1
|
Wang Z, Guo X, Li X, Wang J, Zhang N, Amin B, Xu G, Zhu B. Cancer-associated fibroblast-derived MMP11 promotes tumor progression in pancreatic cancer. Cancer Sci 2025; 116:643-655. [PMID: 39639765 PMCID: PMC11875780 DOI: 10.1111/cas.16418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024] Open
Abstract
Matrix metalloproteinase 11 (MMP11), a zinc-dependent endopeptidase involved in extracellular matrix degradation and remodeling, has been identified as a tumor promoter in multiple cancer types. However, its expression pattern and role in pancreatic ductal adenocarcinoma (PDAC) remain unclear. In this study, elevated MMP11 expression was identified in PDAC tissues and was associated with diminished survival. Integrated single-cell RNA sequencing and co-immunofluorescence staining revealed that MMP11 was predominantly expressed in cancer-associated fibroblasts (CAFs). Mechanistically, cancer cell-derived TGF-β1 mediated CAF activation via the pSmad2/3 pathway and accompanied by MMP11 production. Additionally, MMP11 knockdown in CAFs impaired the proliferative and invasive abilities of AsPC-1 and BxPC-3 cells in vitro; which could be rescued by adding recombinant MMP11. Similarly, co-injection of AsPC-1 cells with MMP11-knockdown CAFs into nude mice significantly suppressed tumor growth and liver metastasis compared with tumors bearing unmodified CAFs. Furthermore, we confirmed that CAF-derived MMP11 may drive the epithelial-mesenchymal transition process of PDAC cells to promote tumor invasion via the PI3K/AKT pathway rather than extracellular matrix remodeling. Collectively, we uncovered a crosstalk between cancer cells and CAFs mediated by TGF-β1 and MMP11 that drives the progression of PDAC.
Collapse
Affiliation(s)
- Zhuoyin Wang
- Department of General SurgeryBeijing Shijitan Hospital, Capital Medical UniversityBeijingChina
| | - Xu Guo
- Department of General SurgeryBeijing Shijitan Hospital, Capital Medical UniversityBeijingChina
| | - Xinming Li
- Department of General SurgeryBeijing Shijitan Hospital, Capital Medical UniversityBeijingChina
| | - Jing Wang
- Department of General SurgeryBeijing Shijitan Hospital, Capital Medical UniversityBeijingChina
| | - Nengwei Zhang
- Department of General SurgeryBeijing Shijitan Hospital, Capital Medical UniversityBeijingChina
| | - Buhe Amin
- Department of General SurgeryBeijing Shijitan Hospital, Capital Medical UniversityBeijingChina
| | - Guangzhong Xu
- Department of General SurgeryBeijing Shijitan Hospital, Capital Medical UniversityBeijingChina
| | - Bin Zhu
- Department of General SurgeryBeijing Shijitan Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Li B, Shi M, Wang Y, Li P, Yin X, Zhang G, Kang X, Wang H, Gao S, Zheng K, Shi X, Xu X, Zhou Y, Jiang H, Jing W, Guo S, Jin G. A practical distribution pattern of α-SMA-positive carcinoma associated fibroblasts indicates poor prognosis of patients with pancreatic ductal adenocarcinoma. Transl Oncol 2025; 52:102282. [PMID: 39808844 PMCID: PMC11782853 DOI: 10.1016/j.tranon.2025.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/08/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Purpose The present study aimed to clarify the distribution pattern of carcinoma associated fibroblasts (CAFs) across pancreatic ductal adenocarcinoma (PDAC) and its prognostic prediction value. Methods Data of two cohorts were retrospectively collected from consecutive patients who underwent primary pancreatic resection from January 2015 to December 2017. We used tumor specimens to screen out the most suitable markers for the spatial distribution analysis for CAFs subpopulations. We utilized a tissue microarray to assess the spatial intensity of α-SMA expression within the tumor microenvironment. Specifically, we classified CAFs into two types based on their α-SMA spatial expression. Type II CAFs were designated as those located in the juxtatumoural stroma with α-SMA expression that was moderate or higher, and those in the peripheral stroma with α-SMA expression that was less than moderate. All other cases, where the α-SMA expression did not meet these criteria, were categorized as Type I CAFs. Multivariable Cox proportional hazards regression was used to assess risk factors associated with patient outcomes. RNA sequencing data were obtained from bulk tumor samples and isolated CAFs from patients to reveal the distinct pattern and elucidated their fundamental characteristics. Results The α-SMA spatial intensity was the most suitable variable for representative of CAFs spatial characteristics. Patients with Type Ⅰ CAFs were more likely to be allocated into N1 or N2 of the N stage and Ⅱ and Ⅲ of the TNM stage. The spatial distribution pattern of CAFs (Type Ⅰ v.s. Type Ⅱ: HR, 1.568; 95 % CI, 1.053-2.334; P = 0.027) was an independent prognostic factor in the discovery cohort, so as in the validation (Type Ⅰ vs. Type Ⅱ: HR, 2.197; 95 % CI, 1.410-3.422; P = 0.001). RNA sequencing analysis revealed that the differentially expressed genes (DEGs) in Type I CAFs are closely associated with those in corresponding tumor tissues, highlighting the enhanced biological significance of immune-related and oncogenic invasive pathways. Conclusions Our findings that two types of α-SMA-positive CAFs with different spatial patterns present heterogeneously across tissues of PDACs and correlated with patients' outcomes. The spatial location of CAFs may facilitate patients' selection in precision medicine of PDACs.
Collapse
Affiliation(s)
- Bo Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai 200433, China; Department of Hepatobiliary Pancreatic Surgery, Naval Medical Center, Naval Medical University (Second Military Medical University), 338 West Huaihai Road, Shanghai, 200052, China
| | - Meilong Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai 200433, China
| | - Yang Wang
- Department of Pathology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, 1279 Sanmen Road, Shanghai 200434, China
| | - Penghao Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai 200433, China
| | - Xiaoyi Yin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai 200433, China
| | - Guoxiao Zhang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai 200433, China
| | - Xiaochao Kang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai 200433, China
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai 200433, China
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai 200433, China
| | - Kailian Zheng
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai 200433, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai 200433, China
| | - Xiongfei Xu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai 200433, China
| | - Yukun Zhou
- Department of Hepatobiliary Pancreatic Surgery, Naval Medical Center, Naval Medical University (Second Military Medical University), 338 West Huaihai Road, Shanghai, 200052, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai 200433, China
| | - Wei Jing
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai 200433, China.
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai 200433, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
3
|
Lee DU, Han BS, Jung KH, Hong SS. Tumor Stroma as a Therapeutic Target for Pancreatic Ductal Adenocarcinoma. Biomol Ther (Seoul) 2024; 32:281-290. [PMID: 38590092 PMCID: PMC11063484 DOI: 10.4062/biomolther.2024.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis owing to its desmoplastic stroma. Therefore, therapeutic strategies targeting this tumor stroma should be developed. In this study, we describe the heterogeneity of cancer-associated fibroblasts (CAFs) and their diverse roles in the progression, immune evasion, and resistance to treatment of PDAC. We subclassified the spatial distribution and functional activity of CAFs to highlight their effects on prognosis and drug delivery. Extracellular matrix components such as collagen and hyaluronan are described for their roles in tumor behavior and treatment outcomes, implying their potential as therapeutic targets. We also discussed the roles of extracellular matrix (ECM) including matrix metalloproteinases and tissue inhibitors in PDAC progression. Finally, we explored the role of the adaptive and innate immune systems in shaping the PDAC microenvironment and potential therapeutic strategies, with a focus on immune cell subsets, cytokines, and immunosuppressive mechanisms. These insights provide a comprehensive understanding of PDAC and pave the way for the development of prognostic markers and therapeutic interventions.
Collapse
Affiliation(s)
- Dae Ui Lee
- Department of Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Beom Seok Han
- Program in Biomedical Science & Engineering, The Graduate School, Inha University, Incheon 22212, Republic of Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
- Program in Biomedical Science & Engineering, The Graduate School, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
4
|
Wedig J, Jasani S, Mukherjee D, Lathrop H, Matreja P, Pfau T, D'Alesio L, Guenther A, Fenn L, Kaiser M, Torok MA, McGue J, Sizemore GM, Noonan AM, Dillhoff ME, Blaser BW, Frankel TL, Culp S, Hart PA, Cruz-Monserrate Z, Mace TA. CD200 is overexpressed in the pancreatic tumor microenvironment and predictive of overall survival. Cancer Immunol Immunother 2024; 73:96. [PMID: 38619621 PMCID: PMC11018596 DOI: 10.1007/s00262-024-03678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Pancreatic cancer is an aggressive disease with a 5 year survival rate of 13%. This poor survival is attributed, in part, to limited and ineffective treatments for patients with metastatic disease, highlighting a need to identify molecular drivers of pancreatic cancer to target for more effective treatment. CD200 is a glycoprotein that interacts with the receptor CD200R and elicits an immunosuppressive response. Overexpression of CD200 has been associated with differential outcomes, depending on the tumor type. In the context of pancreatic cancer, we have previously reported that CD200 is expressed in the pancreatic tumor microenvironment (TME), and that targeting CD200 in murine tumor models reduces tumor burden. We hypothesized that CD200 is overexpressed on tumor and stromal populations in the pancreatic TME and that circulating levels of soluble CD200 (sCD200) have prognostic value for overall survival. We discovered that CD200 was overexpressed on immune, stromal, and tumor populations in the pancreatic TME. Particularly, single-cell RNA-sequencing indicated that CD200 was upregulated on inflammatory cancer-associated fibroblasts. Cytometry by time of flight analysis of PBMCs indicated that CD200 was overexpressed on innate immune populations, including monocytes, dendritic cells, and monocytic myeloid-derived suppressor cells. High sCD200 levels in plasma correlated with significantly worse overall and progression-free survival. Additionally, sCD200 correlated with the ratio of circulating matrix metalloproteinase (MMP) 3: tissue inhibitor of metalloproteinase (TIMP) 3 and MMP11/TIMP3. This study highlights the importance of CD200 expression in pancreatic cancer and provides the rationale for designing novel therapeutic strategies that target this protein.
Collapse
Affiliation(s)
- Jessica Wedig
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, USA
| | - Shrina Jasani
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Debasmita Mukherjee
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, USA
| | - Hannah Lathrop
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Priya Matreja
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Timothy Pfau
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Liliana D'Alesio
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Abigail Guenther
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Lexie Fenn
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Morgan Kaiser
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Molly A Torok
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Jake McGue
- Department of Surgical Oncology, University of Michigan, Ann Arbor, USA
| | - Gina M Sizemore
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Radiation Oncology, The Ohio State University, Columbus, USA
| | - Anne M Noonan
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Mary E Dillhoff
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Bradley W Blaser
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Hematology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Timothy L Frankel
- Department of Surgical Oncology, University of Michigan, Ann Arbor, USA
| | - Stacey Culp
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, USA
| | - Phil A Hart
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W. 12th Ave., Columbus, OH, 43210, USA
| | - Zobeida Cruz-Monserrate
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W. 12th Ave., Columbus, OH, 43210, USA
| | - Thomas A Mace
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA.
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W. 12th Ave., Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Ma Y, Tang R, Huang P, Li D, Liao M, Gao S. Mitochondrial energy metabolism-related gene signature as a prognostic indicator for pancreatic adenocarcinoma. Front Pharmacol 2024; 15:1332042. [PMID: 38572434 PMCID: PMC10987750 DOI: 10.3389/fphar.2024.1332042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) is a highly malignant gastrointestinal tumor and is associated with an unfavorable prognosis worldwide. Considering the effect of mitochondrial metabolism on the prognosis of pancreatic cancer has rarely been investigated, we aimed to establish prognostic gene markers associated with mitochondrial energy metabolism for the prediction of survival probability in patients with PAAD. Methods: Gene expression data were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases, and the mitochondrial energy metabolism-related genes were obtained from the GeneCards database. Based on mitochondrial energy metabolism score (MMs), differentially expressed MMRGs were established for MMs-high and MMs-low groups using ssGSEA. After the univariate Cox and least absolute and selection operator (LASSO) analyses, a prognostic MMRG signature was used in the multivariate Cox proportional regression model. Survival and immune cell infiltration analyses were performed. In addition, a nomogram based on the risk model was used to predict the survival probability of patients with PAAD. Finally, the expression of key genes was verified using quantitative polymerase chain reaction and immunohistochemical staining. Intro cell experiments were performed to evaluated the proliferation and invasion of pancreatic cancer cells. Results: A prognostic signature was constructed consisting of two mitochondrial energy metabolism-related genes (MMP11, COL10A1). Calibration and receiver operating characteristic (ROC) curves verified the good predictability performance of the risk model for the survival rate of patients with PAAD. Finally, immune-related analysis explained the differences in immune status between the two subgroups based on the risk model. The high-risk score group showed higher estimate, immune, and stromal scores, expression of eight checkpoint genes, and infiltration of M0 macrophages, which might indicate a beneficial response to immunotherapy. The qPCR results confirmed high expression of MMP11 in pancreatic cancer cell lines, and IHC also verified high expression of MMP11 in clinical pancreatic ductal adenocarcinoma tissues. In vitro cell experiments also demonstrated the role of MMP11 in cell proliferation and invasion. Conclusion: Our study provides a novel two-prognostic gene signature-based on MMRGs-that accurately predicted the survival of patients with PAAD and could be used for mitochondrial energy metabolism-related therapies in the future.
Collapse
Affiliation(s)
- Yu Ma
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Ronghao Tang
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Peilin Huang
- School of Medicine, Southeast University, Nanjing, China
| | - Danhua Li
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Meijian Liao
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Shoucui Gao
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Sosna B, Aebisher D, Myśliwiec A, Dynarowicz K, Bartusik-Aebisher D, Oleś P, Cieślar G, Kawczyk-Krupka A. Selected Cytokines and Metalloproteinases in Inflammatory Bowel Disease. Int J Mol Sci 2023; 25:202. [PMID: 38203373 PMCID: PMC10779120 DOI: 10.3390/ijms25010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a collective term for two diseases: ulcerative colitis (UC) and Crohn's disease (CD). There are many factors, e.g., genetic, environmental and immunological, that increase the likelihood of these diseases. Indicators of IBDs include extracellular matrix metalloproteinases (MMPs). The aim of this review is to present data on the role of selected cytokines and metalloproteinases in IBD. In recent years, more and more transcriptomic studies are emerging. These studies are improving the characterization of the cytokine microenvironment inside inflamed tissue. It is observed that the levels of several cytokines are consistently increased in inflamed tissue in IBD, both in UC and CD. This review shows that MMPs play a major role in the pathology of inflammatory processes, cancer, and IBD. IBD-associated inflammation is associated with increased expression of MMPs and reduced ability of tissue inhibitors of metalloproteinases (TIMPs) to inhibit their action. In IBD patients in tissues that are inflamed, MMPs are produced in excess and TIMP activity is not sufficient to block MMPs. This review is based on our personal selection of the literature that was retrieved by a selective search in PubMed using the terms "Inflammatory bowel disease" and "pathogenesis of Inflammatory bowel diseases" that includes systematic reviews, meta-analyses, and clinical trials. The involvement of the immune system in the pathophysiology of IBD is reviewed in terms of the role of the cytokines and metalloproteinases involved.
Collapse
Affiliation(s)
- Barbara Sosna
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Piotr Oleś
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| |
Collapse
|
7
|
Wang H, Lu L, Liang X, Chen Y. Identification of prognostic genes in the pancreatic adenocarcinoma immune microenvironment by integrated bioinformatics analysis. Cancer Immunol Immunother 2022; 71:1757-1769. [PMID: 34854950 DOI: 10.1007/s00262-021-03110-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Pancreatic adenocarcinoma (PAAD) is one of the most common causes of death among solid tumors, and its pathogenesis remains to be clarified. This study aims to elucidate the value of immune/stromal-related genes in the prognosis of PAAD through comprehensive bioinformatics analysis based on the immune microenvironment and validated in Chinese pancreatic cancer patients. METHODS Gene expression profiles of pancreatic cancer patients were obtained from TCGA database. Differentially expressed genes (DEGs) were identified based on the ESTIMATE algorithm. Gene co-expression networks were constructed using WGCNA. In the key module, survival analysis was used to reveal the prognostic value. Subsequently, we performed functional enrichment analysis to construct a protein-protein interaction (PPI) network. The relationship between tumor immune infiltration and hub genes was analyzed by TIMER and CIBERSORT. Finally, it was validated in the GEO database and in tissues of Chinese pancreatic cancer patients. RESULTS In the TCGA pancreatic cancer cohort, a low immune/stromal score was associated with a good prognosis. After bioinformatic analysis, 57 genes were identified to be significantly associated with pancreatic cancer prognosis. Among them, up-regulation of four genes (COL6A3, PLAU, MMP11 and MMP14) indicated poor prognosis and was associated with multiple immune cell infiltration. IHC results showed that PLAU protein levels from Chinese pancreatic cancer tissues were significantly higher than those from adjacent non-tumor tissues and were also associated with tumor TNM stage and lymph node metastasis. CONCLUSION In conclusion, this study demonstrates that PLAU may serve as a new diagnostic and therapeutic target, which is highly expressed in Chinese pancreatic cancer tissues and associated with lymph node metastasis.
Collapse
Affiliation(s)
- Haolan Wang
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Liqing Lu
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yongheng Chen
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Li W, Li T, Sun C, Du Y, Chen L, Du C, Shi J, Wang W. Identification and prognostic analysis of biomarkers to predict the progression of pancreatic cancer patients. Mol Med 2022; 28:43. [PMID: 35428170 PMCID: PMC9013045 DOI: 10.1186/s10020-022-00467-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a malignancy with a poor prognosis and high mortality. Surgical resection is the only "curative" treatment. However, only a minority of patients with PC can obtain surgery. Improving the overall survival (OS) rate of patients with PC is still a major challenge. Molecular biomarkers are a significant approach for diagnostic and predictive use in PCs. Several prediction models have been developed for patients newly diagnosed with PC that is operable or patients with advanced and metastatic PC; however, these models require further validation. Therefore, precise biomarkers are urgently required to increase the efficiency of predicting a disease-free survival (DFS), OS, and sensitivity to immunotherapy in PC patients and to improve the prognosis of PC. METHODS In the present study, we first evaluated the highly and selectively expressed targets in PC, using the GeoMxTM Digital Spatial Profiler (DSP) and then, we analyzed the roles of these targets in PCs using TCGA database. RESULTS LAMB3, FN1, KRT17, KRT19, and ANXA1 were defined as the top five upregulated targets in PC compared with paracancer. The TCGA database results confirmed the expression pattern of LAMB3, FN1, KRT17, KRT19, and ANXA1 in PCs. Significantly, LAMB3, FN1, KRT19, and ANXA1 but not KRT17 can be considered as biomarkers for survival analysis, univariate and multivariate Cox proportional hazards model, and risk model analysis. Furthermore, in combination, LAMB3, FN1, KRT19, and ANXA1 predict the DFS and, in combination, LAMB3, KRT19, and ANXA1 predict the OS. Immunotherapy is significant for PCs that are inoperable. The immune checkpoint blockade (ICB) analysis indicated that higher expressions of FN1 or ANXA1 are correlated with lower ICB response. In contrast, there are no significant differences in the ICB response between high and low expression of LAMB3 and KRT19. CONCLUSIONS In conclusion, LAMB3, FN1, KRT19, and ANXA1 are good predictors of PC prognosis. Furthermore, FN1 and ANXA1 can be predictors of immunotherapy in PCs.
Collapse
Affiliation(s)
- Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chenguang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yimeng Du
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Linna Chen
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chunyan Du
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jianxiang Shi
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Weijie Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
9
|
Liu N, Zhong L, Ni G, Lin J, Xie L, Li T, Dan H, Chen Q. High Matrix Metalloproteinase 28 Expression is Associated with Poor Prognosis in Pancreatic Adenocarcinoma. Onco Targets Ther 2021; 14:4391-4406. [PMID: 34408436 PMCID: PMC8364391 DOI: 10.2147/ott.s309576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose Pancreatic adenocarcinoma (PAAD) is a devastating disease with high mortality and morbidity. Matrix metalloproteinase 28 (MMP28) has been associated with carcinogenesis of many human cancers. However, little is known about the potential prognostic value and underlying regulatory mechanisms of MMP28 in PAAD. Methods The relationship between MMP28 expression level and various clinicopathological parameters was analyzed in TCGA-PAAD cohorts. MMP28-correlated genes in the TCGA-PAAD cohort were identified and enrichment analysis according to the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes was conducted using LinkedOmics. Protein–protein interaction and transcription factors-miRNA co-regulatory networks were constructed with the use of NetworkAnalyst. Then, the distribution of immune cells related to MMP28 expression in blood was analyzed using the Human Protein Atlas, and the tumor microenvironment of PAAD was analyzed by the TIMER 2.0 database. To investigate the biological function of MMP28 in PAAD, siRNA was constructed to knock down the MMP28 gene in vitro. Results High MMP28 expression is associated with poor overall survival and disease-free survival in PAAD patients. The expression of MMP28 in PAAD is most significantly correlated with KRT19, IL1RN, and ANXA2 genes. Network analysis revealed that MIR-181 family, TAFs, and CDC6 are potential regulators of MMP28. Furthermore, naive CD4+ T cell, naive CD8+ T cell, and mucosal-associated invariant T cell enrichment in blood were correlated with MMP28 expression. Furthermore, high MMP28 expression was correlated with a decrease in B cell, naive CD4+ T cell, naive CD8+ T cell, and endothelial cell presence in the tumor microenvironment in PAAD. Finally, genetic knockdown of MMP28 could restrain the proliferation, migration, and invasion of PAAD cells. Conclusion Our findings indicate that high MMP28 expression in PAAD is associated with cancer progression, invasion, and metastasis. Hence, MMP28 might serve as an independent prognostic biomarker and a prospective therapeutic target for PAAD.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Liang Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Guangcheng Ni
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiao Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|