1
|
Lang H, Nishimoto E, Xing Y, Brown LN, Noble KV, Barth JL, LaRue AC, Ando K, Schulte BA. Contributions of Mouse and Human Hematopoietic Cells to Remodeling of the Adult Auditory Nerve After Neuron Loss. Mol Ther 2016; 24:2000-2011. [PMID: 27600399 PMCID: PMC5154482 DOI: 10.1038/mt.2016.174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022] Open
Abstract
The peripheral auditory nerve (AN) carries sound information from sensory hair cells to the brain. The present study investigated the contribution of mouse and human hematopoietic stem cells (HSCs) to cellular diversity in the AN following the destruction of neuron cell bodies, also known as spiral ganglion neurons (SGNs). Exposure of the adult mouse cochlea to ouabain selectively killed type I SGNs and disrupted the blood-labyrinth barrier. This procedure also resulted in the upregulation of genes associated with hematopoietic cell homing and differentiation, and provided an environment conducive to the tissue engraftment of circulating stem/progenitor cells into the AN. Experiments were performed using both a mouse-mouse bone marrow transplantation model and a severely immune-incompetent mouse model transplanted with human CD34+ cord blood cells. Quantitative immunohistochemical analysis of recipient mice demonstrated that ouabain injury promoted an increase in the number of both HSC-derived macrophages and HSC-derived nonmacrophages in the AN. Although rare, a few HSC-derived cells in the injured AN exhibited glial-like qualities. These results suggest that human hematopoietic cells participate in remodeling of the AN after neuron cell body loss and that hematopoietic cells can be an important resource for promoting AN repair/regeneration in the adult inner ear.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.
| | - Eishi Nishimoto
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yazhi Xing
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - LaShardai N Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Amanda C LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Research Services, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | - Kiyoshi Ando
- Research Center for Regenerative Medicine, Division of Hematopoiesis, Tokai University School of Medicine, Tokyo, Japan
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
2
|
Stecklum M, Wulf-Goldenberg A, Purfürst B, Siegert A, Keil M, Eckert K, Fichtner I. Cell differentiation mediated by co-culture of human umbilical cord blood stem cells with murine hepatic cells. In Vitro Cell Dev Biol Anim 2015; 51:183-91. [PMID: 25270685 DOI: 10.1007/s11626-014-9817-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/28/2014] [Indexed: 12/27/2022]
Abstract
In the present study, purified human cord blood stem cells were co-cultivated with murine hepatic alpha mouse liver 12 (AML12) cells to compare the effect on endodermal stem cell differentiation by either direct cell-cell interaction or by soluble factors in conditioned hepatic cell medium. With that approach, we want to mimic in vitro the situation of preclinical transplantation experiments using human cells in mice. Cord blood stem cells, cultivated with hepatic conditioned medium, showed a low endodermal differentiation but an increased connexin 32 (Cx32) and Cx43, and cytokeratin 8 (CK8) and CK19 expression was monitored by reverse transcription polymerase chain reaction (RT-PCR). Microarray profiling indicated that in cultivated cord blood cells, 604 genes were upregulated 2-fold, with the highest expression for epithelial CK19 and epithelial cadherin (E-cadherin). On ultrastructural level, there were no major changes in the cellular morphology, except a higher presence of phago(ly)some-like structures observed. Direct co-culture of AML12 cells with cord blood cells led to less incisive differentiation with increased sex-determining region Y-box 17 (SOX17), Cx32 and Cx43, as well as epithelial CK8 and CK19 expressions. On ultrastructural level, tight cell contacts along the plasma membranes were revealed. FACS analysis in co-cultivated cells quantified dye exchange on low level, as also proved by time relapse video-imaging of labelled cells. Modulators of gap junction formation influenced dye transfer between the co-cultured cells, whereby retinoic acid increased and 3-heptanol reduced the dye transfer. The study indicated that the cell-co-cultured model of human umbilical cord blood cells and murine AML12 cells may be a suitable approach to study some aspects of endodermal/hepatic cell differentiation induction.
Collapse
Affiliation(s)
- Maria Stecklum
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany,
| | | | | | | | | | | | | |
Collapse
|
3
|
Wnt1 Accelerates an Ex Vivo Expansion of Human Cord Blood CD34(+)CD38(-) Cells. Stem Cells Int 2013; 2013:909812. [PMID: 24023545 PMCID: PMC3760094 DOI: 10.1155/2013/909812] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 12/20/2022] Open
Abstract
Cord blood hematopoietic stem cells (CB-HSCs) transplantation has been increasing gradually with facing the limitation of insufficient quantity of HSCs in each CB unit. Therefore, efficient expansion methods which can maintain stem cell characteristics are needed. In this study, umbilical CB-CD34+ cells were cultured in two different cytokine cocktails: 4 factors (4F = Flt3-L, SCF, IL-6, and TPO) and 5 factors (5F = Wnt1 + 4F) in both serum and serum-free media. The data revealed that the best condition to accelerate an expansion of CD34+CD38− cells was serum-free culture condition supplemented with 5F (5F KSR). This condition yielded 24.3 ± 2.1 folds increase of CD34+CD38− cells. The expanded cells exhibited CD34+ CD38− CD133+ CD71low CD33low CD3− CD19− markers, expressed nanog, oct3/4, c-myc, and sox2 genes, and maintained differentiation potential into lymphoid, erythroid and myeloid lineages. The achievement of CD34+CD38− cells expansion may overcome an insufficient quantity of the cells leading to the improvement of the stem cell transplantation. Altogether, our findings highlight the role of Wnt1 and the new culture condition in stimulating hematopoietic stem/progenitor cells expansion which may offer a new therapeutic avenue for cord blood transplantation, regenerative medicine, stem cell bank applications, and other clinical applications in the future.
Collapse
|
4
|
Hematopoietic stem cell development, niches, and signaling pathways. BONE MARROW RESEARCH 2012; 2012:270425. [PMID: 22900188 PMCID: PMC3413998 DOI: 10.1155/2012/270425] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/30/2012] [Accepted: 06/13/2012] [Indexed: 12/22/2022]
Abstract
Hematopoietic stem cells (HSCs) play a key role in hematopoietic system that functions mainly in homeostasis and immune response. HSCs transplantation has been applied for the treatment of several diseases. However, HSCs persist in the small quantity within the body, mostly in the quiescent state. Understanding the basic knowledge of HSCs is useful for stem cell biology research and therapeutic medicine development. Thus, this paper emphasizes on HSC origin, source, development, the niche, and signaling pathways which support HSC maintenance and balance between self-renewal and proliferation which will be useful for the advancement of HSC expansion and transplantation in the future.
Collapse
|
5
|
Huang CJ, Butler AE, Moran A, Rao PN, Wagner JE, Blazar BR, Rizza RA, Manivel JC, Butler PC. A low frequency of pancreatic islet insulin-expressing cells derived from cord blood stem cell allografts in humans. Diabetologia 2011; 54:1066-74. [PMID: 21331470 PMCID: PMC3071928 DOI: 10.1007/s00125-011-2071-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 01/10/2011] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS We sought to establish if stem cells contained in cord blood cell allografts have the capacity to differentiate into insulin-expressing beta cells in humans. METHODS We studied pancreases obtained at autopsy from individuals (n = 11) who had prior opposite-sex cord blood transplants to reconstitute haematopoiesis. Pancreatic tissue sections were stained first by XY-fluorescence in situ hybridisation and then insulin immunohistochemistry. Pancreases obtained at autopsy from participants without cord blood cell infusions served as controls (n = 11). RESULTS In the men with prior transplant of female cord blood, there were 3.4 ± 0.3% XX-positive insulin-expressing islet cells compared with 0.32 ± 0.05% (p < 0.01) in male controls. In women with prior transplant of male cord blood cells we detected 1.03 ± 0.20% XY insulin-expressing islet cells compared with 0.03 ± 0.03 in female controls (p < 0. 001). CONCLUSIONS/INTERPRETATION Cord blood stem cells have the capacity to differentiate into insulin-expressing cells in non-diabetic humans. It remains to be established whether these cells have the properties of beta cells.
Collapse
Affiliation(s)
- C. J. Huang
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, 900A Weyburn Place, Los Angeles, CA 90095 USA
| | - A. E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, 900A Weyburn Place, Los Angeles, CA 90095 USA
| | - A. Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN USA
| | - P. N. Rao
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - J. E. Wagner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN USA
| | - B. R. Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN USA
| | - R. A. Rizza
- Endocrine Research Unit, Mayo Clinic and Medical College, Rochester, MN USA
| | - J. C. Manivel
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| | - P. C. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, 900A Weyburn Place, Los Angeles, CA 90095 USA
| |
Collapse
|
6
|
Kögler G, Critser P, Trapp T, Yoder M. Future of cord blood for non-oncology uses. Bone Marrow Transplant 2009; 44:683-97. [PMID: 19802027 DOI: 10.1038/bmt.2009.287] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
For the last 5 years cord blood (CB) has been under intense experimental investigation in in vitro differentiation models and in preclinical animal models ranging from bone to muscle regeneration, cardiovascular diseases including myocardial and peripheral arterial disease, stroke and Parkinson's disease. On the basis of its biological advantages, CB can be an ideal source for tissue regeneration. However, in the hype of the so-called 'plasticity', many cell types have been characterized either on cell surface Ag expression alone or by RNA expression only, and without detailed characterization of genetic pathways; frequently, cells are defined without analysis of cellular function in vitro and in vivo, and the definition of the lineage of origin and cells have not been defined in preclinical studies. Here, we explore not only the most consistent data with regard to differentiation of CB cells in vitro and in vivo, but also show technical limitations, such as why in contrast to cell populations isolated from fresh CB, cryopreserved CB is not the ideal source for tissue regeneration. By taking advantage of numerous CB units discarded due to lack of sufficient hematopoietic cells for clinical transplantation, new concepts to produce off-the-shelf products are presented as well.
Collapse
Affiliation(s)
- G Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, University of Duesseldorf Medical School, Duesseldorf, Germany.
| | | | | | | |
Collapse
|
7
|
Current world literature. Curr Opin Organ Transplant 2009; 14:103-11. [PMID: 19337155 DOI: 10.1097/mot.0b013e328323ad31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|