1
|
He TC, Li JA, Xu ZH, Chen QD, Yin HL, Pu N, Wang WQ, Liu L. Biological and clinical implications of early-onset cancers: A unique subtype. Crit Rev Oncol Hematol 2023; 190:104120. [PMID: 37660930 DOI: 10.1016/j.critrevonc.2023.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
In recent years, the incidence of cancers is continuously increasing in young adults. Early-onset cancer (EOC) is usually defined as patients with cancers under the age of 50, and may represent a unique subgroup due to its special disease features. Overall, EOCs often initiate at a young age, present as a better physical performance but high degree of malignancy. EOCs also share common epidemiological and hereditary risk factors. In this review, we discuss several representative EOCs which were well studied previously. By revealing their clinical and molecular similarities and differences, we consider the group of EOCs as a unique subtype compared to ordinary cancers. In consideration of EOC as a rising threat to human health, more researches on molecular mechanisms, and large-scale, prospective clinical trials should be carried out to further translate into improved outcomes.
Collapse
Affiliation(s)
- Tao-Chen He
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-Ang Li
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhi-Hang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiang-Da Chen
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Han-Lin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Ugai T, Sasamoto N, Lee HY, Ando M, Song M, Tamimi RM, Kawachi I, Campbell PT, Giovannucci EL, Weiderpass E, Rebbeck TR, Ogino S. Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat Rev Clin Oncol 2022; 19:656-673. [PMID: 36068272 PMCID: PMC9509459 DOI: 10.1038/s41571-022-00672-8] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 02/07/2023]
Abstract
Over the past several decades, the incidence of early-onset cancers, often defined as cancers diagnosed in adults <50 years of age, in the breast, colorectum, endometrium, oesophagus, extrahepatic bile duct, gallbladder, head and neck, kidney, liver, bone marrow, pancreas, prostate, stomach and thyroid has increased in multiple countries. Increased use of screening programmes has contributed to this phenomenon to a certain extent, although a genuine increase in the incidence of early-onset forms of several cancer types also seems to have emerged. Evidence suggests an aetiological role of risk factor exposures in early life and young adulthood. Since the mid-20th century, substantial multigenerational changes in the exposome have occurred (including changes in diet, lifestyle, obesity, environment and the microbiome, all of which might interact with genomic and/or genetic susceptibilities). However, the effects of individual exposures remain largely unknown. To study early-life exposures and their implications for multiple cancer types will require prospective cohort studies with dedicated biobanking and data collection technologies. Raising awareness among both the public and health-care professionals will also be critical. In this Review, we describe changes in the incidence of early-onset cancers globally and suggest measures that are likely to reduce the burden of cancers and other chronic non-communicable diseases.
Collapse
Affiliation(s)
- Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Naoko Sasamoto
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Hwa-Young Lee
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Institute of Convergence Science, Convergence Science Academy, Yonsei University, Seoul, Republic of Korea
| | - Mariko Ando
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Ichiro Kawachi
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Timothy R Rebbeck
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Zhu Family Center for Global Cancer Prevention, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
3
|
Outcome of 177Lu-PSMA-617 Radioligand Therapy in Chemo-Refractory Patients with Metastatic Castration-Resistant Early-Onset Prostate Cancer. Cancers (Basel) 2021; 13:cancers13164193. [PMID: 34439347 PMCID: PMC8392017 DOI: 10.3390/cancers13164193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary The risk of prostate cancer development, the second most commonly occurring cancer in men overall, increases strongly with age. About 10% of patients, however, are diagnosed with early-onset prostate cancer (age at diagnosis: ≤55 years). This is considered to be a distinct clinical and pathological phenotype with a poor prognosis. Generally, prostate cancer cells express high quantities of prostate-specific membrane antigen (PSMA) on their surface. Radioligand therapy is a type of treatment, which, among other available agents, uses the beta-emitting radionuclide 177Lutetium (177Lu) and a PSMA-targeting ligand termed PSMA-617 for internal irradiation of metastatic prostate cancer cells. The aim of our retrospective study was to assess the efficacy and safety of radioligand therapy with 177Lu-PSMA-617 in early-onset metastasized castration-resistant prostate cancer patients refractory to chemotherapy. Special emphasis was placed on the patients’ response to the treatment and survival. The study provides support for the expected shorter survival compared to heterogenous patient groups. Abstract The aim of this retrospective study was to assess the outcome of patients with metastasized castration-resistant early-onset prostate cancer refractory to chemotherapy receiving radioligand therapy with 177Lutetium-PSMA-617 (LuPSMA-RLT). Twenty-five patients of ≤55 years of age at prostate cancer diagnosis, treated with a median of four (IQR 2–6) cycles (mean of 7.7 ± 1.4 GBq per cycle) every 6–8 weeks, were analyzed. Survival outcome was calculated based on the Kaplan–Meier method. The median progression-free survival (PFS) was 3.8 months (95% CI 2.3–5.3), and overall survival (OS) was 8.5 months (95% CI 6.2–10.8). An initial PSA reduction (≥ 50%) was observed in 9/25 (36%) of patients without being significantly associated with OS (p = 0.601). PSA response (PSA decline ≥50% at 12 weeks) was observed in 12/25 (48%) of patients and significantly associated with longer OS (16.0 months, 95% CI 7.4–24.6 vs. 4.0 months, 95% CI 1.1–6.9, p = 0.002). Imaging-based response using 68Ga-PSMA-11-PET/CT after two to three cycles was seen in 11/25 (44%). Additionally, responders had a significantly longer median PFS (8.7 months, 95% CI 1.3–16.1 vs. 1.9 months, 95% CI 1.7–2.2, p < 0.001) and OS (16.0 months, 95% CI 7.6–24.4 vs. 4.0 months, 95% CI 0.9–7.1; p = 0.002). Intra- or post-therapeutic toxicity was graded according to the CTCAE v5.0 criteria. Newly developing grade ≥ 3 anemia, leukopenia, and thrombocytopenia occurred in three (12%), one (4%), and three (12%) patients, respectively. One patient showed renal toxicity (grade ≥ 3) during follow-up. Pain palliation (>2 level VAS decline) was achieved in 9/14 (64%) and performance status improvement (ECOG level decline ≥ 1) in 8/17 (47%) of patients. Compared to previous reports, radioligand therapy with 177Lu-PSMA-617 in metastasized castration-resistant early-onset prostate cancer patients refractory to chemotherapy yields similar response rates with a comparable safety profile, but is associated with shorter survival.
Collapse
|
4
|
Chalmers ZR, Burns MC, Ebot EM, Frampton GM, Ross JS, Hussain MHA, Abdulkadir SA. Early-onset metastatic and clinically advanced prostate cancer is a distinct clinical and molecular entity characterized by increased TMPRSS2-ERG fusions. Prostate Cancer Prostatic Dis 2021; 24:558-566. [PMID: 33420417 DOI: 10.1038/s41391-020-00314-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Men with early-onset prostate cancer are at increased risk for cancer-related mortality, yet the prevalence and spectrum of molecular alterations in this patient population is unknown. Here, we analyze comprehensive genomic profiling data to characterize the molecular drivers of early-onset prostate cancer in patients with clinically advanced and metastatic disease. METHODS Next-generation sequencing was ordered as a part of routine clinical care for 10,189 patients with prostate cancer between 02/2013 and 03/2020 using commercially available comprehensive genomic profiling. RESULTS Deidentified genomic data for 10,189 unique patients with prostate cancer were obtained (median age = 66 y, range = 34-90 y). 439 patients were ≤50 y (4.3%), 1928 patients were between ages of 51 and 59 y (18.9%), and 7822 patients were ≥60 y (76.8%). Of metastatic biopsy sites, lymph node, liver, and bone were the most common in all groups, accounting for 60.2% of all specimens. Overall, 97.4% of patients harbored pathologic genomic alterations. The most commonly altered genes were TP53, TMPRSS2-ERG, PTEN, AR, MYC, MLL2, RAD21, BRCA2, APC, SPOP, PIK3CA, RB1, MLL3, CDK12, ATM, and CTNNB1. Patients ≤50 y harbored significantly more TMPRSS2-ERG fusions than patients ≥60 y, while AR copy number alterations as well as SPOP and ASXL1 mutations were significantly less frequent. CONCLUSIONS Clinically advanced and metastatic early-onset prostate cancer is a distinct clinical subgroup with characteristic genomic alterations including increased frequency of TMPRSS2-ERG fusions and fewer AR, SPOP, and ASXL1 alterations.
Collapse
Affiliation(s)
- Zachary R Chalmers
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael C Burns
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | - Jeffrey S Ross
- Foundation Medicine, Inc, Cambridge, MA, USA.,Upstate Medical University, Syracuse, NY, USA
| | - Maha H A Hussain
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Sarki A Abdulkadir
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
Parra-Medina R, López-Kleine L, Ramírez-Clavijo S, Payán-Gómez C. Identification of candidate miRNAs in early-onset and late-onset prostate cancer by network analysis. Sci Rep 2020; 10:12345. [PMID: 32704070 PMCID: PMC7378055 DOI: 10.1038/s41598-020-69290-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
The incidence of patients under 55 years old diagnosed with Prostate Cancer (EO-PCa) has increased during recent years. The molecular biology of PCa cancer in this group of patients remains unclear. Here, we applied weighted gene coexpression network analysis of the expression of miRNAs from 24 EO-PCa patients (38–45 years) and 25 late-onset PCa patients (LO-PCa, 71–74 years) to identify key miRNAs in EO-PCa patients. In total, 69 differentially expressed miRNAs were identified. Specifically, 26 and 14 miRNAs were exclusively deregulated in young and elderly patients, respectively, and 29 miRNAs were shared. We identified 20 hub miRNAs for the network built for EO-PCa. Six of these hub miRNAs exhibited prognostic significance in relapse‐free or overall survival. Additionally, two of the hub miRNAs were coexpressed with mRNAs of genes previously identified as deregulated in EO-PCa and in the most aggressive forms of PCa in African-American patients compared with Caucasian patients. These genes are involved in activation of immune response pathways, increased rates of metastasis and poor prognosis in PCa patients. In conclusion, our analysis identified miRNAs that are potentially important in the molecular pathology of EO-PCa. These genes may serve as biomarkers in EO-PCa and as possible therapeutic targets.
Collapse
Affiliation(s)
- Rafael Parra-Medina
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia.,Department of Pathology, Research Institute, Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia.,Pathology Deparment, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Liliana López-Kleine
- Department of Statistics, Faculty of Science, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sandra Ramírez-Clavijo
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - César Payán-Gómez
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
6
|
Bleyer A, Spreafico F, Barr R. Prostate cancer in young men: An emerging young adult and older adolescent challenge. Cancer 2019; 126:46-57. [DOI: 10.1002/cncr.32498] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/12/2019] [Accepted: 05/27/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Archie Bleyer
- Oregon Health and Science Center Portland Oregon
- McGovern Medical School University of Texas Houston Texas
| | - Filippo Spreafico
- Department of Medical Oncology and Hematology, Pediatric Oncology Unit Foundation IRCCS National Cancer Institute Milan Italy
| | - Ronald Barr
- Departments of Pediatrics, Medicine, and Pathology McMaster University and McMaster Children's Hospital Hamilton Ontario Canada
| |
Collapse
|
7
|
Büscheck F, Zub M, Heumann A, Hube-Magg C, Simon R, Lang DS, Höflmayer D, Neubauer E, Jacobsen F, Hinsch A, Luebke AM, Tsourlakis MC, Sauter G, Huland H, Graefen M, Haese A, Heinzer H, Schlomm T, Clauditz TS, Burandt E, Wilczak W, Steurer S, Minner S. The independent prognostic impact of the GATA2 pioneering factor is restricted to ERG-negative prostate cancer. Tumour Biol 2019; 41:1010428318824815. [PMID: 31296150 DOI: 10.1177/1010428318824815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
GATA2 is a pioneering transcription factor governing androgen receptor expression and signaling in prostate cells. To understand the prognostic potential of GATA2 assessment in prostate cancer, we analyzed nuclear GATA2 expression on an annotated tissue microarray with 12,427 prostate cancer samples. Normal prostate glands were negative to weakly positive. GATA2 staining was found in almost all prostate cancers (95%). Strong GATA2 staining was linked to advanced tumor stage, high classical and quantitative Gleason grade (p < 0.0001 each), positive nodal stage (p = 0.0116), and early biochemical recurrence (p < 0.0001). GATA2 was linked to ERG-fusion-type cancers, with strong GATA2 staining in 29% of ERG-negative and 53% of ERG-positive cancers (p < 0.0001). Separate calculations in 3854 cancers with and 4768 cancers without TMPRSS2:ERG fusion revealed that these associations with tumor phenotype and patient outcome were largely driven by the subset of ERG-negative tumors. GATA2 expression was further linked to androgen receptor expression: Only 8% of androgen receptor-negative, but 56% of strongly androgen receptor expressing cancers had strong GATA2 expression (p < 0.0001). In conclusion, the results of our study demonstrate that increasing GATA2 levels are linked to prostate cancer progression and aggressiveness. The prognostic value of GATA2 is remarkable in ERG-negative cancers. However, the upregulation of GATA2 in ERG-positive cancers makes it unsuitable as a prognostic marker in this patient subset.
Collapse
Affiliation(s)
- Franziska Büscheck
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maciej Zub
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Asmus Heumann
- 2 General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dagmar S Lang
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Emily Neubauer
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Guido Sauter
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartwig Huland
- 3 Martini-Clinic Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- 3 Martini-Clinic Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Haese
- 3 Martini-Clinic Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- 3 Martini-Clinic Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Torsten Schlomm
- 4 Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Till S Clauditz
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Gerhauser C, Favero F, Risch T, Simon R, Feuerbach L, Assenov Y, Heckmann D, Sidiropoulos N, Waszak SM, Hübschmann D, Urbanucci A, Girma EG, Kuryshev V, Klimczak LJ, Saini N, Stütz AM, Weichenhan D, Böttcher LM, Toth R, Hendriksen JD, Koop C, Lutsik P, Matzk S, Warnatz HJ, Amstislavskiy V, Feuerstein C, Raeder B, Bogatyrova O, Schmitz EM, Hube-Magg C, Kluth M, Huland H, Graefen M, Lawerenz C, Henry GH, Yamaguchi TN, Malewska A, Meiners J, Schilling D, Reisinger E, Eils R, Schlesner M, Strand DW, Bristow RG, Boutros PC, von Kalle C, Gordenin D, Sültmann H, Brors B, Sauter G, Plass C, Yaspo ML, Korbel JO, Schlomm T, Weischenfeldt J. Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. Cancer Cell 2018; 34:996-1011.e8. [PMID: 30537516 PMCID: PMC7444093 DOI: 10.1016/j.ccell.2018.10.016] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/17/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022]
Abstract
Identifying the earliest somatic changes in prostate cancer can give important insights into tumor evolution and aids in stratifying high- from low-risk disease. We integrated whole genome, transcriptome and methylome analysis of early-onset prostate cancers (diagnosis ≤55 years). Characterization across 292 prostate cancer genomes revealed age-related genomic alterations and a clock-like enzymatic-driven mutational process contributing to the earliest mutations in prostate cancer patients. Our integrative analysis identified four molecular subgroups, including a particularly aggressive subgroup with recurrent duplications associated with increased expression of ESRP1, which we validate in 12,000 tissue microarray tumors. Finally, we combined the patterns of molecular co-occurrence and risk-based subgroup information to deconvolve the molecular and clinical trajectories of prostate cancer from single patient samples.
Collapse
Affiliation(s)
- Clarissa Gerhauser
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Francesco Favero
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Thomas Risch
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lars Feuerbach
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yassen Assenov
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Doreen Heckmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Nikos Sidiropoulos
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Sebastian M Waszak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany
| | - Daniel Hübschmann
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, Heidelberg 69120, Germany; Department of Pediatric Immunology, Hematology and Oncology, University Hospital, Heidelberg 69120, Germany
| | - Alfonso Urbanucci
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, 0316 Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0316 Oslo, Norway; Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, 0316 Oslo, Norway
| | - Etsehiwot G Girma
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Vladimir Kuryshev
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Durham, 27709 NC, USA
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, 27709 NC, USA
| | - Adrian M Stütz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa-Marie Böttcher
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Reka Toth
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Josephine D Hendriksen
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Christina Koop
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Pavlo Lutsik
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sören Matzk
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Hans-Jörg Warnatz
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Vyacheslav Amstislavskiy
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Clarissa Feuerstein
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Benjamin Raeder
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany
| | - Olga Bogatyrova
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martina Kluth
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic Prostate Cancer Center at the University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic Prostate Cancer Center at the University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Chris Lawerenz
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gervaise H Henry
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | - Takafumi N Yamaguchi
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Alicia Malewska
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | - Jan Meiners
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniela Schilling
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; NCT Trial Center, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Eva Reisinger
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, Heidelberg 69120, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | - Robert G Bristow
- Manchester Cancer Research Centre, University of Manchester, 555 Wilmslow Road, Manchester, UK
| | - Paul C Boutros
- Ontario Institute for Cancer Research, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Christof von Kalle
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Division of Translational Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dmitry Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, 27709 NC, USA
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Benedikt Brors
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Marie-Laure Yaspo
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany.
| | - Thorsten Schlomm
- Martini-Clinic Prostate Cancer Center at the University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany; Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Joachim Weischenfeldt
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany; Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
9
|
Mohamed AA, Xavier CP, Sukumar G, Tan SH, Ravindranath L, Seraj N, Kumar V, Sreenath T, McLeod DG, Petrovics G, Rosner IL, Srivastava M, Strovel J, Malhotra SV, LaRonde NA, Dobi A, Dalgard CL, Srivastava S. Identification of a Small Molecule That Selectively Inhibits ERG-Positive Cancer Cell Growth. Cancer Res 2018; 78:3659-3671. [PMID: 29712692 DOI: 10.1158/0008-5472.can-17-2949] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/13/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022]
Abstract
Oncogenic activation of the ETS-related gene (ERG) by recurrent gene fusions (predominantly TMPRSS2-ERG) is one of the most validated and prevalent genomic alterations present in early stages of prostate cancer. In this study, we screened small-molecule libraries for inhibition of ERG protein in TMPRSS2-ERG harboring VCaP prostate cancer cells using an In-Cell Western Assay with the highly specific ERG-MAb (9FY). Among a subset of promising candidates, 1-[2-Thiazolylazo]-2-naphthol (NSC139021, hereafter ERGi-USU) was identified and further characterized. ERGi-USU selectively inhibited growth of ERG-positive cancer cell lines with minimal effect on normal prostate or endothelial cells or ERG-negative tumor cell lines. Combination of ERGi-USU with enzalutamide showed additive effects in inhibiting growth of VCaP cells. A screen of kinases revealed that ERGi-USU directly bound the ribosomal biogenesis regulator atypical kinase RIOK2 and induced ribosomal stress signature. In vivo, ERGi-USU treatment inhibited growth of ERG-positive VCaP tumor xenografts with no apparent toxicity. Structure-activity-based derivatives of ERGi-USU recapitulated the ERG-selective activity of the parental compound. Taken together, ERGi-USU acts as a highly selective inhibitor for the growth of ERG-positive cancer cells and has potential for further development of ERG-targeted therapy of prostate cancer and other malignancies.Significance: A highly selective small-molecule inhibitor of ERG, a critical driver of early stages of prostate cancer, will be imperative for prostate cancer therapy. Cancer Res; 78(13); 3659-71. ©2018 AACR.
Collapse
Affiliation(s)
- Ahmed A Mohamed
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Charles P Xavier
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Nishat Seraj
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland
| | - Vineet Kumar
- Division of Radiation & Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Taduru Sreenath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - David G McLeod
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Inger L Rosner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland.,Urology Service, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland
| | | | - Sanjay V Malhotra
- Division of Radiation & Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Nicole A LaRonde
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland. .,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland. .,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|