CD8+ T and actively proliferating MKI67+CD8+ T cells increased significantly, where they manifested heterogeneity, distinct function, and homeostatic proliferation. Remarkably, the changes of CD1c+ DC, CADM+ DC, MDSC, and FOLR3+ Kupffer cells increase significantly, but the proportion of CD163+ Kupffer, APOE+ Kupffer, and GZMA+ Kupffer decreased. Furthermore, we identified LDLR as a novel marker of activated MDSC to prevent liver transplant rejection. Intriguingly, a subset of CD4+CD8+FOXP3+ T cells included in CTLA4+CD8+ T cells was first detected in human liver transplantation. Furthermore, intercellular communication and gene regulatory analysis implicated the LDLR+ MDSC and CTLA4+CD8+ T cells interact through TIGIT-NECTIN2 signaling pathway. Taken together, these findings have gained novel mechanistic insights for understanding the immune landscape in liver transplantation, and it outlines the characteristics of immune cells and provides potential therapeutic targets in liver transplant rejection.
Collapse
Affiliation(s)
- Xinqiang Li
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shipeng Li
- Department of General Surgery, Jiaozuo Women's and Children's Hospital, Jiaozuo, China.,The Second Clinical Medical College, Capital Medical University, Beijing, China
| | - Bin Wu
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Qingguo Xu
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Dahong Teng
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Tongwang Yang
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Yandong Sun
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Yang Zhao
- Department of Urology Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Tianxiang Li
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Dan Liu
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Shuang Yang
- Department of Molecular Biology, Medical College, Nankai University, Tianjin, China
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinzhen Cai
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|