1
|
El-Mahdy HA, Elsakka EGE, El-Husseiny AA, Ismail A, Yehia AM, Abdelmaksoud NM, Elshimy RAA, Noshy M, Doghish AS. miRNAs role in bladder cancer pathogenesis and targeted therapy: Signaling pathways interplay - A review. Pathol Res Pract 2023; 242:154316. [PMID: 36682282 DOI: 10.1016/j.prp.2023.154316] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Bladder cancer (BC) is the 11th most popular cancer in females and 4th in males. A lot of efforts have been exerted to improve BC patients' care. Besides, new approaches have been developed to enhance the efficiency of BC diagnosis, prognosis, therapeutics, and monitoring. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. The miRNAs are either downregulated or upregulated in BC due to epigenetic alterations or biogenesis machinery abnormalities. In BC, dysregulation of miRNAs is associated with cell cycle arrest, apoptosis, proliferation, metastasis, treatment resistance, and other activities. A variety of miRNAs have been related to tumor kind, stage, or patient survival. Besides, although new approaches for using miRNAs in the diagnosis, prognosis, and treatment of BC have been developed, it still needs further investigations. In the next words, we illustrate the recent advances in the role of miRNAs in BC aspects. They include the role of miRNAs in BC pathogenesis and therapy. Besides, the clinical applications of miRNAs in BC diagnosis, prognosis, and treatment are also discussed.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reham A A Elshimy
- Clinical & Chemical Pathology Department, National Cancer Institute, Cairo University, 11796 Cairo, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
2
|
Hydrogen Sulfide: Emerging Role in Bladder, Kidney, and Prostate Malignancies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2360945. [PMID: 31781328 PMCID: PMC6875223 DOI: 10.1155/2019/2360945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is the latest member of the gasotransmitter family and known to play essential roles in cancer pathophysiology. H2S is produced endogenously and can be administered exogenously. Recent studies showed that H2S in cancers has both pro- and antitumor roles. Understanding the difference in the expression and localization of tissue-specific H2S-producing enzymes in healthy and cancer tissues allows us to develop tools for cancer diagnosis and treatment. Urological malignancies are some of the most common cancers in both men and women, and their early detection is vital since advanced cancers are recurrent, metastatic, and often resistant to treatment. This review summarizes the roles of H2S in cancer and looks at current studies investigating H2S activity and expression of H2S-producing enzymes in urinary cancers. We specifically focused on urothelial carcinoma, renal cell carcinoma, and prostate cancer, as they form the majority of newly diagnosed urinary cancers. Recent studies show that besides the physiological activity of H2S in cancer cells, there are patterns between the development and prognosis of urinary cancers and the expression of H2S-producing enzymes and indirectly the H2S levels. Though controversial and not completely understood, studying the expression of H2S-producing enzymes in cancer tissue may represent an avenue for novel diagnostic and therapeutic strategies for addressing urological malignancies.
Collapse
|
3
|
Wahafu W, Gai J, Song L, Ping H, Wang M, Yang F, Niu Y, Xing N. Increased H 2S and its synthases in urothelial cell carcinoma of the bladder, and enhanced cisplatin-induced apoptosis following H 2S inhibition in EJ cells. Oncol Lett 2018; 15:8484-8490. [PMID: 29928321 PMCID: PMC6004664 DOI: 10.3892/ol.2018.8373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/15/2018] [Indexed: 01/02/2023] Open
Abstract
H2S, synthesized by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (MPST), functions as a signalling molecule in mammalian cells. H2S serves complex functions in physiological and pathological processes, including in bladder cancer. In the present study, H2S production, the expression of the associated enzymes and the effect of H2S on human urothelial cell carcinoma of the bladder (UCB) tissue and cell lines were evaluated, and whether decreasing H2S levels influenced cell viability and tumour growth following treatment with cisplatin (CDDP) was assessed in UCB cells in vitro and in vivo. H2S production and the expression of CBS, CSE and MPST in bladder tissue specimens and the UCB cell lines 5637, EJ and UM-UC-3 were analysed using a sulfur-sensitive electrode and western blotting. UCB cells were subjected to different treatments, and viability and protein expression were determined. H2S production was inhibited to examine its influence on EJ cell tumour growth following CDDP treatment in vivo. It was identified that CBS, CSE and MPST protein were up-regulated in UCB tissues and cells. The H2S production and enzyme expression levels were the highest in UCB tissue and EJ cells. The inhibition of endogenous H2S biosynthesis decreased EJ cell viability and tumour growth in response to CDDP treatment. H2S levels and the associated biosynthetic enzymes were increased in human UCB tissue and cells compared with adjacent tissue and normal cells, which may have increased the resistance to CDDP-induced apoptosis in UCB. Therefore, H2S and its production may be an alternative therapeutic target for UCB.
Collapse
Affiliation(s)
- Wasilijiang Wahafu
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Junwei Gai
- Department of Urology, Tianjin First Central Hospital, Tianjin 300191, P.R. China
| | - Liming Song
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Hao Ping
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Mingshuai Wang
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Feiya Yang
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Yinong Niu
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Nianzeng Xing
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| |
Collapse
|
4
|
Gouda AM, Abdelazeem AH, Omar HA, Abdalla AN, Abourehab MAS, Ali HI. Pyrrolizines: Design, synthesis, anticancer evaluation and investigation of the potential mechanism of action. Bioorg Med Chem 2017; 25:5637-5651. [PMID: 28916158 DOI: 10.1016/j.bmc.2017.08.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 02/08/2023]
Abstract
A novel set of pyrrolizine-5-carboxamides has been synthesized and evaluated for their anticancer potential against human breast MCF-7, lung carcinoma A549 and hepatoma Hep3B cancer cell lines. Compound 10c was the most active against MCF-7 with IC50 value of 4.72µM, while compound 12b was the most active against A549 and Hep3B cell lines. Moreover, kinases/COXs inhibition and apoptosis induction were suggested as potential molecular mechanisms for the anticancer activity of the novel pyrrolizines based on their structural features. The new compounds significantly inhibited COX-1 and COX-2 with IC50 values in the ranges of 5.78-11.96µM and 0.1-0.78µM, respectively with high COX-2 selectivity over COX-1. Interestingly, the most potent compound in MTT assay, compound 12b, exhibited high inhibitory activity against COX-2 with selectivity index (COX-1/COX-2)>100. Meanwhile, compound 12b displayed weak to moderate inhibition of six kinases with inhibition% (7-20%) compared to imatinib (inhibition%=1-38%). The results of cell cycle analysis, annexin V PI/FITC apoptosis assay and caspase-3/7 assay revealed that compound 12b has the ability to induce apoptosis. The docking results of compound 12b into the active sites of COXs, ALK1 and Aurora kinases indicated that it fits nicely inside their active sites. Overall, the current study highlighted the significant anticancer activity of the newly synthesized pyrrolizines with a potential multi-targeted mechanism which could serve as a base for future studies and further structural optimization into potential anticancer agents.
Collapse
Affiliation(s)
- Ahmed M Gouda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmacology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hamed I Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt; Rangel College of Pharmacy, Health Science Center, Texas A&M University, Kingsville, TX 78363, United States.
| |
Collapse
|
5
|
Lee JY, Ryu DS, Kim WJ, Kim SJ. Aberrantly expressed microRNAs in the context of bladder tumorigenesis. Investig Clin Urol 2016; 57 Suppl 1:S52-9. [PMID: 27326408 PMCID: PMC4910763 DOI: 10.4111/icu.2016.57.s1.s52] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/01/2016] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs), small noncoding RNAs 19–22 nucleotides in length, play a major role in negative regulation of gene expression at the posttranscriptional level. Several miRNAs act as tumor suppressors or oncogenes that control cell differentiation, proliferation, apoptosis, or angiogenesis during tumorigenesis. To date, 19 research groups have published large-scale expression profiles that identified 261 miRNAs differentially expressed in bladder cancer, of which 76 were confirmed to have consistent expression patterns by two or more groups. These consistently expressed miRNAs participated in regulation of multiple biological processes and factors, including axon guidance, cancer-associated proteoglycans, and the ErbB and transforming growth factorbeta signaling pathways. Because miRNAs can be released from cancer cells into urine via secreted particles, we propose that miRNAs differentially expressed between tissue and urine could serve as predictors of bladder cancer, and could thus be exploited for noninvasive diagnosis.
Collapse
Affiliation(s)
| | | | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | | |
Collapse
|
6
|
Apolo AB, Vogelzang NJ, Theodorescu D. New and promising strategies in the management of bladder cancer. Am Soc Clin Oncol Educ Book 2016:105-12. [PMID: 25993148 DOI: 10.14694/edbook_am.2015.35.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bladder cancer is a complex and aggressive disease for which treatment strategies have had limited success. Improvements in detection, treatment, and outcomes in bladder cancer will require the integration of multiple new approaches, including genomic profiling, immunotherapeutics, and large randomized clinical trials. New and promising strategies are being tested in all disease states, including nonmuscle-invasive bladder cancer (NMIBC), muscle-invasive bladder cancer (MIBC), and metastatic urothelial carcinoma (UC). Efforts are underway to develop better noninvasive urine biomarkers for use in primary or secondary detection of NMIBC, exploiting our genomic knowledge of mutations in genes such as RAS, FGFR3, PIK3CA, and TP53 and methylation pathways alone or in combination. Recent data from a large, randomized phase III trial of adjuvant cisplatin-based chemotherapy add to our knowledge of the value of perioperative chemotherapy in patients with MIBC. Finally, bladder cancer is one of a growing list of tumor types that respond to immune checkpoint inhibition, opening the potential for new therapeutic strategies for treatment of this complex and aggressive disease.
Collapse
Affiliation(s)
- Andrea B Apolo
- From the Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute at the National Institutes of Health, Bethesda, MD; US Oncology Research, Houston, TX and Comprehensive Cancer Centers of Nevada, Las Vegas, NV; University of Colorado Cancer Center, Denver, CO
| | - Nicholas J Vogelzang
- From the Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute at the National Institutes of Health, Bethesda, MD; US Oncology Research, Houston, TX and Comprehensive Cancer Centers of Nevada, Las Vegas, NV; University of Colorado Cancer Center, Denver, CO
| | - Dan Theodorescu
- From the Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute at the National Institutes of Health, Bethesda, MD; US Oncology Research, Houston, TX and Comprehensive Cancer Centers of Nevada, Las Vegas, NV; University of Colorado Cancer Center, Denver, CO
| |
Collapse
|
7
|
Gai JW, Qin W, Liu M, Wang HF, Zhang M, Li M, Zhou WH, Ma QT, Liu GM, Song WH, Jin J, Ma HS. Expression profile of hydrogen sulfide and its synthases correlates with tumor stage and grade in urothelial cell carcinoma of bladder. Urol Oncol 2016; 34:166.e15-20. [PMID: 26847849 DOI: 10.1016/j.urolonc.2015.06.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/27/2015] [Accepted: 06/29/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a newly discovered gas transmitter. It is synthesized by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (MPST). Endogenous hydrogen sulfide has never been studied in bladder cancer. PURPOSE We evaluated H2S production and its synthases expression levels in transitional cell carcinoma (urothelial cell carcinoma of bladder [UCB]) of human bladder tissue and cell lines. MATERIALS AND METHODS Immunostaining was performed in urothelial cell lines and bladder specimens from 94 patients with UCB of different stages/grades. The expression levels/activities of CBS, CSE, and MPST of specimens and cell lines were analyzed by image semiquantity assay, western blot, and a sulfur-sensitive electrode. We tried to find the correlation between hydrogen sulfide and its synthases with tumor stage in UCB. All experiments were repeated at least 3 times. RESULTS Immunoreactivity for CBS, CSE, and MPST was detected in malignant uroepithelium and muscular layer of all tissues examined and cultured cells. The expression levels of CBS, CSE, and MPST were associated with UCB stage/grade. Muscle-invasive bladder cancer samples showed the highest production of H2S (52.6±2.91 nmol/[mg·min]) among all tested samples and EJ cells (transitional cell carcinoma, grade IIIshowed the highest production of H2S among all tested cell lines (53.3±7.02nmol/[mg·min]). CONCLUSIONS Protein levels and catalytic activities of CBS, CSE, and MPST increased with the increase of malignant degrees in human bladder tissues and human UCB cell lines. Our findings may promote the application of these novel enzymes to UCB diagnosis or treatment.
Collapse
Affiliation(s)
- Jun-Wei Gai
- Department of Urology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Wei Qin
- Department of orthopedics, Xiangyang Central Hospital, Xiangyang, P.R. China
| | - Miao Liu
- Hedong Center for Disease Control and Prevention, Tianjin, P.R. China
| | - Hai-Feng Wang
- Department of Urology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Min Zhang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Meng Li
- Department of Urology, The People׳s Hospital of Nanpi Country, Nanpi, P.R. China
| | - Wen-Hui Zhou
- Department of Urology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Qin-Tong Ma
- Department of Urology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Guang-Ming Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Wen-Hui Song
- Department of Urology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Jie Jin
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, Beijing, P.R. China
| | - Hong-Shun Ma
- Department of Urology, Tianjin First Central Hospital, Tianjin, P.R. China.
| |
Collapse
|
8
|
Down-regulation of miR-29c in human bladder cancer and the inhibition of proliferation in T24 cell via PI3K-AKT pathway. Med Oncol 2014; 31:65. [PMID: 24952510 DOI: 10.1007/s12032-014-0065-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
The purpose of this study was to explore new tumor suppressor microRNA in bladder cancer and to conduct functional analysis of its suppressive role. To investigate the expression of miR-29c, qRT-PCR was used in 30 pairs of bladder cancer tissues and normal tissues (adjacent bladder tissue samples). The expression of miR-29c was down regulated in bladder cancer tissues compared with normal tissues. Also, the low-level expression of miR-29c was associated with tumor stage (P = 0.002), and ectopic over-expression of miR-29c in T24 cells can significantly inhibit cell proliferation, decrease motility, suppress the G1/S cell cycle transition and induce apoptosis. Furthermore, it could cause a decrease in AKT and GSK-3β phosphorylation. While LY294002 reduced the protein level of pAKT, the over-expression of miR-29c can further decrease its level in T24 cells pretreated with LY294002. Our study also indicated that the proliferation inhibition of T24 may take place via AKT-GSK3β pathway. Thus, miR-29c could be an active player in disease state of bladder cancer and it may be a promising tumor suppressor in bladder cancer.
Collapse
|
9
|
Li C, Liu VWS, Chiu PM, Yao KM, Ngan HYS, Chan DW. Reduced expression of AMPK-β1 during tumor progression enhances the oncogenic capacity of advanced ovarian cancer. Mol Cancer 2014; 13:49. [PMID: 24602453 PMCID: PMC4016028 DOI: 10.1186/1476-4598-13-49] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/21/2014] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a key energy sensor that is involved in regulating cell metabolism. Our previous study revealed that the subunits of the heterotimeric AMPK enzyme are diversely expressed during ovarian cancer progression. However, the impact of the variable expression of these AMPK subunits in ovarian cancer oncogenesis remains obscure. Here, we provide evidence to show that reduced expression of the AMPK-β1 subunit during tumor progression is associated with the increased oncogenic capacity of advanced ovarian cancer cells. Immunohistochemical analysis revealed that AMPK-β1 levels were reduced in advanced-stage (P = 0.008), high-grade (P = 0.013) and metastatic ovarian cancers (P = 0.008). Intriguingly, down-regulation of AMPK-β1 was progressively reduced from tumor stages 1 to 3 of ovarian cancer. Functionally, enforced expression of AMPK-β1 inhibited ovarian-cancer-cell proliferation, anchorage-independent cell growth, cell migration and invasion. Conversely, depletion of AMPK-β1 by siRNA enhanced the oncogenic capacities of ovarian cancer cells, suggesting that the loss of AMPK-β1 favors the aggressiveness of ovarian cancer. Mechanistically, enforced expression of AMPK-β1 increased AMPK activity, which, in turn, induced cell-cycle arrest via inhibition of AKT/ERK signaling activity as well as impaired cell migration/invasion through the suppression of JNK signaling in ovarian cancer cells. Taken together, these findings suggest that the reduced expression of AMPK-β1 confers lower AMPK activity, which enhances the oncogenic capacity of advanced-stage ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | - Hextan Y S Ngan
- Department of Obstetrics & Gynecology, The University of Hong Kong, 6th Floor, Professorial Block, Queen Mary Hospital, Pokfulam, Hong Kong, SAR, People's Republic of China.
| | | |
Collapse
|
10
|
Gouda AM, Abdelazeem AH, Arafa ESA, Abdellatif KRA. Design, synthesis and pharmacological evaluation of novel pyrrolizine derivatives as potential anticancer agents. Bioorg Chem 2014; 53:1-7. [PMID: 24462996 DOI: 10.1016/j.bioorg.2014.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 12/16/2013] [Accepted: 01/01/2014] [Indexed: 12/22/2022]
Abstract
A new series of novel pyrrolizine derivatives has been synthesized and biologically evaluated as potential anticancer agents. The starting compounds, 6-amino-7-cyano-N-(3,5-disubstitutedphenyl)-2,3-dihydro-1H-pyrrolizine-5-carboxamides 11a-b, were reacted with different acid chlorides, aldehydes and isocyanates to give the target compounds 12-14. Structural characterizations of the new compounds were performed using spectral and elemental analysis. All compounds were tested for their anticancer activity against human breast cancer and prostate cancer cell lines, MCF-7 and PC-3 respectively. With exception of compounds 11a and 13a, results revealed that all the tested compounds showed half maximal inhibitory concentration (IC50) values less than 40μM. Compound 12b and the three urea derivatives 14b-d showed the most potent anticancer activity with IC50 values less than 2.73μM. The anticancer activity of these compounds was mediated, at least in part, via the induction of apoptosis as indicated by its ability to activate caspase-3/7. In light of the high potency of our novel compounds in targeting both breast and prostate cancers, these compounds warrant continued preclinical development as potential anticancer agents.
Collapse
Affiliation(s)
- Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Mekkah 21955, Saudi Arabia
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - El-Shaimaa A Arafa
- Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Khaled R A Abdellatif
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
11
|
Gerhardt D, Bertola G, Dietrich F, Figueiró F, Zanotto-Filho A, Moreira Fonseca JC, Morrone FB, Barrios CH, Battastini AMO, Salbego CG. Boldine induces cell cycle arrest and apoptosis in T24 human bladder cancer cell line via regulation of ERK, AKT, and GSK-3β. Urol Oncol 2014; 32:36.e1-9. [DOI: 10.1016/j.urolonc.2013.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 11/16/2022]
|
12
|
|
13
|
Clinical applications of recent molecular advances in urologic malignancies: no longer chasing a "mirage"? Adv Anat Pathol 2013; 20:175-203. [PMID: 23574774 DOI: 10.1097/pap.0b013e3182863f80] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As our understanding of the molecular events leading to the development and progression of genitourologic malignancies, new markers of detection, prognostication, and therapy prediction can be exploited in the management of these prevalent tumors. The current review discusses the recent advances in prostate, bladder, renal, and testicular neoplasms that are pertinent to the anatomic pathologist.
Collapse
|
14
|
Abstract
This article focuses on several promising candidate biomarkers that may soon make their transition to the realm of clinical management of bladder cancer. Presented are superficial and muscle-invasive urothelial carcinoma of the bladder and the genetic tests currently available in testing for diagnosis and prognosis of these diseases.
Collapse
Affiliation(s)
- George J Netto
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA; Department of Urology and Oncology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
15
|
Oncogenic miRNA-182-5p targets Smad4 and RECK in human bladder cancer. PLoS One 2012; 7:e51056. [PMID: 23226455 PMCID: PMC3511415 DOI: 10.1371/journal.pone.0051056] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/29/2012] [Indexed: 12/16/2022] Open
Abstract
Onco-miR-182-5p has been reported to be over-expressed in bladder cancer (BC) tissues however a detailed functional analysis of miR-182-5p has not been carried out in BC. Therefore the purpose of this study was to: 1. conduct a functional analysis of miR-182-5p in bladder cancer, 2. assess its usefulness as a tumor marker, 3. identify miR-182-5p target genes in BC. Initially we found that miR-182-5p expression was significantly higher in bladder cancer compared to normal tissues and high miR-182-5p expression was associated with shorter overall survival in BC patients. To study the functional significance of miR-182-5p, we over-expressed miR-182-5p with miR-182-5p precursor and observed that cell proliferation, migration and invasion abilities were increased in BC cells. However cell apoptosis was inhibited by miR-182-5p. We also identified Smad4 and RECK as potential target genes of miR-182-5p using several algorithms. 3′UTR luciferase activity of these target genes was significantly decreased and protein expression of these target genes was significantly up-regulated in miR-182-5p inhibitor transfected bladder cancer cells. MiR-182-5p also increased nuclear beta-catenin expression and while Smad4 repressed nuclear beta-catenin expression. In conclusion, our data suggests that miR-182-5p plays an important role as an oncogene by knocking down RECK and Smad4, resulting in activation of the Wnt-beta-catenin signaling pathway in bladder cancer.
Collapse
|
16
|
Netto GJ, Cheng L. Emerging critical role of molecular testing in diagnostic genitourinary pathology. Arch Pathol Lab Med 2012; 136:372-90. [PMID: 22458900 DOI: 10.5858/arpa.2011-0471-ra] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT The unprecedented advances in cancer genetics and genomics are rapidly affecting clinical management and diagnostics in solid tumor oncology. Molecular diagnostics is now an integral part of routine clinical management in patients with lung, colon, and breast cancer. In sharp contrast, molecular biomarkers have been largely excluded from current management algorithms of urologic malignancies. OBJECTIVE To discuss promising candidate biomarkers that may soon make their transition to the realm of clinical management of genitourologic malignancies. The need for new treatment alternatives that can improve upon the modest outcome so far in patients with several types of urologic cancer is evident. Well-validated prognostic molecular biomarkers that can help clinicians identify patients in need of early aggressive management are lacking. Identifying robust predictive biomarkers that will stratify response to emerging targeted therapeutics is another crucially needed development. A compiled review of salient studies addressing the topic could be helpful in focusing future efforts. DATA SOURCES A PubMed (US National Library of Medicine) search for published studies with the following search terms was conducted: molecular , prognostic , targeted therapy , genomics , theranostics and urinary bladder cancer , prostate adenocarcinoma , and renal cell carcinoma . Articles with large cohorts and multivariate analyses were given preference. CONCLUSIONS Our recent understanding of the complex molecular alterations involved in the development and progression of urologic malignancies is yielding novel diagnostic and prognostic molecular tools and opening the doors for experimental targeted therapies for these prevalent, frequently lethal solid tumors.
Collapse
Affiliation(s)
- George J Netto
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|
17
|
Iyer G, Milowsky MI. Fibroblast growth factor receptor-3 in urothelial tumorigenesis. Urol Oncol 2012; 31:303-11. [PMID: 22285006 DOI: 10.1016/j.urolonc.2011.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/02/2011] [Accepted: 12/03/2011] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factor receptor-3 (FGFR3) is a receptor tyrosine kinase implicated in the tumorigenesis of multiple malignancies, including bladder and other urothelial cancers, multiple myeloma, and cervical cancer. In urothelial carcinoma (UC), constitutive receptor activation occurs most commonly through substitution of a wild-type residue with cysteine in the extracellular domain of FGFR3, thereby resulting in dimerization (through disulfide bridge formation) and subsequent stimulation of tyrosine kinase activity. Activating mutations of FGFR3 have been observed in up to 70% of non-muscle-invasive bladder tumors, while overexpression of a wild-type receptor, found in approximately 40% of tumors, has been correlated with more invasive disease. The identification of FGFR3 mutations in UC has sparked substantial interest in the therapeutic exploitation of these aberrations, and in vitro studies have provided evidence that such alterations may represent driver oncogenic lesions. In this review, we discuss the biologic and prognostic impact of FGFR3 mutations in UC as well as FGFR3 as a potential target for novel therapeutics.
Collapse
Affiliation(s)
- Gopa Iyer
- Genitourinary Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
18
|
Hirata H, Hinoda Y, Ueno K, Shahryari V, Tabatabai Z, Dahiya R. MicroRNA-1826 targets VEGFC, beta-catenin (CTNNB1) and MEK1 (MAP2K1) in human bladder cancer. Carcinogenesis 2012; 33:41-8. [PMID: 22049531 PMCID: PMC3276333 DOI: 10.1093/carcin/bgr239] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/20/2011] [Accepted: 10/23/2011] [Indexed: 12/26/2022] Open
Abstract
The Wnt/beta-catenin (CTNNB1) and Ras-Raf-MEK-ERK signaling pathway play an important role in bladder cancer (BC) progression. Tumor-suppressive microRNAs (miRNAs) targeting these cancer pathways may provide a new therapeutic approach for BC. We initially identified miRNA-1826 potentially targeting CTNNB1, VEGFC and MEK1 using several target scan algorithms. Also 3' untranslated region luciferase activity and protein expression of these target genes were significantly downregulated in miR-1826-transfected BC cells (J82 and T24). The expression of miR-1826 was lower in BC tissues and inverse correlation of miR-1826 with several clinical parameters (pT, grade) was observed. Also the expression of miR-1826 was much lower in three BC cell lines (J82, T24 and TCCSUP) compared with a normal bladder cell line (SV-HUC-1). We then performed analyses to look at miR-1826 function and found that miR-1826 inhibited BC cell viability, invasion and migration. We also found increased apoptosis and G(1) cell cycle arrest in miR-1826-transfected BC cells. To examine whether the effect of miR-1826 was through CTNNB1 (beta-catenin) or MEK1 knockdown, we knocked down CTNNB1/MEK1 messenger RNA using a small interfering RNA (siRNA) technique. We observed that CTNNB1 or MEK1 siRNA knockdown resulted in effects similar to those with miR-1826 in BC cells. In conclusion, our data suggest that the miR-1826 plays an important role as tumor suppressor via CTNNB1/MEK1/VEGFC downregulation in BC.
Collapse
Affiliation(s)
| | - Yuji Hinoda
- University of California at San Francisco, San Francisco, CA 94121, USA
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Yamaguchi 7558505, Japan
| | | | | | - Z.Laura Tabatabai
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Yamaguchi 7558505, Japan
- Department of Pathology, San Francisco Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, CA 94121, USA
| | - Rajvir Dahiya
- To whom correspondence should be addressed. Urology Research Center (112F), Veterans Affairs Medical Center and University of California at San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA. Tel: +415 750 6964; Fax: +415 750 6639;
| |
Collapse
|
19
|
Abstract
The unprecedented advances in cancer genetics and genomics are rapidly affecting the clinical management of solid tumors. Molecular diagnostics are now an integral part of routine clinical management for patients with lung, colon, and breast cancer. In sharp contrast, molecular biomarkers have been largely excluded from current management algorithms for urologic malignancies. The need for new treatment options that can improve upon the modest outcomes currently associated with muscle-invasive bladder cancer is evident, and validated prognostic molecular biomarkers that can help clinicians to identify patients in need of early, aggressive management are lacking. Robust predictive biomarkers that are able to forecast and stratify responses to emerging targeted therapies are also needed.
Collapse
|
20
|
Ueno K, Hirata H, Majid S, Yamamura S, Shahryari V, Tabatabai ZL, Hinoda Y, Dahiya R. Tumor suppressor microRNA-493 decreases cell motility and migration ability in human bladder cancer cells by downregulating RhoC and FZD4. Mol Cancer Ther 2011; 11:244-53. [PMID: 22057916 DOI: 10.1158/1535-7163.mct-11-0592] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to identify new tumor suppressor microRNAs (miRNA; miR) in bladder cancer, conduct functional analysis of their suppressive role, and identify their specific target genes. To explore tumor suppressor miRs in bladder cancer, miR microarray was conducted using SV-HUC-1, T24, J82, and TCCSUP cells. Expression of miR-493 in bladder cancer (T24, J82, and TCCSUP) cells was downregulated compared with normal SV-HUC-1 cells. Also, the expression of miR-493 was significantly lower in bladder cancer tissues than in their corresponding noncancerous tissues. Transfection of miR-493 into T24 or J82 cells decreased their cell growth and migration abilities. On the basis of this result, to identify potential miR-493 target genes, we used target scan algorithms to identify target oncogenes related to invasion and migration. miR-493 decreased 3'-untranslated region luciferase activity and protein expression of FZD4 and RhoC. miR-493 also decreased binding of RhoC and Rock-1. miR-493 is a new tumor suppressor miRNA in bladder cancer and inhibits cell motility through downregulation of RhoC and FZD4.
Collapse
Affiliation(s)
- Koji Ueno
- Departments of Urology, San Francisco Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California 94121, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
CONTEXT Molecular diagnostic applications are now an integral part of the management algorithms of several solid tumors, such as breast, colon, and lung. In stark contrast, the current clinical management of urologic malignancies is lagging behind. Clinically robust molecular tests that can identify patients who are more likely to respond to a given targeted agent or even those in need of a more aggressive treatment based on well-validated molecular prognosticators are still lacking. Several promising biomarkers for detection, prognosis, and targeted therapeutics are being evaluated. OBJECTIVE To discuss candidate biomarkers that may soon make the transition to clinical assay for patients in urologic oncology. DATA SOURCES Selected original articles published in the PubMed service of the US National Library of Medicine. CONCLUSIONS Recent understanding of the complex molecular alterations involved in the development and progression of urologic malignancies is yielding novel diagnostic and prognostic molecular tools and opening the doors for experimental targeted therapies in these prevalent, frequently lethal solid tumors.
Collapse
Affiliation(s)
- George J Netto
- Department of Pathology, Johns Hopkins Medical Institutions, The Harry and Jeanette Weinberg Building, 401 N Broadway, Baltimore, MD 21231-2410, USA.
| |
Collapse
|
22
|
Zhang R, Chen W, Zhang W, Jiang Q, Liu C, Lin Y, Hu Z, Yu S, Xu G. Genetic Polymorphisms of p53 Codon 72 and Bladder Cancer Susceptibility: A Hospital-Based Case–Control Study. Genet Test Mol Biomarkers 2011; 15:337-41. [PMID: 21291320 DOI: 10.1089/gtmb.2010.0230] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ronggui Zhang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wenjun Chen
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weili Zhang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chuan Liu
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yanjun Lin
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zili Hu
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shengjie Yu
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guangyong Xu
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Ha SB, Park YH, Lee E, Ku JH, Kim HH, Kwak C. Combined treatment with anticancer vaccine using genetically modified endothelial cells and imatinib in bladder cancer. Korean J Urol 2011; 52:327-334. [PMID: 21687392 PMCID: PMC3106165 DOI: 10.4111/kju.2011.52.5.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/28/2011] [Indexed: 11/21/2022] Open
Abstract
PURPOSE We sought to maximize the antitumor effect of an anticancer vaccine based on genetically modified endothelial cells by combining it with the platelet-derived growth factor receptor inhibitor imatinib. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were infected with 10 MOI of Ad-CMV-mGMCSF to make anticancer vaccines. One million mouse bladder cancer cells (MBT-2) were subcutaneously inoculated in C3H mice. The experimental groups included the following: Group 1 (phosphate-buffered saline), Group 2 (anticancer vaccine and GM-CSF), Group 3 (imatinib), and Group 4 (anticancer vaccine, GM-CSF, and imatinib). Tumor growth and body weight were measured weekly. At 4 weeks, the tumors were immunostained with anti-CD31, and microvessel density (MVD) was measured. To evaluate the immunological mechanism of each treatment, flow cytometry analysis of activated CD4 and CD8 cells was performed. RESULTS At 4 weeks, the mean body weight of each group, excluding the extracted tumor weight, was not significantly different. Since week 3, the mean tumor volume in Group 4 was the smallest among the treatment groups (p<0.05), and a synergistic suppressive effect on tumor volume was observed in Group 4. The MVD in Group 4 was the most suppressed among the treatment groups (p<0.05), and a synergistic anti-angiogenic effect was observed. Flow cytometry analysis revealed that activated CD4+ and CD8+ cells increased in Group 2 and decreased in Group 3 compared with the other groups. CONCLUSIONS The combination of genetically modified endothelial cell vaccines and imatinib showed a synergistic antiangiogenic effect in bladder cancer.
Collapse
Affiliation(s)
- Seung Beom Ha
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Hyun Park
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Eunhye Lee
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyeon Hoe Kim
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Abstract
In the last few years, angiogenesis has confirmed its critical role in the development of malignant neoplasms. Antiangiogenic drugs, mainly bevacizumab, sorafenib, or sunitinib, are currently approved in a wide number of tumor types, such as breast, colorectal, liver, or kidney cancer, and have changed dramatically the evolution of our patients. Unfortunately, in urothelial carcinoma, which is a very common neoplasm, antiangiogenic agents are still in a very preliminary phase of clinical research. In this study, we focus on the biological basis of angiogenesis in urothelial tumors, its influence in the prognosis of these malignancies, and the available evidence about the use of antiangiogenic drugs in urothelial carcinoma.
Collapse
|
25
|
Zhang R, Xu G, Chen W, Zhang W. Genetic Polymorphisms of Glutathione S-Transferase P1 and Bladder Cancer Susceptibility in a Chinese Population. Genet Test Mol Biomarkers 2011; 15:85-8. [PMID: 21117956 DOI: 10.1089/gtmb.2010.0162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- RongGui Zhang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - GuangYong Xu
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - WenJun Chen
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - WeiLi Zhang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Carlucci A, Porpora M, Garbi C, Galgani M, Santoriello M, Mascolo M, di Lorenzo D, Altieri V, Quarto M, Terracciano L, Gottesman ME, Insabato L, Feliciello A. PTPD1 supports receptor stability and mitogenic signaling in bladder cancer cells. J Biol Chem 2010; 285:39260-70. [PMID: 20923765 DOI: 10.1074/jbc.m110.174706] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PTPD1, a cytosolic non-receptor protein-tyrosine phosphatase, stimulates the Src-EGF transduction pathway. Localization of PTPD1 at actin cytoskeleton and adhesion sites is required for cell scattering and migration. Here, we show that during EGF stimulation, PTPD1 is rapidly recruited to endocytic vesicles containing the EGF receptor. Endosomal localization of PTPD1 is mediated by interaction with KIF16B, an endosomal kinesin that modulates receptor recycling at the plasma membrane. Silencing of PTPD1 promotes degradation of EGF receptor and inhibits downstream ERK signaling. We also found that PTPD1 is markedly increased in bladder cancer tissue samples. PTPD1 levels positively correlated with the grading and invasiveness potential of these tumors. Transgenic expression of an inactive PTPD1 mutant or genetic knockdown of the endogenous PTPD1 severely inhibited both growth and motility of human bladder cancer cells. These findings identify PTPD1 as a novel component of the endocytic machinery that impacts on EGF receptor stability and on growth and motility of bladder cancer cells.
Collapse
Affiliation(s)
- Annalisa Carlucci
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Università Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rioja J, Bandrés E, Rosell Costa D, Rincón A, López I, Zudaire Bergera JJ, García Foncillas J, Gil MJ, Panizo A, Plaza L, Rioja LA, Berián Polo JM. Association of steroid and xenobiotic receptor (SXR) and multidrug resistance 1 (MDR1) gene expression with survival among patients with invasive bladder carcinoma. BJU Int 2010; 107:1833-8. [PMID: 20840328 DOI: 10.1111/j.1464-410x.2010.09653.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED What's known on the subject? and What does the study add? SXR and MDR1 are known as responsible for chemo and radiotherapy resistance in some cancers, like kidney cancer (MDR1). Invasive bladder cancer is an aggressive disease, with different behaviour upon its tumoral stage, and also within the same tumoral stage, therefore molecular markers are sought. This study shows a new molecular marker, which has shown as a predictor for bad prognosis cancers, therefore, allowing us for a better patient selection for aggressive therapies. OBJECTIVE To investigate the prognostic value of steroid and xenobiotic receptor (SXR) and multidrug resistance 1 (MDR1) gene expression in relation to survival among patients with invasive bladder cancer. PATIENTS AND METHODS The prospective study included 67 patients diagnosed with invasive bladder cancer and treated with radical cystectomy at one of two institutions. SXR and MDR1 gene expression was assessed by real-time quantitative polymerase chain reaction (RT-PCR) in tumoral and normal tissue from frozen surgical specimens. RESULTS Patients were followed for a mean of 29 months; 31 patients (46%) had progression. In univariate analysis, significant predictors of overall survival (OS) were pathological stage, lymph node (LN) status, histological grade, vascular-lymphatic invasion, and SXR expression. In multivariate analysis, independent predictors of OS were LN status (odds ratio [OR], 2.96; P=0.034), vascular-lymphatic invasion (OR, 2.50; P=0.029), and SXR expression (OR, 1.05, P=0.03). Among the 51 patients with negative LNs (pN0), univariate predictors of OS were SXR expression, MDR1 expression, and pathological stage. In multivariate analysis, SXR expression (OR, 1.06; P=0.01) and MDR1 expression (OR, 3.27; P=0.03) were independently associated with survival. Within the pN0 group, patients with SXR expression had shorter progression-free survival than did those without expression (P=0.004). This association persisted in the N0 subgroup with stage pT3-pT4 disease (P=0.028). However, in the pN1 group SXR expression did not have any influence. CONCLUSIONS For patients with invasive bladder cancer, SXR expression has value as a predictor of survival independent of the standard pathological predictors. Its maximum importance appears to be in patients with stage pT3-pT4 pN0 disease.
Collapse
Affiliation(s)
- Jorge Rioja
- Department of Urology, Clínica Universitaria Universidad de Navarra, Pamplona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Al-Tel TH. Design, synthesis and qualitative structure-activity evaluations of novel hexahydropyrano[3,2-c][1,2]diazepin-3(4H)-one and tetrahydropyrano[3,2-b]pyrrol-2(1H)-one derivatives as anticancer agents. Eur J Med Chem 2010; 45:4615-21. [PMID: 20691507 DOI: 10.1016/j.ejmech.2010.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 07/13/2010] [Accepted: 07/13/2010] [Indexed: 11/28/2022]
Abstract
Polysubstituted hexahydropyrano[3,2-c][1,2]diazepin-3(4H)-one and tetrahydropyrano[3,2-b]pyrrol-2(1H)-one derivatives were synthesized and biologically evaluated as novel anticancer agents. These motifs were produced by five steps reaction sequence in which Achmatowicz oxidative cyclization, is the basic protocol for such synthesis. To understand the structure-activity relationships of the newly synthesized motifs, two traditional medicinal chemistry strategies namely, ring expansion and contraction, were followed in this article. These studies indicated that tetrahydropyrano[3,2-b]pyrrol-2(1H)-one derivatives are more selective for breast cancer cell line compared to other cell lines under investigations. Furthermore, it was found that hexahydropyrano[3,2-c][1,2]diazepin-3(4H)-one derivatives are potent anticancer agents compared to tetrahydropyrano[3,2-b]pyrrol-2(1H)-one analogs. These findings, however, form the foundation for further investigation in our continuing efforts to develop selective anticancer agents.
Collapse
Affiliation(s)
- Taleb H Al-Tel
- College of Pharmacy, University of Sharjah, University City Road, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
29
|
Netto GJ, Epstein JI. Theranostic and prognostic biomarkers: genomic applications in urological malignancies. Pathology 2010; 42:384-94. [PMID: 20438413 DOI: 10.3109/00313021003779145] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Compared to other solid tumours such as breast, colon, and lung, the current clinical management of urological malignancies is lagging behind in terms of utilisation of clinically robust molecular tests that can identify patients that are more likely to respond to a given targeted agent, or even those in need of a more aggressive treatment approach based on well-validated molecular prognosticators. Several promising biomarkers for detection, prognosis, and targeted therapeutics are now under evaluation. The following review discusses some of the candidate biomarkers that may soon make their transition into clinically applicable assays in urological oncology patients.
Collapse
Affiliation(s)
- George J Netto
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA.
| | | |
Collapse
|
30
|
|
31
|
Affiliation(s)
- Mats Ljungman
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
32
|
Abstract
Detailed molecular insights into bladder cancer biology might allow more detailed prognostication and optimization of treatment with the objective of improving patient outcome and quality of life. However, in bladder cancer research the search for biomarkers has been called into question and has even obtained notoriety. It is unlikely that any single marker will be able to improve prognostication for patients with bladder cancer above and beyond grade and stage, but a combination of multiple independent markers might more precisely predict the outcome. From a previous review, we identified seven biomarkers to study within the setting of the Bladder Cancer Prognosis Programme (BCPP), a 5-year multicentre programme of research based at the University of Birmingham and funded by Cancer Research UK, investigating their effectiveness in predicting recurrence and progression. As part of the ongoing quality-assurance process for BCPP we present an updated review of our selected biomarkers, as well as highlighting other recent important developments in bladder cancer research.
Collapse
Affiliation(s)
- Richard T Bryan
- Department of Public Health Epidemiology and Biostatistics, School of Population Sciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Current Opinion in Oncology. Current world literature. Curr Opin Oncol 2009; 21:386-92. [PMID: 19509503 DOI: 10.1097/cco.0b013e32832e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Puzio-Kuter AM, Castillo-Martin M, Kinkade CW, Wang X, Shen TH, Matos T, Shen MM, Cordon-Cardo C, Abate-Shen C. Inactivation of p53 and Pten promotes invasive bladder cancer. Genes Dev 2009; 23:675-80. [PMID: 19261747 DOI: 10.1101/gad.1772909] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although bladder cancer represents a serious health problem worldwide, relevant mouse models for investigating disease progression or therapeutic targets have been lacking. We show that combined deletion of p53 and Pten in bladder epithelium leads to invasive cancer in a novel mouse model. Inactivation of p53 and PTEN promotes tumorigenesis in human bladder cells and is correlated with poor survival in human tumors. Furthermore, the synergistic effects of p53 and Pten deletion are mediated by deregulation of mammalian target of rapamycin (mTOR) signaling, consistent with the ability of rapamycin to block bladder tumorigenesis in preclinical studies. Our integrated analyses of mouse and human bladder cancer provide a rationale for investigating mTOR inhibition for treatment of patients with invasive disease.
Collapse
Affiliation(s)
- Anna M Puzio-Kuter
- Department of Urology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|