1
|
Hu Q, Jiang C, Qin Y, Li B, Wang J, Wang T, Ji S, Ye Z, Dang Q, Liu M, Yu X, Xu X. Pentose phosphate recycling driven by Gli1 contributes to chemotherapy resistance in cancer cells. Cancer Lett 2025; 618:217633. [PMID: 40090571 DOI: 10.1016/j.canlet.2025.217633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
The Hedgehog Signaling Pathway plays an important role in cancer development and chemotherapy resistance. However, whether the pathway functions depend on the metabolic reprogramming of cancer cells has not been well studied. In this study, we found that the expression level of Gli1, a key transcription factor downstream of the Hedgehog Signaling Pathway, is significantly increased in patients with pancreatic cancer resistant to gemcitabine neoadjuvant chemotherapy. Through metabolomics analysis, we confirmed that Gli1 can promote the transformation of cancer cells from a glycolytic-dominated metabolic pattern to a unique metabolic pattern called "Pentose Phosphate Recycling". Transcriptome sequencing and in vitro experiments suggest that Gli1 promotes pentose phosphate recycling through transcriptional activation of key enzymes Phosphogluconate dehydrogenase (PGD) and Transketolase (TKT). The identified metabolic rerouting in oxidative and non-oxidative pentose phosphate pathway has important physiological roles in maximizing NADPH reduction and nucleotide synthesis. Therefore, the pentose phosphate cycle driven by Gli1 can resist gemcitabine-induced DNA damage by promoting pyrimidine synthesis and resist gemcitabine-induced ferroptosis by scavenging lipid Reactive Oxygen Species (Lipid ROS). Combining the Gli1 inhibitor GANT21 with gemcitabine exerts a maximal tumor suppressor effect by simultaneously promoting DNA damage and ferroptosis. Collectively, these results reveal that Gli1 drives chemotherapy resistance in cancer cells by inducing metabolic reprogramming, providing a novel target and therapeutic strategy for reversing chemotherapy resistance.
Collapse
Affiliation(s)
- Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Borui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jingyi Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, QLD, 4067, Saint Lucia
| | - Ting Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qing Dang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Aberrant transcription factors in the cancers of the pancreas. Semin Cancer Biol 2022; 86:28-45. [PMID: 36058426 DOI: 10.1016/j.semcancer.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) are essential for proper activation of gene set during the process of organogenesis, differentiation, lineage specificity. Reactivation or dysregulation of TFs regulatory networks could lead to deformation of organs, diseases including various malignancies. Currently, understanding the mechanism of oncogenesis became necessity for the development of targeted therapeutic strategy for different cancer types. It is evident that many TFs go awry in cancers of the pancreas such as pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms (PanNENs). These mutated or dysregulated TFs abnormally controls various signaling pathways in PDAC and PanNENs including RTK, PI3K-PTEN-AKT-mTOR, JNK, TGF-β/SMAD, WNT/β-catenin, SHH, NOTCH and VEGF which in turn regulate different hallmarks of cancer. Aberrant regulation of such pathways have been linked to the initiation, progression, metastasis, and resistance in pancreatic cancer. As of today, a number of TFs has been identified as crucial regulators of pancreatic cancer and a handful of them shown to have potential as therapeutic targets in pre-clinical and clinical settings. In this review, we have summarized the current knowledge on the role and therapeutic usefulness of TFs in PDAC and PanNENs.
Collapse
|
3
|
Mohammadzadeh V, Rahiman N, Hosseinikhah SM, Barani M, Rahdar A, Jaafari MR, Sargazi S, Zirak MR, Pandey S, Bhattacharjee R, Gupta AK, Thakur VK, Sibuh BZ, Gupta PK. Novel EPR-enhanced strategies for targeted drug delivery in pancreatic cancer: An update. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
van Roey R, Brabletz T, Stemmler MP, Armstark I. Deregulation of Transcription Factor Networks Driving Cell Plasticity and Metastasis in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:753456. [PMID: 34888306 PMCID: PMC8650502 DOI: 10.3389/fcell.2021.753456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a very aggressive disease with 5-year survival rates of less than 10%. The constantly increasing incidence and stagnant patient outcomes despite changes in treatment regimens emphasize the requirement of a better understanding of the disease mechanisms. Challenges in treating pancreatic cancer include diagnosis at already progressed disease states due to the lack of early detection methods, rapid acquisition of therapy resistance, and high metastatic competence. Pancreatic ductal adenocarcinoma, the most prevalent type of pancreatic cancer, frequently shows dominant-active mutations in KRAS and TP53 as well as inactivation of genes involved in differentiation and cell-cycle regulation (e.g. SMAD4 and CDKN2A). Besides somatic mutations, deregulated transcription factor activities strongly contribute to disease progression. Specifically, transcriptional regulatory networks essential for proper lineage specification and differentiation during pancreas development are reactivated or become deregulated in the context of cancer and exacerbate progression towards an aggressive phenotype. This review summarizes the recent literature on transcription factor networks and epigenetic gene regulation that play a crucial role during tumorigenesis.
Collapse
Affiliation(s)
- Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Wang N, Tong R, Xu J, Tian Y, Pan J, Cui J, Chen H, Peng Y, Fei S, Yang S, Wang L, Yao J, Cui W. PDX1 and MC4R genetic polymorphisms are associated with type 2 diabetes mellitus risk in the Chinese Han population. BMC Med Genomics 2021; 14:249. [PMID: 34696776 PMCID: PMC8543917 DOI: 10.1186/s12920-021-01037-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a complex metabolic disease that is caused by a complex interplay between genetic and environmental factors. This research aimed to investigate the association of genetic polymorphisms in PDX1 and MC4R with T2DM risk. METHODS The genotypes of 10 selected SNPs in PDX1 and MC4R were identified using the Agena MassARRAY platform. We utilized odds ratio (OR) and 95% confidence intervals (CIs) to assess the correlation between genetic polymorphisms and T2DM risk. RESULTS We found that PDX1-rs9581943 decreased susceptibility to T2DM among in a Chinese Han population (OR = 0.76, p = 0.045). We also found that selected genetic polymorphisms in PDX1 and MC4R could modify the risk of T2DM, which might also be influenced by age, sex, BMI, smoking status, and drinking status (p < 0.05). CONCLUSIONS We concluded that PDX1 and MC4R genetic variants were significantly associated with T2DM risk in a Chinese Han population. These single polymorphic markers may be considered to be new targets in the assessment and prevention of T2DM among Chinese Han people.
Collapse
Affiliation(s)
- Ning Wang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Rui Tong
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jing Xu
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yanni Tian
- Department of Oncology, East Branch of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710089, Shaanxi, China
| | - Juan Pan
- Department of Endocrinology, Xianyang Central Hospital, Xianyang, 712000, Shaanxi, China
| | - Jiaqi Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Huan Chen
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yanqi Peng
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Sijia Fei
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Shujun Yang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Lu Wang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Juanchuan Yao
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Wei Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
6
|
Kondratyeva L, Chernov I, Kopantzev E, Didych D, Kuzmich A, Alekseenko I, Kostrov S, Sverdlov E. Pancreatic Lineage Specifier PDX1 Increases Adhesion and Decreases Motility of Cancer Cells. Cancers (Basel) 2021; 13:cancers13174390. [PMID: 34503200 PMCID: PMC8430990 DOI: 10.3390/cancers13174390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Intercellular interactions involving adhesion factors are key operators in cancer progression. In particular, these factors are responsible for facilitating cell migration and metastasis. Strengthening of adhesion between tumor cells and surrounding cells or extracellular matrix (ECM), may provide a way to inhibit tumor cell migration. Recently, we demonstrated that PDX1 ectopic expression results in the reduction of pancreatic cancer line PANC-1 cell motility in vitro and in vivo, and we now provide experimental data confirming the hypothesis that suppression of migration may be related to the effect of PDX1 on cell adhesion. Cell migration analyses demonstrated decreased motility of pancreatic Colo357 and PANC-1 cell lines expressing PDX1. We observed decreased expression levels of genes associated with promoting cell migration and increased expression of genes negatively affecting cell motility. Expression of the EMT regulator genes was only mildly induced in cells expressing PDX1 during the simulation of the epithelial-mesenchymal transition (EMT) by the addition of TGFβ1 to the medium. PDX1-expressing cancer cell lines showed increased cell adhesion to collagen type I, fibronectin, and poly-lysine. We conclude that ectopic expression of PDX1 reduces the migration potential of cancer cells, by increasing the adhesive properties of cells and reducing the sensitivity to TGFβ1-induced EMT.
Collapse
Affiliation(s)
- Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (I.C.); (E.K.); (D.D.); (A.K.); (I.A.)
- Correspondence: (L.K.); (E.S.)
| | - Igor Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (I.C.); (E.K.); (D.D.); (A.K.); (I.A.)
| | - Eugene Kopantzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (I.C.); (E.K.); (D.D.); (A.K.); (I.A.)
| | - Dmitry Didych
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (I.C.); (E.K.); (D.D.); (A.K.); (I.A.)
| | - Alexey Kuzmich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (I.C.); (E.K.); (D.D.); (A.K.); (I.A.)
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Ploshchad’ Akademika Kurchatova, 123182 Moscow, Russia;
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (I.C.); (E.K.); (D.D.); (A.K.); (I.A.)
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Ploshchad’ Akademika Kurchatova, 123182 Moscow, Russia;
| | - Sergey Kostrov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Ploshchad’ Akademika Kurchatova, 123182 Moscow, Russia;
| | - Eugene Sverdlov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Ploshchad’ Akademika Kurchatova, 123182 Moscow, Russia;
- Correspondence: (L.K.); (E.S.)
| |
Collapse
|
7
|
Creeden JF, Alganem K, Imami AS, Brunicardi FC, Liu SH, Shukla R, Tomar T, Naji F, McCullumsmith RE. Kinome Array Profiling of Patient-Derived Pancreatic Ductal Adenocarcinoma Identifies Differentially Active Protein Tyrosine Kinases. Int J Mol Sci 2020; 21:ijms21228679. [PMID: 33213062 PMCID: PMC7698519 DOI: 10.3390/ijms21228679] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer remains one of the most difficult malignancies to treat. Minimal improvements in patient outcomes and persistently abysmal patient survival rates underscore the great need for new treatment strategies. Currently, there is intense interest in therapeutic strategies that target tyrosine protein kinases. Here, we employed kinome arrays and bioinformatic pipelines capable of identifying differentially active protein tyrosine kinases in different patient-derived pancreatic ductal adenocarcinoma (PDAC) cell lines and wild-type pancreatic tissue to investigate the unique kinomic networks of PDAC samples and posit novel target kinases for pancreatic cancer therapy. Consistent with previously described reports, the resultant peptide-based kinome array profiles identified increased protein tyrosine kinase activity in pancreatic cancer for the following kinases: epidermal growth factor receptor (EGFR), fms related receptor tyrosine kinase 4/vascular endothelial growth factor receptor 3 (FLT4/VEGFR-3), insulin receptor (INSR), ephrin receptor A2 (EPHA2), platelet derived growth factor receptor alpha (PDGFRA), SRC proto-oncogene kinase (SRC), and tyrosine kinase non receptor 2 (TNK2). Furthermore, this study identified increased activity for protein tyrosine kinases with limited prior evidence of differential activity in pancreatic cancer. These protein tyrosine kinases include B lymphoid kinase (BLK), Fyn-related kinase (FRK), Lck/Yes-related novel kinase (LYN), FYN proto-oncogene kinase (FYN), lymphocyte cell-specific kinase (LCK), tec protein kinase (TEC), hemopoietic cell kinase (HCK), ABL proto-oncogene 2 kinase (ABL2), discoidin domain receptor 1 kinase (DDR1), and ephrin receptor A8 kinase (EPHA8). Together, these results support the utility of peptide array kinomic analyses in the generation of potential candidate kinases for future pancreatic cancer therapeutic development.
Collapse
Affiliation(s)
- Justin F. Creeden
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (R.S.); (R.E.M.)
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
- Correspondence: ; Tel.: +1-419-383-6474
| | - Khaled Alganem
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (R.S.); (R.E.M.)
| | - Ali S. Imami
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (R.S.); (R.E.M.)
| | - F. Charles Brunicardi
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Shi-He Liu
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Rammohan Shukla
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (R.S.); (R.E.M.)
| | - Tushar Tomar
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Faris Naji
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Robert E. McCullumsmith
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (R.S.); (R.E.M.)
- Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| |
Collapse
|
8
|
Liu SH, Yu J, Creeden JF, Sutton JM, Markowiak S, Sanchez R, Nemunaitis J, Kalinoski A, Zhang JT, Damoiseaux R, Erhardt P, Brunicardi FC. Repurposing metformin, simvastatin and digoxin as a combination for targeted therapy for pancreatic ductal adenocarcinoma. Cancer Lett 2020; 491:97-107. [PMID: 32829010 DOI: 10.1016/j.canlet.2020.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
Patients with pancreatic adenocarcinoma (PDAC) have a 5-year survival rate of 8%, the lowest of any cancer in the United States. Traditional chemotherapeutic regimens, such as gemcitabine- and fluorouracil-based regimens, often only prolong survival by months. Effective precision targeted therapy is therefore urgently needed to substantially improve survival. In an effort to expedite approval and delivery of targeted therapy to patients, we utilized a platform to develop a novel combination of FDA approved drugs that would target pancreaticoduodenal homeobox1 (PDX1) and baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) utilizing super-promoters of the target genes to interrogate an FDA approved drug library. We identified and selected metformin, simvastatin and digoxin (C3) as a novel combination of FDA approved drugs, which were shown to effectively target PDX1 and BIRC5 in human PDAC tumors in mice with no toxicity.
Collapse
Affiliation(s)
- Shi-He Liu
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - Juehua Yu
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Justin F Creeden
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Jeffrey M Sutton
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Stephen Markowiak
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Robbi Sanchez
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - John Nemunaitis
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Andrea Kalinoski
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Jian-Ting Zhang
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Paul Erhardt
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, 43614, USA
| | - F Charles Brunicardi
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| |
Collapse
|
9
|
Nelson SR, Zhang C, Roche S, O'Neill F, Swan N, Luo Y, Larkin A, Crown J, Walsh N. Modelling of pancreatic cancer biology: transcriptomic signature for 3D PDX-derived organoids and primary cell line organoid development. Sci Rep 2020; 10:2778. [PMID: 32066753 PMCID: PMC7026166 DOI: 10.1038/s41598-020-59368-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
With a five-year survival rate of 9%, pancreatic ductal adenocarcinoma (PDAC) is the deadliest of all cancers. The rapid mortality makes PDAC difficult to research, and inspires a resolve to create reliable, tractable cellular models for preclinical cancer research. Organoids are increasingly used to model PDAC as they maintain the differentiation status, molecular and genomic signatures of the original tumour. In this paper, we present novel methodologies and experimental approaches to develop PDAC organoids from PDX tumours, and the simultaneous development of matched primary cell lines. Moreover, we also present a method of recapitulating primary cell line cultures to organoids (CLOs). We highlight the usefulness of CLOs as PDAC organoid models, as they maintain similar transcriptomic signatures as their matched patient-derived organoids and patient derived xenografts (PDX)s. These models provide a manageable, expandable in vitro resource for downstream applications such as high throughput screening, functional genomics, and tumour microenvironment studies.
Collapse
Affiliation(s)
- Shannon R Nelson
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Chenxi Zhang
- BGI Education Centre, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266000, China
| | - Sandra Roche
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Fiona O'Neill
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Niall Swan
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266000, China.,Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - AnneMarie Larkin
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland.,Institute of Technology, Sligo, Ash Lane, Sligo, Ireland
| | - John Crown
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
10
|
Gurevich LE, Proshchina AE, Voronkova IA, Ashevskaya VE, Korosteleva PA, Dolzhansky OV. [Differential diagnostic value of the expression of the transcription factor PDX-1 in neuroendocrine and non-neuroendocrine tumors of the pancreas and other organs]. Arkh Patol 2019; 81:11-21. [PMID: 31626200 DOI: 10.17116/patol20198105111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An important role in the differentiation of tissues in different organs is played by transforming factors (TFs); pancreatic and duodenal homebox 1 (PDX-1) is one of the earliest factors for pancreatic cells. Many malignant tumors, including neuroendocrine tumors (NETs), are similar in structure, and therefore the actual problem of oncomorphology is to search for narrow-specific markers and TFs. AIM to comparatively analyze and assess the value of the expression of the TF PDX-1 in NETs and non-NETs of different localization and histogenetic origin. MATERIAL AND METHODS Anti-PDX-1 antibodies were used to study 528 tumors divided into 3 groups: Group 1 included 394 NETs, among them there were those of the pancreas (n=173), stomach (n=46), bowel (n=65), lung (n=40), thymus (n=8), kidney (n=6), Merkel's cell carcinomas (n=14), NETs of the breast (n=3), larynx (n=2), trachea (n=2), bladder (n=1), and metastatic NETs (n=34) of unknown primary site; Group 2 consisted of 16 tumors, of them there were paragangliomas (n=6), medullary thyroid cancers (MTC) (n=6) and adrenal pheochromocytomas (APCC) (n=4); Group 3 comprised 118 non-NETs, among them there were tumors of the pancreas (n=54), stomach (n=26), bowel (n=17), lung (n=11), breast (n=3), kidney (n=4), adrenal glands (n=2), and bladder (n=1). RESULTS PDX-1 was positive in 75.1% (130/173) of pancreatic NETs, all insulinomas (50/50), gastrinomas (11/11), somatostatinomas (3/3), ACTH-producing tumors (2/2); PDX-1 was positive in the non-functioning pancreatic NETs, all PPomas (19/19), 76.1% (35/46) of NETs without the hormone detected, 50% (2/4) of calcitoninomas, and 21.1% (8/38) of silent glucagonomas. PDX-1 was positive in 32.4% (11/34) of carcinoids and 50% (6/12) of neuroendocrine carcinomas, all duodenal NETs (18/18), 90% (9/10) of rectal carcinoids and 30.8% (4/13) colonic carcinoids, 37.5% (3/8) of thymic/mediastinal carcinoids, 66.7% (4/6) of kidney carcinoids, and 37.5% (9/24) of metastatic NETs of unknown primary site. PDX-1 was negative in all carcinoids of the colon and sigmoid (0/5), ileum and jejunum (0/24), lung (0/40), trachea (0/2), larynx (0/2), Merkel's cell carcinoma (0/14), breast (0/3), bladder (0/1), as well as MTC (0/6), APCC (0/4), and paragangliomas (0/6). PDX-1-positive non-NETs included 81.8% (18/22) of adenocarcinomas (AC) and all serous cystic, mucinous cystic, intraductal and acinar cell tumors of the pancreas (4/4, 3/3, 2/2, and 3/3), 57.1% of AC (8/14) and 83.3% of signet ring cell carcinomas of the stomach (10/12), 56.2% AC of the bowel (9/17), bladder cancer (1/1). PDX-1 was negative in all anaplastic cancers (0/2) and solid pseudopapillary tumors of the pancreas (0/20), cancers of the lung (0/11), kidney (0/4), breast (0/3), and adrenal glands (0/2). CONCLUSION The expression of PDX-1 is very specific for most digestive tract NETs and non-NETs. Pancreatic ductal and acinar cell tumors and gastric signet ring cell carcinomas are most commonly PDX-1-positive. Most tumors that do not originate from the digestive tract have a PDX-1 negative immunophenotype.
Collapse
Affiliation(s)
- L E Gurevich
- M.F.Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | | | - I A Voronkova
- M.F.Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - V E Ashevskaya
- M.F.Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - P A Korosteleva
- M.F.Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - O V Dolzhansky
- M.F.Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| |
Collapse
|
11
|
Ma J, Wang BB, Ma XY, Deng WP, Xu LS, Sha WH. Potential involvement of heat shock proteins in pancreatic-duodenal homeobox-1-mediated effects on the genesis of gastric cancer: A 2D gel-based proteomic study. World J Gastroenterol 2018; 24:4263-4271. [PMID: 30310259 PMCID: PMC6175762 DOI: 10.3748/wjg.v24.i37.4263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/09/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To identify functional proteins involved in pancreatic-duodenal homeobox-1 (PDX1)-mediated effects on gastric carcinogenesis.
METHODS A PDX1-overexpressed model was established by transfecting gastric cancer cell line SGC7901 with pcDNA3.1(+)-PDX1 vector (SGC-PDX1). Transfection with empty pcDNA3.1 vector (SGC-pcDNA) served as control. Comparative protein profiles of the two groups were analyzed by two-dimensional electrophoresis based-proteomics (2DE gel-based proteomics). The differential proteins identified by 2DE were further validated by qRT-PCR and immunoblotting. Finally, co-immunoprecipitation was used to determine any direct interactions between PDX1 and the differential proteins.
RESULTS 2DE gel proteomics identified seven differential proteins in SGC-PDX1 when compared with those in SGC-pcDNA. These included four heat shock proteins (HSPs; HSP70p1B, HSP70p8, HSP60, HSP27) and three other proteins (ER60, laminin receptor 1, similar to epsilon isoform of 14-3-3 protein). Immunoblotting validated the expression of the HSPs (HSP70, HSP60, HSP27). Furthermore, their expressions were lowered to 80%, 20% and 24%, respectively, in SGC-PDX1, while PDX1 exhibited a 9-fold increase, compared to SGC-pcDNA. However, qRT-PCR analysis revealed that mRNA levels of the HSPs were increased in SGC-PDX1, suggesting that the expression of the HSPs was post-translationally regulated by the PDX1 protein. Finally, co-immunoprecipitation failed to identify any direct interaction between PDX1 and HSP70 proteins.
CONCLUSION This study demonstrates the potential involvement of HSPs in PDX1-mediated effects on the genesis of gastric cancer.
Collapse
Affiliation(s)
- Juan Ma
- Department of Gastroenterology and Hepatology, Guangdong General Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute, Guangzhou 510080, Guangdong Province, China
| | - Bei-Bei Wang
- Department of Gastroenterology and Hepatology, Guangdong General Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute, Guangzhou 510080, Guangdong Province, China
| | - Xiao-Yan Ma
- Forensic Identification Institute, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
| | - Wei-Ping Deng
- Department of Gastroenterology and Hepatology, Guangdong General Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute, Guangzhou 510080, Guangdong Province, China
| | - Li-Shu Xu
- Department of Gastroenterology and Hepatology, Guangdong General Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute, Guangzhou 510080, Guangdong Province, China
| | - Wei-Hong Sha
- Department of Gastroenterology and Hepatology, Guangdong General Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
12
|
Taniguchi H, Hoshino D, Moriya C, Zembutsu H, Nishiyama N, Yamamoto H, Kataoka K, Imai K. Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer. Oncotarget 2018; 8:46856-46874. [PMID: 28423353 PMCID: PMC5564528 DOI: 10.18632/oncotarget.16776] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
PR domain zinc finger protein 14 (PRDM14) maintains stemness in embryonic stem cells via epigenetic mechanisms. Although PRDM14 is elevated in several cancers, it is unclear if and how PRDM14 confers stem cell-like properties and epigenetic changes to cancer cells. Here, we examined the phenotypic characteristics and epigenetic and gene expression profiles of cancer cells that differentially express PRDM14, and assessed the potential of PRDM14-targeted cancer therapy. PRDM14 expression was markedly increased in many different cancer types and correlated with poor survival of breast cancer patients. PRDM14 conferred stem cell-like phenotypes to cancer cells and regulated the expression of genes involved in cancer stemness, metastasis, and chemoresistance. PRDM14 also reduced the methylation of proto-oncogene and stemness gene promoters and PRDM14-binding regions were primarily occupied by histone H3 Lys-4 trimethylation (H3K4me3), both of which are positively correlated with gene expression. Moreover, strong PRDM14 binding sites coincided with promoters containing both H3K4me3 and H3K27me3 histone marks. Using calcium phosphate hybrid micelles as an RNAi delivery system, silencing of PRDM14 expression by chimera RNAi reduced tumor size and metastasis in vivo without causing adverse effects. Conditional loss of PRDM14 function also improved survival of MMTV-Wnt-1 transgenic mice, a spontaneous model of murine breast cancer. Our findings suggest that PRDM14 inhibition may be an effective and novel therapy for cancer stem cells.
Collapse
Affiliation(s)
- Hiroaki Taniguchi
- The Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Daisuke Hoshino
- Cancer Biology Department, The Kanagawa Cancer Center Research Institute, Kanagawa 241-0815, Japan
| | - Chiharu Moriya
- The Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hitoshi Zembutsu
- Division of Genetics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
| | - Hiroyuki Yamamoto
- Department of Gastroenterology and Hepatology, School of Medicine, St. Marianna Medical University, Kanagawa 216-0015, Japan
| | - Kazunori Kataoka
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kohzoh Imai
- The Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
13
|
Liu SH, Yu J, Sanchez R, Liu X, Heidt D, Willey J, Nemunaitis J, Brunicardi FC. A novel synthetic human insulin super promoter for targeting PDX-1-expressing pancreatic cancer. Cancer Lett 2018; 418:75-83. [PMID: 29309817 DOI: 10.1016/j.canlet.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
Our previous studies have shown that a rat insulin promoter II fragment (RIP) was used to effectively target pancreatic adenocarcinoma (PDAC) and insulinoma that over-express pancreatic and duodenal homeobox-1 (PDX-1). To enhance the activity and specificity of the human insulin promoter, we engineered a synthetic human insulin super-promoter (SHIP). Reporter assay demonstrated that SHIP1 was the most powerful promoter among all of the SHIPs and had far greater activity than the endogenous human insulin promoters and RIP in PDAC expressing PDX-1. Over-expression, knockdown and competitive inhibition of PDX-1 expression assay proved that PDX-1 is a critical transcript factor to regulate the activity of SHIP1. SHIP1-driven viral thymidine kinase followed by ganciclovir (SHIP1-TK/GCV) resulted in cytotoxicity to PDAC cells in vitro. Systemic delivery of SHIP1-TK/GCV in PDAC xenograft mice significantly suppressed PANC-1 tumor growth in vivo greater than RIP-TK/GCV and CMV-TK/GCV controls (p < .05). These preclinical data suggest that SHIP1 is a powerful novel promoter that can be used to target human PDAC expressing PDX-1 in clinical trials. Furthermore, this novel strategy of engineering synthetic super-promoters could be used for other cancer targets.
Collapse
Affiliation(s)
- Shi-He Liu
- Department of Surgery, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - Juehua Yu
- Department of Surgery, University of California at Los Angeles, CA, USA
| | - Robbi Sanchez
- Department of Surgery, University of California at Los Angeles, CA, USA
| | - Xiaochen Liu
- Department of Surgery, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - David Heidt
- Department of Surgery, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - James Willey
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - John Nemunaitis
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | | |
Collapse
|
14
|
Yu J, Liu SH, Sanchez R, Nemunaitis J, Rozengurt E, Brunicardi FC. Pancreatic cancer actionable genes in precision medicine and personalized surgery. Surgeon 2017; 15:24-29. [PMID: 27374183 PMCID: PMC5195911 DOI: 10.1016/j.surge.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/02/2016] [Accepted: 05/22/2016] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer with an overall 5-year survival rate less than 5% due to the poor early diagnosis and lack of effective therapeutic options. The most effective therapy remains surgery, however post-operative survival could be enhanced with effective adjuvant therapy. The massive information gained from Omics techniques on PDAC at the beginning of the 21st century is a remarkable accomplishment. However, the information gained from the omics data, including next generation sequencing data, has yet to successfully affect care of patients suffering with PDAC. Therefore, we propose the development of an actionable genomic platform that matches a patient's PDAC clinically actionable genes with potential targeted adjuvant therapies. Using this platform, PDX1 has been identified as a potential actionable gene for PDAC, therefore, RNAi therapy, gene therapy and small inhibitory drugs, all targeting PDX1, serve as potential targeted adjuvant therapies. Preclinical studies support the hypothesis that identification of PDAC actionable genes could permit translation of a patient's genomic information into precision targeted adjuvant therapy for PDAC.
Collapse
Affiliation(s)
- Juehua Yu
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Shi-He Liu
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Robbi Sanchez
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | | | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - F Charles Brunicardi
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA.
| |
Collapse
|
15
|
Roy N, Takeuchi KK, Ruggeri JM, Bailey P, Chang D, Li J, Leonhardt L, Puri S, Hoffman MT, Gao S, Halbrook CJ, Song Y, Ljungman M, Malik S, Wright CVE, Dawson DW, Biankin AV, Hebrok M, Crawford HC. PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. Genes Dev 2016; 30:2669-2683. [PMID: 28087712 PMCID: PMC5238727 DOI: 10.1101/gad.291021.116] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023]
Abstract
Aberrant activation of embryonic signaling pathways is frequent in pancreatic ductal adenocarcinoma (PDA), making developmental regulators therapeutically attractive. Here we demonstrate diverse functions for pancreatic and duodenal homeobox 1 (PDX1), a transcription factor indispensable for pancreas development, in the progression from normal exocrine cells to metastatic PDA. We identify a critical role for PDX1 in maintaining acinar cell identity, thus resisting the formation of pancreatic intraepithelial neoplasia (PanIN)-derived PDA. Upon neoplastic transformation, the role of PDX1 changes from tumor-suppressive to oncogenic. Interestingly, subsets of malignant cells lose PDX1 expression while undergoing epithelial-to-mesenchymal transition (EMT), and PDX1 loss is associated with poor outcome. This stage-specific functionality arises from profound shifts in PDX1 chromatin occupancy from acinar cells to PDA. In summary, we report distinct roles of PDX1 at different stages of PDA, suggesting that therapeutic approaches against this potential target need to account for its changing functions at different stages of carcinogenesis. These findings provide insight into the complexity of PDA pathogenesis and advocate a rigorous investigation of therapeutically tractable targets at distinct phases of PDA development and progression.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Kenneth K Takeuchi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jeanine M Ruggeri
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Peter Bailey
- Wolfson Wohl Cancer Research Center, University of Glasgow, Glasgow G61 1BD, Scotland
| | - David Chang
- Wolfson Wohl Cancer Research Center, University of Glasgow, Glasgow G61 1BD, Scotland
| | - Joey Li
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Laura Leonhardt
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Sapna Puri
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Megan T Hoffman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shan Gao
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yan Song
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shivani Malik
- Department of Medicine/ Hematology and Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Center, University of Glasgow, Glasgow G61 1BD, Scotland
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
16
|
Yamashita-Sugahara Y, Matsumoto M, Ohtaka M, Nishimura K, Nakanishi M, Mitani K, Okazaki Y. An inhibitor of fibroblast growth factor receptor-1 (FGFR1) promotes late-stage terminal differentiation from NGN3+ pancreatic endocrine progenitors. Sci Rep 2016; 6:35908. [PMID: 27786288 PMCID: PMC5081516 DOI: 10.1038/srep35908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) provide a potential resource for regenerative medicine. To identify the signalling pathway(s) contributing to the development of functional β cells, we established a tracing model consisting of dual knock-in hiPSCs (INS-Venus/NGN3-mCherry) (hIveNry) expressing the fluorescent proteins Venus and mCherry under the control of intrinsic insulin (INS) and neurogenin 3 (NGN3) promoters, respectively. hIveNry iPSCs differentiated into NGN3- and mCherry-positive endocrine progenitors and then into Venus-positive β cells expressing INS, PDX1, NKX6.1, and glucokinase (GCK). Using these cells, we conducted high-throughput screening of chemicals and identified a specific kinase inhibitor of fibroblast growth factor receptor 1 (FGFR1) that acted in a stage-dependent manner to promote the terminal differentiation of pancreatic endocrine cells, including β cells, from the intermediate stage of pancreatic endocrine progenitors while blocking the early development of pancreatic progenitors. This FGFR1 inhibitor augmented the expression of functional β cell markers (SLC30A8 and ABCC8) and improved glucose-stimulated INS secretion. Our findings indicate that the hIveNry model could provide further insights into the mechanisms of hiPS-derived β cell differentiation controlled by FGFR1-mediated regulatory pathways in a temporal-dependent fashion.
Collapse
Affiliation(s)
- Yzumi Yamashita-Sugahara
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Masahito Matsumoto
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Manami Ohtaka
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Kohnosuke Mitani
- Division of Gene Therapy, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Yasushi Okazaki
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
17
|
Yu J, Liu SH, Sanchez R, Nemunaitis J, Rozengurt E, Brunicardi FC. PDX1 associated therapy in translational medicine. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:214. [PMID: 27386488 DOI: 10.21037/atm.2016.03.51] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extremely poor prognosis and a low median survival due to lack of the early and reliable detection and effective therapeutic options, despite improvements observed for many other cancers in last decade. Pancreatic and duodenal homeobox 1 (PDX1), which is a homeodomain-containing transcription factor and a key regulator for insulin gene expression, β cell maturation and proper β cell function maintenance in the pancreas. Our previous studies revealed that PDX1 promotes tumorigenesis and it is a promising therapeutic target for PDAC. For translational purposes, we developed three therapeutic platforms utilizing RNA interference (RNAi), gene therapy and small inhibitory drug targeting PDX1, and further validated them in PDAC preclinical models both in vitro and in vivo. These PDX1 targeted therapies significantly inhibited PDX1 expression in PDAC cells, ablated PDX1-expressing human PDAC xenograft tumor growth, and prolonged survival in the PDAC mouse models. The data from these preclinical studies proved the translational potentials of PDX1 targeted therapies in PDAC and suggest that the strategy of developing PDX1 targeted therapies would permit a rapid bench-to-bedside translation of other relevant gene therapies, which would eventually benefit the patients suffering from this deadly disease.
Collapse
Affiliation(s)
- Juehua Yu
- 1 Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; 2 Mary Crowley Cancer Research Center, Dallas, TX, USA ; 3 Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Shi-He Liu
- 1 Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; 2 Mary Crowley Cancer Research Center, Dallas, TX, USA ; 3 Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Robbi Sanchez
- 1 Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; 2 Mary Crowley Cancer Research Center, Dallas, TX, USA ; 3 Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - John Nemunaitis
- 1 Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; 2 Mary Crowley Cancer Research Center, Dallas, TX, USA ; 3 Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Enrique Rozengurt
- 1 Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; 2 Mary Crowley Cancer Research Center, Dallas, TX, USA ; 3 Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - F Charles Brunicardi
- 1 Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; 2 Mary Crowley Cancer Research Center, Dallas, TX, USA ; 3 Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
18
|
Zhou G, Yu J, Wang A, Liu SH, Sinnett-Smith J, Wu J, Sanchez R, Nemunaitis J, Ricordi C, Rozengurt E, Brunicardi FC. Metformin Restrains Pancreatic Duodenal Homeobox-1 (PDX-1) Function by Inhibiting ERK Signaling in Pancreatic Ductal Adenocarcinoma. Curr Mol Med 2016; 16:83-90. [PMID: 26695692 PMCID: PMC4994969 DOI: 10.2174/1566524016666151222145551] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/20/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most potent and perilous diseases known, with a median survival rate of 3-5 months due to the combination of only advanced stage diagnosis and ineffective therapeutic options. Metformin (1,1-Dimethylbiguanide hydrochloride), the leading drug used for type 2 diabetes mellitus, emerges as a potential therapy for PDAC and other human cancers. Metformin exerts its anticancer action via a variety of adenosine monophosphate (AMP)-activated protein kinase (AMPK)- dependent and/or AMPK-independent mechanisms. We present data here showing that metformin downregulated pancreatic transcription factor pancreatic duodenal homeobox-1 (PDX-1), suggesting a potential novel mechanism by which metformin exerts its anticancer action. Metformin inhibited PDX-1 expression at both protein and mRNA levels and PDX-1 transactivity as well in PDAC cells. Extracellular signal-regulated kinase (ERK) was identified as a PDX-1-interacting protein by antibody array screening in GFP-PDX-1 stable HEK293 cells. Co-transfection of ERK1 with PDX-1 resulted in an enhanced PDX-1 expression in HEK293 cells in a dose-dependent manner. Immunoprecipitation/Western blotting analysis confirmed the ERK-PDX-1 interaction in PANC-1 cells stimulated by epidermal growth factor (EGF). EGF induced an enhanced PDX-1 expression in PANC-1 cells and this stimulation was inhibited by MEK inhibitor PD0325901. Metformin inhibited EGF-stimulated PDX-1 expression with an accompanied inhibition of ERK kinase activation in PANC- 1 cells. Taken together, our studies show that PDX-1 is a potential novel target for metformin in PDAC cells and that metformin may exert its anticancer action in PDAC by down-regulating PDX-1 via a mechanism involving inhibition of ERK signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - F C Brunicardi
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Wu JX, Liu SH, Nemunaitis JJ, Brunicardi FC. Liposomal insulin promoter-thymidine kinase gene therapy followed by ganciclovir effectively ablates human pancreatic cancer in mice. Cancer Lett 2015; 359:206-10. [PMID: 25596375 DOI: 10.1016/j.canlet.2015.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
Abstract
PDX1 is overexpressed in pancreatic cancer, and activates the insulin promoter (IP). Adenoviral IP-thymidine kinase and ganciclovir (TK/GCV) suppresses human pancreatic ductal carcinoma (PDAC) in mice, but repeated doses carry significant toxicity. We hypothesized that multiple cycles of liposomal IP-TK/GCV ablate human PDAC in SCID mice with minimal toxicity compared to adenoviral IP-TK/GCV. SCID mice with intraperitoneal human pancreatic cancer PANC-1 tumor implants were given a single cycle of 35 µg iv L-IP-TK, or four cycles of 1, 10, 20, 30, or 35 µg iv L-IP-TK (n = 20 per group), followed by intraperitoneal GCV. Insulin and glucose levels were monitored in mice treated with four cycles of 35 µg iv L-IP-TK. We found that four cycles of 10-35 µg L-IP-TK/GCV ablated more PANC-1 tumor volume compared to a single cycle with 35 µg. Mice that received four cycles of 10 µg L-IP-TK demonstrated the longest survival (P < 0.05), with a median survival of 126 days. In comparison, mice that received a single cycle of 35 µg L-IP-TK/GCV or GCV alone survived a median of 92 days and 68.7 days, respectively. There were no significant changes in glucose or insulin levels following treatment. In conclusion, multiple cycles of liposomal IP-TK/GCV ablate human PDAC in SCID mice with minimal toxicity, suggesting non-viral vectors are superior to adenoviral vectors for IP-gene therapy.
Collapse
Affiliation(s)
- James X Wu
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Shi-He Liu
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | | |
Collapse
|
20
|
Fokas E, O'Neill E, Gordon-Weeks A, Mukherjee S, McKenna WG, Muschel RJ. Pancreatic ductal adenocarcinoma: From genetics to biology to radiobiology to oncoimmunology and all the way back to the clinic. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1855:61-82. [PMID: 25489989 DOI: 10.1016/j.bbcan.2014.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death. Despite improvements in the clinical management, the prognosis of PDAC remains dismal. In the present comprehensive review, we will examine the knowledge of PDAC genetics and the new insights into human genome sequencing and clonal evolution. Additionally, the biology and the role of the stroma in tumour progression and response to treatment will be presented. Furthermore, we will describe the evidence on tumour chemoresistance and radioresistance and will provide an overview on the recent advances in PDAC metabolism and circulating tumour cells. Next, we will explore the characteristics and merits of the different mouse models of PDAC. The inflammatory milieu and the immunosuppressive microenvironment mediate tumour initiation and treatment failure. Hence, we will also review the inflammatory and immune escaping mechanisms and the new immunotherapies tested in PDAC. A better understanding of the different mechanisms of tumour formation and progression will help us to identify the best targets for testing in future clinical studies of PDAC.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/therapeutic use
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/therapy
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/immunology
- Humans
- Immunotherapy/methods
- Inflammation/pathology
- Mice
- Neoplastic Cells, Circulating/immunology
- Neoplastic Cells, Circulating/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/therapy
- Radiation Tolerance/genetics
Collapse
Affiliation(s)
- Emmanouil Fokas
- Department of Oncology, Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK.
| | - Eric O'Neill
- Department of Oncology, Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK
| | - Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Somnath Mukherjee
- Department of Oncology, Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK
| | - W Gillies McKenna
- Department of Oncology, Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK
| | - Ruth J Muschel
- Department of Oncology, Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK
| |
Collapse
|
21
|
Fendrich V, Lauth M. The role of pancreatic and duodenal homeobox 1 as a therapeutic target in pancreatic cancer. Expert Opin Ther Targets 2014; 18:1277-83. [PMID: 25078025 DOI: 10.1517/14728222.2014.945427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Pancreatic cancer is one of the most lethal cancer types known with no successful clinical therapy available and a 5-year survival rate of < 5%. Demographic calculations predict pancreatic cancer to be the second-leading cause of cancer-related deaths by 2030. Hence, the identification of novel drug targets and the subsequent development of novel therapeutic strategies are of utmost importance. AREAS COVERED In this review, the authors describe the role of the transcription factor pancreatic and duodenal homeobox 1 (Pdx1) in pancreatic organ development and pancreatic cancer. Published data suggest that Pdx1 possesses oncogenic traits fostering cell proliferation, inhibition of apoptosis and increased cell invasion. Resulting from these findings, the authors discuss the potential use of Pdx1 as an anticancer drug target. EXPERT OPINION In summary, Pdx1 should be considered as an interesting potential molecular target in future therapeutic approaches. Although no specific therapies exploiting Pdx1 are available at the moment and more preclinical data has to be accumulated, several putative applications in the areas of cancer diagnostics and therapy are conceivable.
Collapse
Affiliation(s)
- Volker Fendrich
- Philipps-University Marburg, Department of Surgery , Baldingerstrasse, D-35043 Marburg , Germany +49 64215869141 ; +49 64215863851 ;
| | | |
Collapse
|
22
|
Zhou G, Sinnett-Smith J, Liu SH, Yu J, Wu J, Sanchez R, Pandol SJ, Abrol R, Nemunaitis J, Rozengurt E, Brunicardi FC. Down-regulation of pancreatic and duodenal homeobox-1 by somatostatin receptor subtype 5: a novel mechanism for inhibition of cellular proliferation and insulin secretion by somatostatin. Front Physiol 2014; 5:226. [PMID: 25009500 PMCID: PMC4069483 DOI: 10.3389/fphys.2014.00226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/31/2014] [Indexed: 01/29/2023] Open
Abstract
Somatostatin (SST) is a regulatory peptide and acts as an endogenous inhibitory regulator of the secretory and proliferative responses of target cells. SST’s actions are mediated by a family of seven transmembrane domain G protein-coupled receptors that comprise five distinct subtypes (SSTR1-5). SSTR5 is one of the major SSTRs in the islets of Langerhans. Homeodomain-containing transcription factor pancreatic and duodenal homeobox-1 (PDX-1) is essential for pancreatic development, β cell differentiation, maintenance of normal β cell functions in adults and tumorigenesis. Recent studies show that SSTR5 acts as a negative regulator for PDX-1 expression and that SSTR5 mediates somatostatin’s inhibitory effect on cell proliferation and insulin expression/excretion through down-regulating PDX-1 expression. SSTR5 exerts its inhibitory effect on PDX-1 expression at both the transcriptional level by down-regulating PDX-1 mRNA and the post-translational level by enhancing PDX-1 ubiquitination. Identification of PDX-1 as a transcriptional target for SSTR5 may help in guiding the choice of therapeutic cancer treatments.
Collapse
Affiliation(s)
- Guisheng Zhou
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Jim Sinnett-Smith
- CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Shi-He Liu
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Juehua Yu
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - James Wu
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Robbi Sanchez
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Stephen J Pandol
- CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; Department of Medicine at Cedars Sinai Medical Center Los Angeles, CA, USA ; Veterans Affairs Los Angeles, CA, USA
| | - Ravinder Abrol
- Materials and Process Simulation Center, California Institute of Technology Pasadena, CA, USA
| | - John Nemunaitis
- Gradalis, Inc., Dallas, TX, USA ; Mary Crowley Cancer Research Centers Dallas, TX, USA
| | - Enrique Rozengurt
- CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - F Charles Brunicardi
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| |
Collapse
|
23
|
Wu J, Liu S, Yu J, Zhou G, Rao D, Jay CM, Kumar P, Sanchez R, Templeton N, Senzer N, Maples P, Nemunaitis J, Brunicardi FC. Vertically integrated translational studies of PDX1 as a therapeutic target for pancreatic cancer via a novel bifunctional RNAi platform. Cancer Gene Ther 2014; 21:48-53. [PMID: 24457987 DOI: 10.1038/cgt.2013.84] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) represents a powerful, new tool for scientific investigation as well as a promising new form of targeted gene therapy, with applications currently in clinical trials. Bifunctional short hairpin RNA (shRNA) are synthetic RNAi molecules, engineered to utilize multiple endogenous RNAi pathways to specifically silence target genes. Pancreatic and duodenal homeobox 1 (PDX1) is a key regulator of pancreatic development, β-cell differentiation, normal β-cell function and pancreatic cancer. Our aim is to review the process of identifying PDX1 as a specific, potential RNAi target in pancreatic cancer, as well as the underlying mechanisms and various forms of RNAi, with subsequent testing and development of PDX1-targeted bifunctional shRNA therapy.
Collapse
Affiliation(s)
- J Wu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - S Liu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - J Yu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - G Zhou
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - D Rao
- Gradalis, Carrollton, TX, USA
| | - C M Jay
- Gradalis, Carrollton, TX, USA
| | - P Kumar
- Gradalis, Carrollton, TX, USA
| | - R Sanchez
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - N Senzer
- 1] Gradalis, Carrollton, TX, USA [2] Mary Crowley Cancer Research Center, Dallas, TX, USA
| | | | - J Nemunaitis
- 1] Gradalis, Carrollton, TX, USA [2] Mary Crowley Cancer Research Center, Dallas, TX, USA
| | - F C Brunicardi
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
24
|
Assessment of intravenous pbi-shRNA PDX1 nanoparticle (OFHIRNA-PDX1) in yucatan swine. Cancer Gene Ther 2013; 20:683-9. [PMID: 24287722 DOI: 10.1038/cgt.2013.68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/17/2013] [Indexed: 01/09/2023]
Abstract
PDX1 (pancreatic and duodenal homeobox 1) is overexpressed in pancreatic cancer, and its reduction results in tumor regression. Bi-functional pbi-shRNA PDX1 nanoparticle (OFHIRNA-PDX1) utilizes the endogenous micro-RNA biogenesis pathway to effect cleavage- and non-cleavage-dependent degradation of PDX1 mRNA. We have shown that OFHIRNA-PDX1 reduces pancreatic tumor volume in xenograft models. Thus, we are now exploring biorelevant large animal safety of OFHIRNA-PDX1. Mini pigs were chosen as the biorelevant species based on the similarity of human and pig PDX1 target sequence. In the initial study, animals developed fever, lethargy, hyporexia and cutaneous hyperemia following administration of OFHIRNA-PDX1. Twenty-one days later, the same animals demonstrated less toxicity with a second OFHIRNA-PDX1 infusion in conjunction with a prophylactic regimen involving dexamethasone, diphenhydramine, Indocin and ranitidine. In a new group of animals, PDX1 protein (31 kDa) expression in the pancreas was significantly repressed at 48 and 72 h (85%, P=0.018 and 88%, P=0.013; respectively) following a single infusion of OFHIRNA-PDX1 but recovered to normal state within 7 days. In conclusion, a single intravenous infusion of OFHIRNA-PDX1 in conjunction with premedication in pigs was well tolerated and demonstrated significant PDX1 knockdown.
Collapse
|
25
|
Liu SH, Zhou G, Yu J, Wu J, Nemunaitis J, Senzer N, Dawson D, Li M, Fisher WE, Brunicardi FC. Notch1 activation up-regulates pancreatic and duodenal homeobox-1. Genes (Basel) 2013; 4:358-74. [PMID: 24705209 PMCID: PMC3924823 DOI: 10.3390/genes4030358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/02/2013] [Accepted: 07/11/2013] [Indexed: 12/28/2022] Open
Abstract
Transcription factor pancreatic and duodenal homeobox-1 (PDX-1) plays an essential role in pancreatic development, β-cell differentiation, maintenance of normal β-cell function and tumorigenesis. PDX-1 expression is tightly controlled through a variety of mechanisms under different cellular contexts. We report here that overexpression of Notch1 intracellular domain (NICD), an activated form of Notch1, enhanced PDX-1 expression in both PDX-1 stable HEK293 cells and mouse insulinoma β-TC-6 cells, while NICD shRNA inhibited the enhancing effect. NICD-enhanced PDX-1 expression was accompanied by increased insulin expression/secretion and cell proliferation in β-TC-6 cells, which was reversed by NICD shRNA. Cre activation-induced specific expression of NICD in islet β cells of transgenic βNICD+/+ mice induced increased expression of PDX-1, insulin and proliferating cell nuclear antigen (PCNA) and decreased expression of p27 with accompanied fasting hyperinsulinemia and hypoglycemia and altered responses to intraperitoneal glucose tolerance test. Systemically delivered NICD shRNA suppressed islet expression of PDX-1 and reversed the hypoglycemia and hyperinsulinemia. Moreover, expression levels of NICD were correlated with those of PDX-1 in human pancreatic neuroendocrine tumor. Thus, Notch1 acts as a positive regulator for PDX-1 expression, cooperates with PDX-1 in the development of insulin overexpression and islet cell neoplasia and represents a potential therapeutic target for islet neoplasia.
Collapse
Affiliation(s)
- Shi-He Liu
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA.
| | - Guisheng Zhou
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA.
| | - Juehua Yu
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA.
| | - James Wu
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA.
| | | | - Neil Senzer
- Mary Crowley Cancer Research Center, Dallas, TX 75230, USA.
| | - David Dawson
- CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA.
| | - Min Li
- Department of Neurosurgery, UT-Houston School of Medicine, Houston, TX 77030, USA.
| | - William E Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - F Charles Brunicardi
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
26
|
Marzioni M, Saccomanno S, Agostinelli L, Rychlicki C, De Minicis S, Pierantonelli I, Trauner M, Fickert P, Müller T, Shanmukhappa K, Trozzi L, Candelaresi C, Baroni GS, Benedetti A. PDX-1/Hes-1 interactions determine cholangiocyte proliferative response to injury in rodents: possible implications for sclerosing cholangitis. J Hepatol 2013. [PMID: 23207146 DOI: 10.1016/j.jhep.2012.11.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Cholangiocyte proliferation plays a role in the progression of cholangiopathies, in particular in primary sclerosing cholangitis. The mechanisms regulating cholangiocyte proliferation are still undefined. Pancreatic Duodenal Homeobox protein 1 (PDX-1) is expressed by reactive cholangiocytes. In the adult pancreas, PDX-1 regulates the proliferative response to injury of ductal cells. Its effects can be counteracted by Hairy and enhancer of split 1 (Hes-1). We aimed at studying whether PDX-1/Hes-1 interactions regulate cholangiocyte proliferation in response to injury. METHODS The effect of the loss of PDX-1 on cholangiocyte proliferation was studied in vitro. In vivo PDX-1-heterozygous (+/-) mice were subjected to either DDC feeding (a model of sclerosing cholangitis) or to bile duct ligation (BDL). PDX-1/Hes-1 interactions on cell proliferation were determined by exposure to All-trans Retinoic Acid (At-RA), an inductor of Hes-1. RESULTS In vitro, cholangiocyte proliferation was undetectable in cells pre-treated with PDX-1 siRNA. In vivo, increases in bile duct mass and collagen deposition observed after DDC feeding or BDL were significantly reduced in PDX-1(+/-) mice. Hes-1 expression is reduced in proliferating cholangiocytes; At-RA induced a dose-dependent increase in Hes-1 and a decrease in PDX-1 expression. At-RA neutralized the increases in PDX-1 expression and cell proliferation, both in vitro and in vivo in DDC mice. PDX-1 is overexpressed and Hes-1 downregulated in cholangiocytes isolated from PSC livers. CONCLUSIONS Hes-1 downregulation allows PDX-1 to act as a major determinant of cholangiocyte proliferation in response to cholestatic injury. These findings provide novel mechanistic insights into the pathophysiology of cholangiopathies.
Collapse
Affiliation(s)
- Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang Y, Chen L, Yang J, Fleming JB, Chiao PJ, Logsdon CD, Li M. Study human pancreatic cancer in mice: how close are they? Biochim Biophys Acta Rev Cancer 2012; 1835:110-8. [PMID: 23147198 DOI: 10.1016/j.bbcan.2012.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer deaths and is characterized by dismal prognosis. Xenograft and genetically engineered mouse (GEM) models have recapitulated critical elements of human pancreatic cancer, providing useful tools to probe the underlying cause of cancer etiology. In this review, we provide a brief description of the common genetic lesions that occur during the development of pancreatic cancer. Next, we describe the strengths and weaknesses of these two models and highlight key discoveries each has made. Although the relative merits of GEM and xenograft pancreatic cancer mouse models are subject to debate, both systems have and will continue to yield essential insights in understanding pancreatic cancer etiology. This information is critical for the development of new methods to screen, treat, and prevent pancreatic cancer.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Cancer Biology, the University of Texas MD Anderson Cancer Center, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
PDX-1 is a therapeutic target for pancreatic cancer, insulinoma and islet neoplasia using a novel RNA interference platform. PLoS One 2012. [PMID: 22905092 DOI: 10.1371/journal.pone.004045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pancreatic and islet neoplasia specimens revealed marked PDX-1 overexpression, suggesting PDX-1 as a "drugable" target within these diseases. To do so, a novel RNA interference effector platform, bifunctional shRNA(PDX-1), was developed and studied in mouse and human cell lines as well as in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Systemic delivery of bi-shRNA(humanPDX-1) lipoplexes resulted in marked reduction of tumor volume and improved survival in a human pancreatic cancer xenograft mouse model. bi-shRNA(mousePDX-1) lipoplexes prevented death from hyperinsulinemia and hypoglycemia in an insulinoma mouse model. shRNA(mousePDX-1) lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of islet neoplasia. PDX-1 was overexpressed in pancreatic neuroendocrine tumors and nesidioblastosis. These data demonstrate that PDX-1 RNAi therapy controls hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia, therefore, PDX-1 is a potential therapeutic target for these pancreatic diseases.
Collapse
|
29
|
PDX-1 is a therapeutic target for pancreatic cancer, insulinoma and islet neoplasia using a novel RNA interference platform. PLoS One 2012; 7:e40452. [PMID: 22905092 PMCID: PMC3414490 DOI: 10.1371/journal.pone.0040452] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/07/2012] [Indexed: 11/19/2022] Open
Abstract
Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pancreatic and islet neoplasia specimens revealed marked PDX-1 overexpression, suggesting PDX-1 as a "drugable" target within these diseases. To do so, a novel RNA interference effector platform, bifunctional shRNA(PDX-1), was developed and studied in mouse and human cell lines as well as in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Systemic delivery of bi-shRNA(humanPDX-1) lipoplexes resulted in marked reduction of tumor volume and improved survival in a human pancreatic cancer xenograft mouse model. bi-shRNA(mousePDX-1) lipoplexes prevented death from hyperinsulinemia and hypoglycemia in an insulinoma mouse model. shRNA(mousePDX-1) lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of islet neoplasia. PDX-1 was overexpressed in pancreatic neuroendocrine tumors and nesidioblastosis. These data demonstrate that PDX-1 RNAi therapy controls hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia, therefore, PDX-1 is a potential therapeutic target for these pancreatic diseases.
Collapse
|
30
|
Zhou G, Liu SH, Shahi KM, Wang H, Duan X, Lin X, Feng XH, Li M, Fisher WE, Demayo FJ, Dawson D, Brunicardi FC. Negative regulation of pancreatic and duodenal homeobox-1 by somatostatin receptor subtype 5. Mol Endocrinol 2012; 26:1225-34. [PMID: 22669743 DOI: 10.1210/me.2012-1095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Somatostatin receptor subtype 5 (SSTR5) mediates the inhibitory effect of somatostatin and its analogs on insulin expression/secretion and islet cell proliferation. We provide biochemical and genetic evidence that SSTR5 exerted its physiological actions via down-regulating pancreatic and duodenal homeobox-1 (PDX-1), a β-cell-specific homeodomain-containing transcription factor. Cotransfection of SSTR5 with PDX-1 resulted in dose-dependent inhibition of PDX-1 expression in human embryonic kidney 293 cells. SSTR5 agonist RPL-1980 inhibited PDX-1 expression and abolished glucagon-like peptide 1-stimulated PDX-1 expression in mouse insulinoma β-TC-6 cells. SSTR5 knockdown by short hairpin RNA led to increased PDX-1 expression that was accompanied by enhanced insulin secretion stimulated by high glucose in β-TC6 cells and alternated expressions of cell cycle proteins that favor cell proliferation in mouse insulinoma MIN6 cells. Quantitative RT-PCR analysis showed that cotransfected SSTR5 inhibited PDX-1 mRNA expression, whereas knockdown of SSTR5 increased PDX-1 mRNA expression. In addition, we found that cotransfected wild-type SSTR5 increased PDX-1 ubiquitination in human embryonic kidney 293 cells, whereas SSTR5 P335L, a hypofunctional single nucleotide polymorphism of SSTR5, inhibited PDX-1 ubiquitination. SSTR5 knockout resulted in increased expression of PDX-1, insulin, and proliferating cell nuclear antigen in the islets of sstr(-/-) mice. Immunohistochemistry analysis showed that SSTR5 P335L was associated with elevated expression of PDX-1 in human pancreatic neuroendocrine tumor. Taken together, our studies demonstrated that SSTR5 is a negative regulator for PDX-1 expression and that SSTR5 may mediate the inhibitory effects of somatostatin and its analogs on insulin expression/secretion and cell proliferation via down-regulating PDX-1 at both transcriptional and posttranslational levels.
Collapse
Affiliation(s)
- Guisheng Zhou
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ni X, Yang J, Li M. Imaging-guided curative surgical resection of pancreatic cancer in a xenograft mouse model. Cancer Lett 2012; 324:179-85. [PMID: 22617626 DOI: 10.1016/j.canlet.2012.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer related deaths in North America. The poor survival statistics are due to the fact that there are no reliable tests for early diagnosis and no effective therapies once metastasis has occurred. Surgical resection is the only curative treatment for pancreatic cancer; however, only less than 15% of the patients are eligible for surgery at diagnosis. New therapies are urgently needed for this malignant disease. And combinational therapy including surgery, chemotherapy and molecular targeted therapy may further improve the efficacy of individual therapies. However, a reliable mouse model which mimics the human disease and can be used for testing the surgical treatment and surgery-based combinational therapy is not available. In this study, we have established a mouse model for curative surgical resection of pancreatic cancer. Human pancreatic cancer cells were used to create orthotopic xenografts in nude mice, distal pancreatectomy was performed using imaging-guided technology to remove the pancreatic tumors, and sham surgery was performed in the control group. All mice survived the operation and no complication was observed. Surgical resection at early stage improved the survival rate and quality of life of the mice compared with the sham surgery and surgical resection at the late stage. If combined with other therapies such as chemotherapy and molecular targeted therapy, it could further improve the outcome of pancreatic cancer. This mouse model is a useful tool to study the surgical therapy and the tumor recurrence of pancreatic cancer, and could potentially impact the therapeutic choices for this deadly disease.
Collapse
Affiliation(s)
- Xiaoling Ni
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | |
Collapse
|
32
|
Igarashi S, Matsubara T, Harada K, Ikeda H, Sato Y, Sasaki M, Matsui O, Nakanuma Y. Bile duct expression of pancreatic and duodenal homeobox 1 in perihilar cholangiocarcinogenesis. Histopathology 2012; 61:266-76. [PMID: 22594685 DOI: 10.1111/j.1365-2559.2012.04218.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIMS Pancreatic and duodenal homeobox 1 (Pdx1) is a transcription factor that is crucial in embryogenic development and differentiation of pancreas, and its overexpression is reportedly involved in the progression of many malignancies, including pancreatic carcinoma. In this study, the role of Pdx1 was examined in cholangiocarcinogenesis. METHODS AND RESULTS Forty-three cases of human cholangiocarcinoma (CC) and 66 cases of hepatolithiasis or primary sclerosing cholangitis (PSC) with biliary intraepithelial neoplasia (BilIN) lesions and also eight fetal and 20 adult normal livers were examined immunohistochemically. Pdx1 was constantly expressed in the nuclei of fetal bile ducts, but was virtually absent in the large bile ducts of adults. By contrast, Hairy and enhancer of split 1 (Hes1), which represses pancreatic exocrine and endocrine differentiation, was expressed frequently in the adult bile ducts. Pdx1 was expressed in 67% of invasive CCs. In large bile ducts, expression of Pdx1 increased while that of Hes1 decreased during the progression of BilIN lesions to CC. Expression of Pdx1 correlated with proliferative activities in CCs. In an in vitro study, all three CC cell lines expressed Pdx1 mRNA and protein. CONCLUSION Up-regulation of Pdx1 is a feature of cholangiocarcinogenesis associated with chronic cholangitis. Furthermore, expression of Pdx1 in CC is related to increased proliferative activity in CCs.
Collapse
Affiliation(s)
- Saya Igarashi
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Reversible masking using low-molecular-weight neutral lipids to achieve optimal-targeted delivery. JOURNAL OF DRUG DELIVERY 2012; 2012:173465. [PMID: 22655199 PMCID: PMC3359711 DOI: 10.1155/2012/173465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/09/2012] [Accepted: 02/27/2012] [Indexed: 12/28/2022]
Abstract
Intravenous injection of therapeutics is required to effectively treat or cure metastatic cancer, certain cardiovascular diseases, and other acquired or inherited diseases. Using this route of delivery allows potential uptake in all disease targets that are accessed by the bloodstream. However, normal tissues and organs also have the potential for uptake of therapeutic agents. Therefore, investigators have used targeted delivery to attempt delivery solely to the target cells; however, use of ligands on the surface of delivery vehicles to target specific cell surface receptors is not sufficient to avoid nonspecific uptake. PEGylation has been used for decades to try to avoid nonspecific uptake but suffers from many problems known as “The PEGylation Dilemma.” We have solved this dilemma by replacing PEGylation with reversible masking using low-molecular-weight neutral lipids in order to achieve optimal-targeted delivery solely to target cells. Our paper will focus on this topic.
Collapse
|
34
|
Abstract
Since its discovery in 1998, RNA interference (RNAi) has revolutionized basic and clinical research. Small RNAs, including small interfering RNA (siRNA), short hairpin RNA (shRNA) and microRNA (miRNA), mediate RNAi effects through either cleavage-dependent or cleavage-independent RNA inducible silencing complex (RISC) effector processes. As a result of its efficacy and potential, RNAi has been elevated to the status of "blockbuster therapeutic" alongside recombinant protein and monoclonal antibody. RNAi has already contributed to our understanding of neoplasia and has great promise for anti-cancer therapeutics, particularly so for personalized cancer therapy. Despite this potential, several hurdles have to be overcome for successful development of RNAi-based pharmaceuticals. This review will discuss the potential for, challenges to, and the current status of RNAi-based cancer therapeutics.
Collapse
|
35
|
Zhou G, Gingras MC, Liu SH, Li D, Li Z, Catania RL, Stehling KM, Li M, Paganelli G, Gibbs RA, DeMayo F, Fisher WE, Brunicardi FC. The hypofunctional effect of P335L single nucleotide polymorphism on SSTR5 function. World J Surg 2011; 35:1715-24. [PMID: 21249361 PMCID: PMC4137969 DOI: 10.1007/s00268-010-0939-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Somatostatin receptor subtype 5 (SSTR5) mediates the inhibitory effect of somatostatin on insulin expression/secretion and cell proliferation. A number of single nucleotide polymorphisms (SNPs) of SSTR5 have been identified, including P335L, a nonsynonymous SNP located in the protein C-terminal region and encrypted by the codon CCG (proline) or the codon CTG (leucine). In the present study we sought to determine the distribution of the SSTR5 P335L SNP in a cohort of pancreatic cancer patients and whether the P335L SNP affected cellular function of SSTR5 in human pancreatic cancer. METHODS The P335L germline genotype of 246 patients with pancreatic cancer (213 Caucasians, 16 Hispanics, and 17 African Americans) and 17 human pancreatic cell lines was determined with the TaqMan SNP Genotyping assay. Human SSTR5 leucine variant (L335) was generated by performing site-directed mutagenesis using SSTR5 proline variant (P335) as a template. Transient transfections were performed in HEK293, Mia PaCa-2, and β-TC-6 cells using Lipofectamine 2000. The expression of SSTR5 L335 was determined with a mouse monoclonal anti-SSTR5 L335 antibody generated in our laboratory. The cell proliferation rate was measured by performing MTS assays. Insulin concentration was measured by performing ELISA assays. RESULTS Genotyping of the patients' blood indicated that the frequency of the T allele (CT and TT genotypes) in codon 335 of SSTR5 in Caucasians, Hispanics, and African Americans was 52, 69, and 35%, respectively, which was race-dependent. Statistical analysis indicated that association between the frequency of the T allele and the existence of pancreatic cancer in each race missed significance perhaps due to limited sample size. In 17 tested human pancreatic cancer cell lines, 5 (Capan-2, HPAF-II, Panc03.27, Panc-1, and -3) were homozygous (TT genotype) and 9, including Mia PaCa-2, were heterozygous (CT genotype). Overexpression of SSTR5 L335 in Mia PaCa-2 cells enhanced cell proliferation compared to overexpression of SSTR5 P335. Overexpression of SSTR5 P335 enhanced the inhibitory effect of SSTR5 agonist RPL-1980 on cell proliferation of Mia PaCa-2 cells and glucose-stimulated insulin secretion from mouse insulinoma cells, while overexpression of SSTR5 L335 blocked the inhibitory effect of RPL-1980. Overexpression of SSTR5 L335 enhanced PDX-1 expression in Mia PaCa-2 cells. A specific monoclonal antibody was generated to detect SSTR5 P335L. CONCLUSION SSTR5 P335L SNP widely exists in the human population, in patients with pancreatic cancer, and is race-dependent. The SNP is also present in selected human pancreatic cancer cell lines. In contrast to SSTR5 P335, overexpression of the SSTR5 L335 variant resulted in cellular proliferation and PDX-1 overexpression in human pancreatic cancer cells. Its overexpression blocked the inhibitory effect of an SSTR5-specific analog on human pancreatic cancer cell proliferation and on glucose-stimulated insulin secretion from mouse insulinoma cells. These data suggest that SSTR5 P335L is a hypofunctional protein with a potentially harmful effect on function, as well as potential latent effect, and therefore it could affect the clinical response to somatostatin analog therapy for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Guisheng Zhou
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Marie-Claude Gingras
- Human Genome Sequencing Center; Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Shi-He Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Donghui Li
- Departments of Gastrointestinal Medical and Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, 77030, USA
| | - Zhijun Li
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Robbi L. Catania
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Kelly M. Stehling
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Min Li
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Giovanni Paganelli
- Division of Nuclear Medicine, European Institute of Oncology, Via Ripamonti 435 20141, Milan, Italy
| | - Richard A Gibbs
- Human Genome Sequencing Center; Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Franco DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - William E. Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - F. Charles Brunicardi
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| |
Collapse
|
36
|
Long J, Zhang Y, Yu X, Yang J, LeBrun D, Chen C, Yao Q, Li M. Overcoming drug resistance in pancreatic cancer. Expert Opin Ther Targets 2011; 15:817-28. [PMID: 21391891 PMCID: PMC3111812 DOI: 10.1517/14728222.2011.566216] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Pancreatic cancer has the worst survival rate of all cancers. The current standard care for metastatic pancreatic cancer is gemcitabine, however, the success of this treatment is poor and overall survival has not improved for decades. Drug resistance (both intrinsic and acquired) is thought to be a major reason for the limited benefit of most pancreatic cancer therapies. AREAS COVERED Previous studies have indicated various mechanisms of drug resistance in pancreatic cancer, including changes in individual genes or signaling pathways, the influence of the tumor microenvironment, and the presence of highly resistant stem cells. This review summarizes recent advances in the mechanisms of drug resistance in pancreatic cancer and potential strategies to overcome this. EXPERT OPINION Increasing drug delivery efficiency and decreasing drug resistance is the current aim in pancreatic cancer treatment, and will also benefit the treatment of other cancers. Understanding the molecular and cellular basis of drug resistance in pancreatic cancer will lead to the development of novel therapeutic strategies with the potential to sensitize pancreatic cancer to chemotherapy, and to increase the efficacy of current treatments in a wide variety of human cancers.
Collapse
Affiliation(s)
- Jiang Long
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pancreas & Hepatobiliary Surgery, Pancreatic Cancer Center/Institute, Cancer Hospital, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032, People’s Republic of China
| | - Yuqing Zhang
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xianjun Yu
- Department of Pancreas & Hepatobiliary Surgery, Pancreatic Cancer Center/Institute, Cancer Hospital, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032, People’s Republic of China
| | - Jingxuan Yang
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
- The Vivian L. Smith Department of Neurosurgery, the University of Texas Health Science Center at Houston, Medical School, Houston, Texas 77030, USA
| | - Drake LeBrun
- The Vivian L. Smith Department of Neurosurgery, the University of Texas Health Science Center at Houston, Medical School, Houston, Texas 77030, USA
| | - Changyi Chen
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qizhi Yao
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Min Li
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
- The Vivian L. Smith Department of Neurosurgery, the University of Texas Health Science Center at Houston, Medical School, Houston, Texas 77030, USA
| |
Collapse
|
37
|
Zou G, Liu T, Zhang L, Liu Y, Li M, Du X, Xu F, Guo L, Liu Z. Induction of pancreatic β-cell-like cells from CD44+/CD105+ human amniotic fluids via epigenetic regulation of the pancreatic and duodenal homeobox factor 1 promoter. DNA Cell Biol 2011; 30:739-48. [PMID: 21612404 DOI: 10.1089/dna.2010.1144] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic and duodenal homeobox factor 1 (PDX-1) maintains β-cell function and differentiation via direct regulation of multiple islet cell genes. However, the molecular mechanisms involved in this process remain unknown. Here, we show that PDX-1 plays an important role in the induction of CD44+/CD105+ human amniotic fluid cells (HuAFCs) into functional pancreatic β-cell-like cells in vitro. CD44+/CD105+ HuAFCs were transfected with either siRNA targeting PDX-1 (siRNA-PDX-1) or mock plasmid (siRNA-MOCK). Following induction, siRNA-MOCK-transfected cells differentiated into β-cell-like cells that expressed multiple islet cell markers and produced insulin and C-peptide in a glucose-regulated manner. However, siRNA-PDX-1-transfected cells did not fully differentiate into β-cell-like cells. Further, we observed epigenetic changes at the PDX-1 gene locus in induced CD44(+)/CD105(+) HuAFCs. Therefore, CD44+/CD105+ HuAFCs could be a source of human pancreatic β-cell-like cells with potential uses in cell replacement therapy for diabetes.
Collapse
Affiliation(s)
- Gang Zou
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Phadke AP, Jay CM, Wang Z, Chen S, Liu S, Haddock C, Kumar P, Pappen BO, Rao DD, Templeton NS, Daniels EQ, Webb C, Monsma D, Scott S, Dylewski D, Frieboes HB, Brunicardi FC, Senzer N, Maples PB, Nemunaitis J, Tong AW. In vivo safety and antitumor efficacy of bifunctional small hairpin RNAs specific for the human Stathmin 1 oncoprotein. DNA Cell Biol 2011; 30:715-26. [PMID: 21612405 DOI: 10.1089/dna.2011.1240] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bifunctional small hairpin RNAs (bi-shRNAs) are functional miRNA/siRNA composites that are optimized for posttranscriptional gene silencing through concurrent mRNA cleavage-dependent and -independent mechanisms (Rao et al., 2010 ). We have generated a novel bi-shRNA using the miR30 scaffold that is highly effective for knockdown of human stathmin (STMN1) mRNA. STMN1 overexpression well documented in human solid cancers correlates with their poor prognosis. Transfection with the bi-shSTMN1-encoding expression plasmid (pbi-shSTMN1) markedly reduced CCL-247 human colorectal cancer and SK-Mel-28 melanoma cell growth in vitro (Rao et al., 2010 ). We now examine in vivo the antitumor efficacy of this RNA interference-based approach with human tumor xenografted athymic mice. A single intratumoral (IT) injection of pbi-shSTMN1 (8 μg) reduced CCL-247 tumor xenograft growth by 44% at 7 days when delivered as a 1,2-dioleoyl-3-trimethyl-ammoniopropane:cholesterol liposomal complex. Extended growth reductions (57% at day 15; p < 0.05) were achieved with three daily treatments of the same construct. STMN1 protein reduction was confirmed by immunoblot analysis. IT treatments with pbi-shSTMN1 similarly inhibited the growth of tumorgrafts derived from low-passage primary melanoma (≥70% reduction for 2 weeks) and abrogated osteosarcoma tumorgraft growth, with the mature bi-shRNA effector molecule detectable for up to 16 days after last injection. Antitumor efficacy was evident for up to 25 days posttreatment in the melanoma tumorgraft model. The maximum tolerated dose by IT injection of >92 μg (Human equivalent dose [HED] of >0.3 mg/kg) in CCL-247 tumor xenograft-bearing athymic mice was ∼10-fold higher than the extrapolated IC(50) of 9 μg (HED of 0.03 mg/kg). Healthy, immunocompetent rats were used as biorelevant models for systemic safety assessments. The observed maximum tolerated dose of <100 μg for intravenously injected pbi-shSTMN1 (mouse equivalent of <26.5 μg; HED of <0.09 mg/kg) confirmed systemic safety of the therapeutic dose, hence supporting early-phase assessments of clinical safety and preliminary efficacy.
Collapse
|
39
|
Liu SH, Smyth-Templeton N, Davis AR, Davis EA, Ballian N, Li M, Liu H, Fisher W, Brunicardi FC. Multiple treatment cycles of liposome-encapsulated adenoviral RIP-TK gene therapy effectively ablate human pancreatic cancer cells in SCID mice. Surgery 2011; 149:484-95. [PMID: 21295812 DOI: 10.1016/j.surg.2010.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 11/24/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adenoviral gene therapy has been applied widely for cancer therapy; however, transient gene expression as result of humoral immunoneutralization response to adenovirus limits its effect. The purpose of this study is to determine whether DOTAP:cholesterol liposome could shield adenovirus from neutralizing antibody and permit the use of multiple cycles of intravenous liposome encapsulated serotype 5 adenoviral rat insulin promoter directed thymidine kinase (L-A-5-RIP-TK) with ganciclovir (GCV) to enhance its effect. METHODS The effect of multiple cycles of systemic L-A-5-RIP-TK/GCV therapy was evaluated in grouped PANC-1 SCID mice treated with different numbers of cycles. Humoral immune response to A-5-RIP-TK or L-A-5-RIP-TK was assessed using C57/B6J mice challenged with adenovirus or liposome adenovirus complex. RESULTS The minimal residual tumor burden (3.2 ± 0.6 mm(3)) and greatest survival time (153.0 ± 6 days) were obtained in the mice receiving 4 and 3 cycles of therapy, respectively. Toxicity to islet cells associated with RIP-TK/GCV therapy was observed after 4 cycles. DOTAP:chol-encapsulated adenovectors were able to protect adenovectors from the neutralization of high titer of anti-adenoviral antibodies induced by itself. CONCLUSION Multiple treatment cycles of L-A-5-RIP-TK/GCV ablate human PANC-1 cells effectively in SCID mice; however, the mice become diabetic and have substantial mortality after the 4th cycle. Liposome-encapsulated adenovirus is functionally resistant to the neutralizing effects of anti-adenoviral antibodies, suggesting feasibility of multiple cycles of therapy. Liposome encapsulation of the adenovirus may be a promising strategy for repeated delivery of systemic adenoviral gene therapy.
Collapse
Affiliation(s)
- Shi-He Liu
- Michael E. DeBakey Department of Surgery, Elkins Pancreas Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Balentine CJ, Berger DH, Liu SH, Chen C, Nemunaitis J, Brunicardi FC. Defining the cancer master switch. World J Surg 2011; 35:1738-45. [PMID: 21286716 DOI: 10.1007/s00268-010-0941-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recent research has focused on signaling cascades and their interactions yielding considerable insight into which genetic pathways are targeted and how they tend to be altered in tumors. Therapeutic interventions now can be designed based on the knowledge of pathways vital to tumor growth and survival. These critical targets for intervention, master switches for cancer, are termed so because the tumor attempts to "flip the switch" in a way that promotes its survival, whereas molecular therapy aims to "switch off" signals important for tumor-related processes. METHODS Literature review. CONCLUSIONS Defining useful targets for therapy depends on identifying pathways that are crucial for tumor growth, survival, and metastasis. Because not all signaling cascades are created equal, selecting master switches or targets for intervention needs to be done in a systematic fashion. This discussion proposes a set of criteria to define what it means to be a cancer master switch and provides examples to illustrate their application.
Collapse
|
41
|
Liu SH, Patel S, Gingras MC, Nemunaitis J, Zhou G, Chen C, Li M, Fisher W, Gibbs R, Brunicardi FC. PDX-1: demonstration of oncogenic properties in pancreatic cancer. Cancer 2010; 117:723-33. [PMID: 20886630 DOI: 10.1002/cncr.25629] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/06/2010] [Indexed: 01/13/2023]
Abstract
BACKGROUND Pancreatic-duodenal homeobox 1 (PDX-1) is a transcription factor that regulates embryologic pancreas development and insulin expression in the adult islet; however, it is overexpressed in many types of cancer, including pancreatic cancer. The purpose of this study was to investigate the role of PDX-1 in tumorigenesis in human cells. METHODS In vitro cell proliferation, invasion, and transformation were performed in human embryonic kidney cell line (HEK 293), pancreatic cancer cell line MIA PaCa2, and human pancreatic ductal epithelial (HPDE) cells transiently or stably expressing PDX-1 or green fluorescent protein (GFP) PDX-1, with or without cotransfection of PDX-1 short hairpin RNA (shRNA). In vivo tumor formation was carried out in severe combined immunodeficiency (SCID) mice with subcutaneous injection of HEK 293 and MIA PaCa2 stably transfected cells. Cell cycle was analyzed by Western blot or immunostaining. Microarray of RNA from pancreatic adenocarcinoma cells with and without PDX-1 shRNA was performed and analyzed. RESULTS Transient and stable expressing PDX-1 significantly increased cell proliferation and invasion in HEK 293, human pancreatic ductal epithelial (HPDE), and MIA PaCa2 cells versus controls (P < .05), human PDX-1 shRNA reversed these effects. Expression of PDX-1 significantly increased colony formation in HEK 293, HPDE, and MIA PaCa2 cells versus controls in vitro (P < .05). PDX-1 promoted HEK 293 and MIA PaCa2 tumor formation in SCID mice as compared with that of control (P < .05). PDX-1 overexpression disrupted cell cycles proteins. PDX-1 expression was confirmed by Western blot and tracked by viewing of GFP-PDX-1 expression. Microarray data support an oncogenic role of PDX-1 in pancreas cancer cells. CONCLUSIONS PDX-1 induced increased cell proliferation, invasion, and colony formation in vitro, and resulted in markedly increased HEK 293 and MIA PaCa2 tumor formation in SCID mice. These data suggest that PDX-1 is a potential oncogene that regulates tumorigenesis.
Collapse
Affiliation(s)
- Shi-He Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
A combinatorial approach for targeted delivery using small molecules and reversible masking to bypass nonspecific uptake in vivo. Gene Ther 2010; 17:1085-97. [PMID: 20463761 PMCID: PMC2923228 DOI: 10.1038/gt.2010.55] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have developed a multi-disciplinary approach combining molecular biology, delivery technology, combinatorial chemistry, and reversible masking to create improved systemic, targeted delivery of plasmid DNA while avoiding non-specific uptake in vivo. We initially used a well characterized model targeting the asialolglycoprotein receptor in the liver. Using our bilamellar invaginated vesicle (BIV) liposomal delivery system with reversible masking, we increased expression in the liver by 76-fold, nearly equaling expression in first-pass organs using non-targeted complexes, with no expression in other organs. The same technology was then applied to efficiently target delivery to a human tumor microenvironment model. We achieved efficient, targeted delivery by attachment of specific targeting ligands to the surface of our BIV complexes in conjunction with reversible masking to bypass non-specific tissues and organs. We identified ligands that target a human tumor microenvironment created in vitro by co-culturing primary human endothelial cells with human lung or pancreatic cancer cells. The model was confirmed by increased expression of tumor endothelial phenotypes including CD31 and VEGF-A, and prolonged survival of endothelial capillary-like structures. The co-cultures were used for high-throughput screening of a specialized small-molecule library to identify ligands specific for human tumor-associated endothelial cells in vitro. We identified small molecules that enhanced the transfection efficiency of tumor-associated endothelial cells, but not normal human endothelial cells or cancer cells. Intravenous injection of our targeted, reversibly masked complexes into mice, bearing human pancreatic tumor and endothelial cells, specifically increased transfection to this tumor microenvironment about 200-fold. Efficacy studies using our optimized targeted delivery of a plasmid encoding thrombospondin-1 eliminated tumors completely after five intravenous injections administered once every week.
Collapse
|
43
|
Abstract
Pancreatic cancer represents a major challenge for research studies and clinical management. No specific tumor marker for the diagnosis of pancreatic cancer exists. Therefore, extensive genomic, transcriptomic, and proteomic studies are being developed to identify candidate markers for use in high-throughput systems capable of large cohort screening. Understandably, the complex pathophysiology of pancreatic cancer requires sensitive and specific biomarkers that can improve both early diagnosis and therapeutic monitoring. The lack of a single diagnostic marker makes it likely that only a panel of biomarkers is capable of providing the appropriate combination of high sensitivity and specificity. Biomarker discovery using novel technology can improve prognostic upgrading and pinpoint new molecular targets for innovative therapy.
Collapse
|
44
|
Yu X, Zhang Y, Chen C, Yao Q, Li M. Targeted drug delivery in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2009; 1805:97-104. [PMID: 19853645 DOI: 10.1016/j.bbcan.2009.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/07/2009] [Accepted: 10/11/2009] [Indexed: 12/16/2022]
Abstract
Effective drug delivery in pancreatic cancer treatment remains a major challenge. Because of the high resistance to chemo and radiation therapy, the overall survival rate for pancreatic cancer is extremely low. Recent advances in drug delivery systems hold great promise for improving cancer therapy. Using liposomes, nanoparticles, and carbon nanotubes to deliver cancer drugs and other therapeutic agents such as siRNA, suicide gene, oncolytic virus, small molecule inhibitor, and antibody has been a success in recent preclinical trials. However, how to improve the specificity and stability of the delivered drug using ligand or antibody directed delivery represent a major problem. Therefore, developing novel, specific, tumor-targeted drug delivery systems is urgently needed for this terrible disease. This review summarizes the current progress on targeted drug delivery in pancreatic cancer and provides important information on potential therapeutic targets for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xianjun Yu
- Michael E. DeBakey Department of Surgery, Molecular Surgeon Research Center, Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
45
|
Li M, Zhang Y, Bharadwaj U, Zhai QJ, Ahern CH, Fisher WE, Brunicardi FC, Logsdon CD, Chen C, Yao Q. Down-regulation of ZIP4 by RNA interference inhibits pancreatic cancer growth and increases the survival of nude mice with pancreatic cancer xenografts. Clin Cancer Res 2009; 15:5993-6001. [PMID: 19755388 DOI: 10.1158/1078-0432.ccr-09-0557] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Zinc levels have been correlated with cancer risk, although the role of zinc and zinc transporters in cancer progression is largely unknown. We recently found that a zinc transporter, ZIP4, is overexpressed in pancreatic cancer. In this study, we further deciphered the role that ZIP4 plays in a pancreatic cancer mouse model by silencing ZIP4. EXPERIMENTAL DESIGN ZIP4 stable silencing was established in pancreatic cancer cell lines ASPC-1 (ASPC-shZIP4) and BxPC-3 (BxPC-shZIP4) by short hairpin RNA using retrovirus vectors. The stable cells were characterized in vitro and in vivo using a nude mouse xenograft model. RESULTS Silencing of ZIP4 was associated with decreased cell proliferation, migration, and invasion. Both ASPC-shZIP4 and BxPC-shZIP4 cells showed a significant reduction in tumor volume and weight in the s.c. model, and decreased primary tumor weight in the orthotopic model compared with the vector control cells (ASPC-shV and BxPC-shV). Silencing of ZIP4 also caused reduced incidence of tumor metastasis in the mice and downsized the tumor grade. More importantly, silencing of ZIP4 significantly increased the survival rate of nude mice with orthotopic xenografts (P = 0.005). All ASPC-shZIP4-injected mice (100%) remained alive up to 32 days after tumor implantation, whereas only 30% of the ASPC-shV mice were alive at the same time point. CyclinD1 expression was decreased in the ASPC-shZIP4 xenografts. CONCLUSIONS These results identify a previously uncharacterized role of ZIP4 in pancreatic cancer progression, and indicate that knocking down ZIP4 by short hairpin RNA might be a novel treatment strategy for pancreatic cancers with ZIP4 overexpression.
Collapse
Affiliation(s)
- Min Li
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tanase CP, Neagu M, Albulescu R, Codorean E, Dima SO. Biomarkers in the diagnosis and early detection of pancreatic cancer. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2009; 3:533-546. [PMID: 23495983 DOI: 10.1517/17530050903117256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pancreatic cancer, owing to its raising incidence and aggressiveness, is a major challenge, both for research and for clinical management. As pancreatic cancer has a complex pathophysiology, in addition to improving the methods of early diagnosis, sensitive and specific biomarkers are a prerequisite. OBJECTIVE As there is no specific tumor marker for pancreatic cancer diagnosis, extensive genomics/transcriptomics and proteomics studies have been developed with the aim of finding candidate markers and contributing to high-throughput systems for large cohort screening. METHODS A literature review was done to study these biomarkers in relation to diagnosis, prognosis and therapy targets in pancreatic cancer. RESULTS/CONCLUSION For early diagnosis improvement, only a panel of soluble biomarkers could provide the appropriate combination between high sensitivity and specificity. Prognostic upgrading would benefit from biomarker discovery and validation performed on tumor tissue. New technology could delineate molecular targets for innovative therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Cristiana Pistol Tanase
- 'VICTOR BABES' National Institute of Pathology, 99-101 Splaiul Independentei, Bucharest, Romania +4021 319 45 28 ; +4021 319 45 28 ;
| | | | | | | | | |
Collapse
|
47
|
Microarray analysis of somatostatin receptor 5-regulated gene expression profiles in murine pancreas. World J Surg 2009; 33:630-7. [PMID: 19137362 DOI: 10.1007/s00268-008-9893-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND We previously demonstrated that somatostatin receptor type 5 (SSTR5) gene ablation results in alterations in insulin secretion and glucose metabolism, accompanied by morphologic alterations in the islets of Langerhans. The underlying mechanism(s) by which SSTR5 exerts its cellular functions remain(s) unknown. We hypothesized that SSTR5 mediates the inhibitory effect of somatostatin (SST) on insulin secretion and islet proliferation by regulating a specific set of pancreatic genes. METHODS To identify SSTR5-regulated pancreatic genes, gene expression microarray analysis was performed on the whole pancreas of 1- and 3-month-old wild-type (WT) and SSTR5 knockout (SSTR5-/-) male mice. Real-time RT-PCR and immunofluorescence were performed to validate selected differentially expressed genes. RESULTS A set of 143 probes were identified to be differentially expressed in the pancreas of 1-month-old SSTR5-/- mice, 72 of which were downregulated and 71 upregulated. At 3 months of age, SSTR5 gene ablation resulted in downregulation of a set of 30 probes and upregulation of a set of 37 probes. Among these differentially expressed genes, there were 15 and 5 genes that were upregulated and downregulated, respectively, in mice at both 1 and 3 months of age. Three genes, PAP/INGAP, ANG, and TDE1, were selected to be validated by real-time RT-PCR and immunofluorescence. CONCLUSIONS A specific set of genes linked to a wide range of cellular functions such as islet proliferation, apoptosis, angiogenesis, and tumorigenesis were either upregulated or downregulated in SSTR5-deficient male mice compared with their expression in wild-type mice. Therefore, these genes are potential SSTR5-regulated genes during normal pancreatic development and functional maintenance.
Collapse
|
48
|
Ballian N, Liu SH, Brunicardi FC. Transcription factor PDX-1 in human colorectal adenocarcinoma: A potential tumor marker? World J Gastroenterol 2008; 14:5823-6. [PMID: 18855980 PMCID: PMC2751891 DOI: 10.3748/wjg.14.5823] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the expression of pancreatic duodenal homeobox-1 (PDX-1) transcription factor in human colorectal cancer.
METHODS: RT-PCR, Western blotting, and immuno-histochemistry were performed to determine the expression pattern of transcription factor PDX-1 in primary colorectal tumor, hepatic metastasis, and benign colon tissue from a single patient.
RESULTS: The highest PDX-1 transcription levels were detected in the metastasis material. Lower levels of PDX-1 were found to be present in the primary tumor, while normal colon tissue failed to express detectable levels of PDX-1. Western blot data revealed a PDX-1 expression pattern identical to that of mRNA expression. Immunohistochemistry confirmed high metastasis PDX-1 expression, lower levels in the primary tumor, and the presence of only traces of PDX-1 in normal colon tissue.
CONCLUSION: These data argue for further evaluation of PDX-1 as a biomarker for colorectal cancer.
Collapse
|