1
|
Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook. Biomed Pharmacother 2021; 137:111236. [PMID: 33486201 DOI: 10.1016/j.biopha.2021.111236] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023] Open
Abstract
Currently, stem cell nanotechnology is one of the novel and exciting fields. Certain experimental studies conducted on the interaction of stem cells with nanostructures or nanomaterials have made significant progress. The significance of nanostructures, nanotechnology, and nanomaterials in the development of stem cell-based therapies for degenerative diseases and injuries has been well established. Specifically, the structure and properties of nanomaterials affecting the propagation and differentiation of stem cells have become a new interdisciplinary frontier in material science and regeneration medicines. In the current review, we highlight the recent major progress in this field, explore the application prospects, and discuss the issues, approaches, and challenges, to improve the applications of nanotechnology in the research and development of stem cells.
Collapse
|
2
|
Salado-Manzano C, Perpiña U, Straccia M, Molina-Ruiz FJ, Cozzi E, Rosser AE, Canals JM. Is the Immunological Response a Bottleneck for Cell Therapy in Neurodegenerative Diseases? Front Cell Neurosci 2020; 14:250. [PMID: 32848630 PMCID: PMC7433375 DOI: 10.3389/fncel.2020.00250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as Parkinson's (PD) and Huntington's disease (HD) are characterized by a selective detrimental impact on neurons in a specific brain area. Currently, these diseases have no cures, although some promising trials of therapies that may be able to slow the loss of brain cells are underway. Cell therapy is distinguished by its potential to replace cells to compensate for those lost to the degenerative process and has shown a great potential to replace degenerated neurons in animal models and in clinical trials in PD and HD patients. Fetal-derived neural progenitor cells, embryonic stem cells or induced pluripotent stem cells are the main cell sources that have been tested in cell therapy approaches. Furthermore, new strategies are emerging, such as the use of adult stem cells, encapsulated cell lines releasing trophic factors or cell-free products, containing an enriched secretome, which have shown beneficial preclinical outcomes. One of the major challenges for these potential new treatments is to overcome the host immune response to the transplanted cells. Immune rejection can cause significant alterations in transplanted and endogenous tissue and requires immunosuppressive drugs that may produce adverse effects. T-, B-lymphocytes and microglia have been recognized as the main effectors in striatal graft rejection. This review aims to summarize the preclinical and clinical studies of cell therapies in PD and HD. In addition, the precautions and strategies to ensure the highest quality of cell grafts, the lowest risk during transplantation and the reduction of a possible immune rejection will be outlined. Altogether, the wide-ranging possibilities of advanced therapy medicinal products (ATMPs) could make therapeutic treatment of these incurable diseases possible in the near future.
Collapse
Affiliation(s)
- Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Unai Perpiña
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | - Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Emanuele Cozzi
- Department of Cardio-Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
- Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Anne E. Rosser
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
3
|
Application of Nanotechnology in Stem-Cell-Based Therapy of Neurodegenerative Diseases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to adverse health outcomes, neurological disorders have serious societal and economic impacts on patients, their family and society as a whole. There is no definite treatment for these disorders, and current available drugs only slow down the progression of the disease. In recent years, application of stem cells has been widely advanced due to their potential of self-renewal and differentiation to different cell types which make them suitable candidates for cell therapy. In particular, this approach offers great opportunities for the treatment of neurodegenerative disorders. However, some major issues related to stem-cell therapy, including their tumorigenicity, viability, safety, metastases, uncontrolled differentiation and possible immune response have limited their application in clinical scales. To address these challenges, a combination of stem-cell therapy with nanotechnology can be a solution. Nanotechnology has the potential of improvement of stem-cell therapy by providing ideal substrates for large scale proliferation of stem cells. Application of nanomaterial in stem-cell culture will be also beneficial to modulation of stem-cell differentiation using nanomedicines. Nanodelivery of functional compounds can enhance the efficiency of neuron therapy by stem cells and development of nanobased techniques for real-time, accurate and long-lasting imaging of stem-cell cycle processes. However, these novel techniques need to be investigated to optimize their efficiency in treatment of neurologic diseases.
Collapse
|
4
|
Adams KV, Morshead CM. Neural stem cell heterogeneity in the mammalian forebrain. Prog Neurobiol 2018; 170:2-36. [PMID: 29902499 DOI: 10.1016/j.pneurobio.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
The brain was long considered an organ that underwent very little change after development. It is now well established that the mammalian central nervous system contains neural stem cells that generate progeny that are capable of making new neurons, astrocytes, and oligodendrocytes throughout life. The field has advanced rapidly as it strives to understand the basic biology of these precursor cells, and explore their potential to promote brain repair. The purpose of this review is to present current knowledge about the diversity of neural stem cells in vitro and in vivo, and highlight distinctions between neural stem cell populations, throughout development, and within the niche. A comprehensive understanding of neural stem cell heterogeneity will provide insights into the cellular and molecular regulation of neural development and lifelong neurogenesis, and will guide the development of novel strategies to promote regeneration and neural repair.
Collapse
Affiliation(s)
- Kelsey V Adams
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada.
| | - Cindi M Morshead
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada; Department of Surgery, Division of Anatomy, Canada; Institute of Biomaterials and Biomedical Engineering, Canada; Rehabilitation Science Institute, University of Toronto, Canada.
| |
Collapse
|
5
|
Precious SV, Zietlow R, Dunnett SB, Kelly CM, Rosser AE. Is there a place for human fetal-derived stem cells for cell replacement therapy in Huntington's disease? Neurochem Int 2017; 106:114-121. [PMID: 28137534 PMCID: PMC5582194 DOI: 10.1016/j.neuint.2017.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/24/2017] [Indexed: 01/15/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disease that offers an excellent paradigm for cell replacement therapy because of the associated relatively focal cell loss in the striatum. The predominant cells lost in this condition are striatal medium spiny neurons (MSNs). Transplantation of developing MSNs taken from the fetal brain has provided proof of concept that donor MSNs can survive, integrate and bring about a degree of functional recovery in both pre-clinical studies and in a limited number of clinical trials. The scarcity of human fetal tissue, and the logistics of coordinating collection and dissection of tissue with neurosurgical procedures makes the use of fetal tissue for this purpose both complex and limiting. Alternative donor cell sources which are expandable in culture prior to transplantation are currently being sought. Two potential donor cell sources which have received most attention recently are embryonic stem (ES) cells and adult induced pluripotent stem (iPS) cells, both of which can be directed to MSN-like fates, although achieving a genuine MSN fate has proven to be difficult. All potential donor sources have challenges in terms of their clinical application for regenerative medicine, and thus it is important to continue exploring a wide variety of expandable cells. In this review we discuss two less well-reported potential donor cell sources; embryonic germ (EG) cells and fetal neural precursors (FNPs), both are which are fetal-derived and have some properties that could make them useful for regenerative medicine applications.
Collapse
Affiliation(s)
- Sophie V Precious
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Rike Zietlow
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Stephen B Dunnett
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; Wales Brain Repair and Intracranial Neurotherapeutics Unit (B.R.A.I.N), School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Claire M Kelly
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, CF5 2YB, UK
| | - Anne E Rosser
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; Wales Brain Repair and Intracranial Neurotherapeutics Unit (B.R.A.I.N), School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|
6
|
Qiu L, Lim YM, Chen AK, Reuveny S, Oh SKW, Tan EK, Zeng L. Microcarrier-Expanded Neural Progenitor Cells Can Survive, Differentiate, and Innervate Host Neurons Better When Transplanted as Aggregates. Cell Transplant 2016; 25:1343-57. [DOI: 10.3727/096368915x690378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuronal progenitor cells (NPCs) derived from human embryonic stem cells (hESCs) are an excellent cell source for transplantation therapy due to their availability and ethical acceptability. However, the traditional method of expansion and differentiation of hESCs into NPCs in monolayer cultures requires a long time, and the cell yield is low. A microcarrier (MC) platform can improve the expansion of hESCs and increase the yield of NPCs. In this study, for the first time, we transplanted microcarrier-expanded hESC-derived NPCs into the striatum of adult NOD-SCID IL2Rgc null mice, either as single cells or as cell aggregates. The recipient mice were perfused, and the in vivo survival, differentiation, and targeted innervation of the transplanted cells were assessed by immunostaining. We found that both the transplanted single NPCs and aggregate NPCs were able to survive 1 month posttransplantation, as revealed by human-specific neural cell adhesion molecule (NCAM) and human nuclear antigen staining. Compared to the single cells, the transplanted cell aggregates showed better survival over a 3-month period. In addition, both the transplanted single NPCs and the aggregate NPCs were able to differentiate into DCX-positive immature neurons and Tuj1-positive neurons in vivo by 1 month posttransplantation. However, only the transplantation of aggregate NPCs was shown to result in mature neurons at 3 months posttransplantation. Furthermore, we found that the cell aggregates were able to send long axons to innervate their targets. Our study provides preclinical evidence that the use of MCs to expand and differentiate hESC-derived NPCs and transplantation of these cells as aggregates produce longer survival in vivo.
Collapse
Affiliation(s)
- Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Yu Ming Lim
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A STAR), Singapore
| | - Allen K. Chen
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A STAR), Singapore
| | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A STAR), Singapore
| | - Steve K. W. Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A STAR), Singapore
| | - Eng King Tan
- Department of Neurology, National Neuroscience Institute, SGH Campus, Singapore
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore
| |
Collapse
|
7
|
Pollock K, Dahlenburg H, Nelson H, Fink KD, Cary W, Hendrix K, Annett G, Torrest A, Deng P, Gutierrez J, Nacey C, Pepper K, Kalomoiris S, D Anderson J, McGee J, Gruenloh W, Fury B, Bauer G, Duffy A, Tempkin T, Wheelock V, Nolta JA. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models. Mol Ther 2016; 24:965-77. [PMID: 26765769 PMCID: PMC4881765 DOI: 10.1038/mt.2016.12] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/05/2015] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies.
Collapse
Affiliation(s)
- Kari Pollock
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Heather Dahlenburg
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Haley Nelson
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Kyle D Fink
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Whitney Cary
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Kyle Hendrix
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Geralyn Annett
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Audrey Torrest
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Peter Deng
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Joshua Gutierrez
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Catherine Nacey
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Karen Pepper
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Stefanos Kalomoiris
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Johnathon D Anderson
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Jeannine McGee
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - William Gruenloh
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Brian Fury
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Gerhard Bauer
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Alexandria Duffy
- Department of Neurology, University of California Davis Health System, Sacramento, California, USA
| | - Theresa Tempkin
- Department of Neurology, University of California Davis Health System, Sacramento, California, USA
| | - Vicki Wheelock
- Department of Neurology, University of California Davis Health System, Sacramento, California, USA
| | - Jan A Nolta
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| |
Collapse
|
8
|
Ando K, Inoue T, Itoh T. l-DOPA-induced behavioral sensitization of motor activity in the MPTP-treated common marmoset as a Parkinson's disease model. Pharmacol Biochem Behav 2014; 127:62-9. [DOI: 10.1016/j.pbb.2014.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/29/2014] [Accepted: 10/25/2014] [Indexed: 11/25/2022]
|
9
|
|
10
|
Rumpel R, Alam M, Klein A, Özer M, Wesemann M, Jin X, Krauss JK, Schwabe K, Ratzka A, Grothe C. Neuronal firing activity and gene expression changes in the subthalamic nucleus after transplantation of dopamine neurons in hemiparkinsonian rats. Neurobiol Dis 2013; 59:230-43. [DOI: 10.1016/j.nbd.2013.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 12/28/2022] Open
|
11
|
Daviaud N, Garbayo E, Schiller PC, Perez-Pinzon M, Montero-Menei CN. Organotypic cultures as tools for optimizing central nervous system cell therapies. Exp Neurol 2013; 248:429-40. [DOI: 10.1016/j.expneurol.2013.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 01/01/2023]
|
12
|
van Wijngaarden P, Franklin RJM. Ageing stem and progenitor cells: implications for rejuvenation of the central nervous system. Development 2013; 140:2562-75. [PMID: 23715549 DOI: 10.1242/dev.092262] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The growing burden of the rapidly ageing global population has reinvigorated interest in the science of ageing and rejuvenation. Among organ systems, rejuvenation of the central nervous system (CNS) is arguably the most complex and challenging of tasks owing, among other things, to its startling structural and functional complexity and its restricted capacity for repair. Thus, the prospect of meaningful rejuvenation of the CNS has seemed an impossible goal; however, advances in stem cell science are beginning to challenge this assumption. This Review outlines these advances with a focus on ageing and rejuvenation of key endogenous stem and progenitor cell compartments in the CNS. Insights gleaned from studies of model organisms, chiefly rodents, will be considered in parallel with human studies.
Collapse
Affiliation(s)
- Peter van Wijngaarden
- Wellcome Trust-MRC Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | | |
Collapse
|
13
|
Perrier A, Peschanski M. How can human pluripotent stem cells help decipher and cure Huntington's disease? Cell Stem Cell 2013; 11:153-61. [PMID: 22862942 DOI: 10.1016/j.stem.2012.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cell (PSC) technologies are becoming a key asset for deciphering pathological cascades and for developing new treatments against many neurodegenerative disorders, including Huntington's disease (HD). This perspective discusses the challenges and opportunities facing the use of PSCs for treating HD, focusing on four major applications: namely, the use of PSCs as a substitute source of human striatal cells for current HD cell therapy, as a cellular model of HD for the validation of human-specific gene therapies, for deciphering molecular mechanisms underlying HD, and in drug discovery.
Collapse
Affiliation(s)
- Anselme Perrier
- INSERM U861, I-Stem/AFM, 5 rue Henri Desbruères Evry, 91030 Cedex, France
| | | |
Collapse
|
14
|
Ramm Sander P, Hau P, Koch S, Schütze K, Bogdahn U, Kalbitzer HR, Aigner L. Stem cell metabolic and spectroscopic profiling. Trends Biotechnol 2013; 31:204-13. [PMID: 23384506 DOI: 10.1016/j.tibtech.2013.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/21/2012] [Accepted: 01/09/2013] [Indexed: 12/14/2022]
Abstract
Stem cells offer great potential for regenerative medicine because they regenerate damaged tissue by cell replacement and/or by stimulating endogenous repair mechanisms. Although stem cells are defined by their functional properties, such as the potential to proliferate, to self-renew, and to differentiate into specific cell types, their identification based on the expression of specific markers remains vague. Here, profiles of stem cell metabolism might highlight stem cell function more than the expression of single genes/markers. Thus, systematic approaches including spectroscopy might yield insight into stem cell function, identity, and stemness. We review the findings gained by means of metabolic and spectroscopic profiling methodologies, for example, nuclear magnetic resonance spectroscopy (NMRS), mass spectrometry (MS), and Raman spectroscopy (RS), with a focus on neural stem cells and neurogenesis.
Collapse
Affiliation(s)
- Paul Ramm Sander
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Newland B, Dowd E, Pandit A. Biomaterial approaches to gene therapies for neurodegenerative disorders of the CNS. Biomater Sci 2013; 1:556. [DOI: 10.1039/c3bm60030k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
16
|
Reekmans K, De Vocht N, Praet J, Fransen E, Le Blon D, Hoornaert C, Daans J, Goossens H, Van der Linden A, Berneman Z, Ponsaerts P. Spatiotemporal evolution of early innate immune responses triggered by neural stem cell grafting. Stem Cell Res Ther 2012; 3:56. [PMID: 23241452 PMCID: PMC3580486 DOI: 10.1186/scrt147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022] Open
Abstract
Introduction Transplantation of neural stem cells (NSCs) is increasingly suggested to become part of future therapeutic approaches to improve functional outcome of various central nervous system disorders. However, recently it has become clear that only a small fraction of grafted NSCs display long-term survival in the (injured) adult mouse brain. Given the clinical invasiveness of NSC grafting into brain tissue, profound characterisation and understanding of early post-transplantation events is imperative to claim safety and efficacy of cell-based interventions. Methods Here, we applied in vivo bioluminescence imaging (BLI) and post-mortem quantitative histological analysis to determine the localisation and survival of grafted NSCs at early time points post-transplantation. Results An initial dramatic cell loss (up to 80% of grafted cells) due to apoptosis could be observed within the first 24 hours post-implantation, coinciding with a highly hypoxic NSC graft environment. Subsequently, strong spatiotemporal microglial and astroglial cell responses were initiated, which stabilised by day 5 post-implantation and remained present during the whole observation period. Moreover, the increase in astrocyte density was associated with a high degree of astroglial scarring within and surrounding the graft site. During the two-week follow up in this study, the NSC graft site underwent extensive remodelling with NSC graft survival further declining to around 1% of the initial number of grafted cells. Conclusions The present study quantitatively describes the early post-transplantation events following NSC grafting in the adult mouse brain and warrants that such intervention is directly associated with a high degree of cell loss, subsequently followed by strong glial cell responses.
Collapse
|
17
|
De Vocht N, Lin D, Praet J, Hoornaert C, Reekmans K, Le Blon D, Daans J, Pauwels P, Goossens H, Hens N, Berneman Z, Van der Linden A, Ponsaerts P. Quantitative and phenotypic analysis of mesenchymal stromal cell graft survival and recognition by microglia and astrocytes in mouse brain. Immunobiology 2012; 218:696-705. [PMID: 22944251 DOI: 10.1016/j.imbio.2012.08.266] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 08/02/2012] [Accepted: 08/05/2012] [Indexed: 01/18/2023]
Abstract
Although cell transplantation is increasingly suggested to be beneficial for the treatment of various neurodegenerative diseases, the therapeutic application of such intervention is currently hindered by the limited knowledge regarding central nervous system (CNS) transplantation immunology. In this study, we aimed to investigate the early post transplantation innate immune events following grafting of autologous mesenchymal stromal cells (MSC) in the CNS of immune competent mice. First, the survival of grafted Luciferase/eGFP-expressing MSC (MSC-Luc/eGFP) was demonstrated to be stable from on day 3 post implantation using in vivo bioluminescence imaging (BLI), which was further confirmed by quantitative histological analysis of MSC-Luc/eGFP graft survival. Additional histological analyses at week 1 and week 2 post grafting revealed the appearance of (i) graft-surrounding/-invading Iba1+ microglia and (ii) graft-surrounding GFAP+ astrocytes, as compared to day 0 post grafting. While the density of graft-surrounding astrocytes and microglia did not change between week 1 and week 2 post grafting, the density of graft-invading microglia significantly decreased between week 1 and week 2 post implantation. However, despite the observed decrease in microglial density within the graft site, additional phenotypic analysis of graft-invading microglia, based on CD11b- and MHCII-expression, revealed >50% of graft-invading microglia at week 2 post implantation to display an activated status. Although microglial expression of CD11b and MHCII is already suggestive for a pro-inflammatory M1-oriented phenotype, the latter was further confirmed by: (i) the expression of NOS2 by microglia within the graft site, and (ii) the absence of arginase 1-expression, an enzyme known to suppress NO activity in M2-oriented microglia, on graft-surrounding and -invading microglia. In summary, we here provide a detailed phenotypic analysis of post transplantation innate immune events in the CNS of mice, and warrant that such intervention is associated with an M1-oriented microglia response and severe astrogliosis.
Collapse
Affiliation(s)
- Nathalie De Vocht
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Döbrössy MD, Braun F, Klein S, Garcia J, Langen KJ, Weber WA, Nikkhah G, Meyer PT. [18F]desmethoxyfallypride as a novel PET radiotracer for quantitative in vivo dopamine D2/D3 receptor imaging in rat models of neurodegenerative diseases. Nucl Med Biol 2012; 39:1077-80. [PMID: 22591915 DOI: 10.1016/j.nucmedbio.2012.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
Abstract
INTRODUCTION [(18)F]desmethoxyfallypride ([(18)F]DMFP) is a promising tracer for longitudinal assessment of striatal dopamine D2/D3-receptor (D2R) availability by positron emission tomography (PET) in small animal models. We explored the feasibility of [(18)F]DMFP-PET to image D2R availability in rat models of Huntington's (HD) and Parkinson's disease (PD). METHODS Animals received either unilateral intrastriatal quinolinic acid lesions or medial forebrain bundle injections of 6-OHDA to produce the loss of striatal projection neurones or deplete the striatal dopamine, corresponding to established animal models for HD and PD, respectively. Three weeks after lesioning, PET scans were acquired on a microPET Focus 120 system following the tail vein injection of [(18)F]DMFP. RESULTS [(18)F]DMFP-PET clearly visualized lesion induced decreases and increases of D2R availability. In vivo estimates of D2R binding and changes thereof gained by pharmacokinetic analyses correlated significantly with D2R density and its change provided by in vitro [(3)H]raclopride-autoradiography. CONCLUSIONS In conclusion, [(18)F]DMFP-PET is a suitable method for in vivo D2R-assessment in preclinical research, e.g for monitoring cell-based therapies.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Stereotactic Neurosurgery, Department of General Neurosurgery, University Freiburg Medical Center, Breisacher Str 64, 79106, Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Pauly MC, Piroth T, Döbrössy M, Nikkhah G. Restoration of the striatal circuitry: from developmental aspects toward clinical applications. Front Cell Neurosci 2012; 6:16. [PMID: 22529778 PMCID: PMC3329876 DOI: 10.3389/fncel.2012.00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/23/2012] [Indexed: 12/20/2022] Open
Abstract
In the basal ganglia circuitry, the striatum is a highly complex structure coordinating motor and cognitive functions and it is severely affected in Huntington's disease (HD) patients. Transplantation of fetal ganglionic eminence (GE) derived precursor cells aims to restore neural circuitry in the degenerated striatum of HD patients. Pre-clinical transplantation in genetic and lesion HD animal models has increased our knowledge of graft vs. host interactions, and clinical studies have been shown to successfully reduce motor and cognitive effects caused by the disease. Investigating the molecular mechanisms of striatal neurogenesis is a key research target, since novel strategies aim on generating striatal neurons by differentiating embryonic stem cells or by reprogramming somatic cells as alternative cell source for neural transplantation.
Collapse
Affiliation(s)
- Marie-Christin Pauly
- Division of Stereotactic Neurosurgery, Department of General Neurosurgery, University Freiburg - Medical Center Freiburg im Breisgau, Germany
| | | | | | | |
Collapse
|
20
|
Artegiani B, Calegari F. Age-related cognitive decline: can neural stem cells help us? Aging (Albany NY) 2012; 4:176-86. [PMID: 22466406 PMCID: PMC3348478 DOI: 10.18632/aging.100446] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 03/29/2012] [Indexed: 02/07/2023]
Abstract
Several studies suggest that an increase in adult neurogenesis has beneficial effects on emotional behavior and cognitive performance including learning and memory. The observation that aging has a negative effect on the proliferation of neural stem cells has prompted several laboratories to investigate new systems to artificially increase neurogenesis in senescent animals as a means to compensate for age-related cognitive decline. In this review we will discuss the systemic, cellular, and molecular changes induced by aging and affecting the neurogenic niche at the level of neural stem cell proliferation, their fate change, neuronal survival, and subsequent integration in the neuronal circuitry. Particular attention will be given to those manipulations that increase neurogenesis in the aged brain as a potential avenue towards therapy.
Collapse
Affiliation(s)
- Benedetta Artegiani
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | | |
Collapse
|
21
|
Hermerén G. Ethical challenges for using human cells in clinical cell therapy. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00002-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|